
Cryptanalysis Course

Part V – Factorization

Tanja Lange

Technische Universiteit Eindhoven

01 December 2016

with some slides by

Daniel J. Bernstein



How to find square product

of congruences (i� jm)(i� jr)?

Start with congruences for,

e.g., y2 pairs (i; j).

Look for y-smooth congruences:

y-smooth i� jm and

y-smooth fdnorm(i� jr) =

fdi
d + � � � + f0j

d = jdf(i=j).

Norm covers all d roots r.

Here “y-smooth” means

“has no prime divisor > y.”

Find enough smooth congruences.

Perform linear algebra on

exponent vectors mod 2.



Polynomial selection

Many f ’s possible for n.

How to find f that

minimizes NFS time?

General strategy:

Enumerate many f ’s.

For each f , estimate time using

information about f arithmetic,

distribution of jdeg ff(i=j),

distribution of smooth numbers.



Let’s restrict attention to f(x) =

(x�m)(f5x
5 + f4x

4 + � � � + f0).

Take m near n1=6.

Expand n in base m:

n = f5m
5 + f4m

4 + � � � + f0.

Can use negative coefficients.

Have f5 � n1=6.

Typically all the fi’s

are on scale of n1=6.

(1993 Buhler Lenstra Pomerance)



To reduce f values by factor B:

Enumerate many possibilities

for m near B0:25n1=6.

Have f5 � B�1:25n1=6.

f4; f3; f2; f1; f0 could be

as large as B0:25n1=6.

Hope that they are smaller,

on scale of B�1:25n1=6.

Conjecturally this happens

within roughly B7:5 trials.

Then (i� jm)(f5i
5 + � � � + f0j

5)

is on scale of B�1R6n2=6

for i; j on scale of R.

Several more ways; depends on n.



Asymptotic cost exponents

Number of bit operations

in number-field sieve,

with theorists’ parameters,

is L1:90:::+o(1) where L =

exp((logn)1=3(log logn)2=3).

What are theorists’ parameters?

Choose degree d with

d=(logn)1=3(log logn)�1=3

2 1:40 : : : + o(1).



Choose integer m � n1=d.

Write n as

md + fd�1m
d�1 + � � �+ f1m+ f0

with each fk below n(1+o(1))=d.

Choose f with some randomness

in case there are bad f ’s.

Test smoothness of i� jm

for all coprime pairs (i; j)

with 1 � i; j � L0:95:::+o(1),

using primes � L0:95:::+o(1).

L1:90:::+o(1) pairs.

Conjecturally L1:65:::+o(1)

smooth values of i� jm.



Use L0:12:::+o(1) number fields.

For each (i; j)

with smooth i� jm,

test smoothness of i� jr

and i� j� and so on,

using primes � L0:82:::+o(1).

L1:77:::+o(1) tests.

Each jjdf(i=j)j �m2:86:::+o(1).

Conjecturally L0:95:::+o(1)

smooth congruences.

L0:95:::+o(1) components

in the exponent vectors.



Three sizes of numbers here:

(logn)1=3(log logn)2=3 bits:

y, i, j.

(logn)2=3(log logn)1=3 bits:

m, i� jm, jdf(i=j).

logn bits: n.

Unavoidably 1=3 in exponent:

usual smoothness optimization

forces (log y)2 � logm;

balancing norms with m

forces d log y � logm;

and d logm � logn.



Batch NFS

The number-field sieve used

L1:90:::+o(1) bit operations

finding smooth i� jm; only

L1:77:::+o(1) bit operations

finding smooth jdf(i=j).

Many n’s can share one m;

L1:90:::+o(1) bit operations

to find squares for all n’s.

Oops, linear algebra hurts;

fix by reducing y.

But still end up factoring

batch in much less time than

factoring each n separately.



Asymptotic batch-NFS

parameters:

d=(logn)1=3(log logn)�1=3

2 1:10 : : : + o(1).

Primes � L0:82:::+o(1).

1 � i; j � L1:00:::+o(1).

Computation independent of n

finds L1:64:::+o(1)

smooth values i� jm.

L1:64:::+o(1) operations

for each target n.



Batch NFS for RSA-3072

Expand n in base m = 2384:

n = n7m
7 + n6m

6 + � � � + n0

with 0 � n0; n1; : : : ; n7 < m.

Assume irreducibility of

n7x
7 + n6x

6 + � � � + n0.

Choose height H = 262+261+257:

consider pairs (a; b) 2 Z� Z such

that �H � a � H, 0 < b � H,

and gcdfa; bg = 1.

Choose smoothness bound

y = 266 + 255.



There are about

12H2=�2 � 2125:51

pairs (a; b).

Find all pairs (a; b) with

y-smooth (a� bm)c where

c = n7a
7 + n6a

6b + � � � + n0b
7.

Combine these congruences

into a factorization of n,

if there are enough congruences.

Number of congruences needed

� 2y= log y � 262:06.



Heuristic approximation:

a � bm has same y-smoothness

chance as a uniform random

integer in [1; Hm],

and this chance is u�u

where u = (log(Hm))= log y.

Have u � 6:707

and u�u � 2�18:42,

so there are about

2107:09 pairs (a; b)

such that a� bm is smooth.



Heuristic approximation:

c has same y-smoothness chance

as a uniform random integer in

[1; 8H7m],

and this chance is v�v

where v = (log(8H7m))= log y.

Have v � 12:395

and v�v � 2�45:01,

so there are about

262:08 pairs (a; b) such that

a� bm and c are both smooth.

Safely above 262:06.



Biggest step in computation:

Check 2125:51 pairs (a; b)

to find the 2107:09 pairs

where a� bm is smooth.

This step is independent of N,

reused by many integers N.



Biggest step in computation:

Check 2125:51 pairs (a; b)

to find the 2107:09 pairs

where a� bm is smooth.

This step is independent of N,

reused by many integers N.

Biggest step depending on N:

Check 2107:09 pairs (a; b)

to see whether c is smooth.

This is much less

computation! : : : or is it?



The 2107:09 pairs (a; b)

are not consecutive,

so no easy way to sieve

for prime divisors of c.



The 2107:09 pairs (a; b)

are not consecutive,

so no easy way to sieve

for prime divisors of c.

Fix: factor each number

separately:

start with trial division,

then Pollard rho,

then Pollard p� 1,

then ECM.



The 2107:09 pairs (a; b)

are not consecutive,

so no easy way to sieve

for prime divisors of c.

Fix: factor each number

separately:

start with trial division,

then Pollard rho,

then Pollard p� 1,

then ECM.

Most of them covered in

http://facthacks.cr.yp.to/



The rho method

Define �0 = 0, �k+1 = �2
k + 11.

Every prime � 220 divides S =

(�1 � �2)(�2 � �4)(�3 � �6)

� � � (�3575 � �7150).

Also many larger primes.

Can compute gcdfc; Sg using

� 214 multiplications mod c,

very little memory.

Compare to � 216 divisions

for trial division up to 220.



More generally: Choose z.

Compute gcdfc; Sg where S =

(�1 � �2)(�2 � �4) � � � (�z � �2z).

How big does z have to be

for all primes � y to divide S?

Plausible conjecture: y1=2+o(1);

so y1=2+o(1) mults mod c.

Reason: Consider first collision in

�1 mod p; �2 mod p; : : :.

If �i mod p = �j mod p

then �k mod p = �2k mod p

for k 2 (j � i)Z \ [i;1] \ [j;1].



The p� 1 method

S1 = 2232792560 � 1 has prime

divisors

3, 5, 7, 11, 13, 17, 19, 23, 29, 31,

37, 41, 43, 53, 61, 67, 71, 73, 79,

89, 97, 103, 109, 113, 127, 131,

137, 151, 157, 181, 191, 199 etc.

These divisors include

70 of the 168 primes � 103;

156 of the 1229 primes � 104;

296 of the 9592 primes � 105;

470 of the 78498 primes � 106;

etc.



An odd prime p

divides 2232792560 � 1

iff order of 2 in the

multiplicative group F�p
divides s = 232792560.

Many ways for this to happen:

232792560 has 960 divisors.

Why so many?

Answer: s = 232792560

= lcmf1; 2; 3; 4; 5; : : : ; 20g
= 24 � 32 � 5 � 7 � 11 � 13 � 17 � 19.



Can compute 2232792560 � 1

using 41 ring operations.

(Side note: 41 is not minimal.)

Ring operation: 0, 1, +, �, �.
This computation: 1; 2 = 1 + 1;

22 = 2 � 2; 23 = 22 � 2; 26 = 23 � 23;

212 = 26�26; 213 = 212�2; 226; 227; 254;

255; 2110; 2111; 2222; 2444; 2888; 21776;

23552; 27104; 214208; 228416; 228417;

256834;2113668;2227336;2454672;2909344;

2909345; 21818690; 21818691; 23637382;

23637383; 27274766; 27274767; 214549534;

214549535; 229099070; 258198140;

2116396280; 2232792560; 2232792560�1.



Given positive integer n,

can compute 2232792560 � 1 modn

using 41 operations in Z=n.

Notation: amod b = a� b ba=bc.
e.g. n = 8597231219: : : :

227 modn = 134217728;

254 modn = 1342177282 modn

= 935663516;

255 modn = 1871327032;

2110 modn = 18713270322 modn

= 1458876811; : : : ;

2232792560�1 modn= 5626089344.



Given positive integer n,

can compute 2232792560 � 1 modn

using 41 operations in Z=n.

Notation: amod b = a� b ba=bc.
e.g. n = 8597231219: : : :

227 modn = 134217728;

254 modn = 1342177282 modn

= 935663516;

255 modn = 1871327032;

2110 modn = 18713270322 modn

= 1458876811; : : : ;

2232792560�1 modn= 5626089344.

Easy extra computation (Euclid):

gcdf5626089344; ng = 991.



This p� 1 method (1974 Pollard)

quickly factored n = 8597231219.

Main work: 27 squarings mod n.

Could instead have checked

n’s divisibility by 2; 3; 5; : : :.

The 167th trial division

would have found divisor 991.

Not clear which method is better.

Dividing by small p

is faster than squaring mod n.

The p� 1 method finds

only 70 of the primes � 1000;

trial division finds all 168 primes.



Scale up to larger exponent

s = lcmf1; 2; 3; 4; 5; : : : ; 100g:

using 136 squarings mod n

find 2317 of the primes � 105.

Is a squaring mod n

faster than 17 trial divisions?

Or

s = lcmf1; 2; 3; 4; 5; : : : ; 1000g:

using 1438 squarings mod n

find 180121 of the primes � 107.

Is a squaring mod n

faster than 125 trial divisions?

Extra benefit:

no need to store the primes.



Plausible conjecture: if K is

exp
q�

1
2 + o(1)

�
logH log logH

then p�1 divides lcmf1; 2; : : : ; Kg
for H=K1+o(1) primes p � H.

Same if p� 1 is replaced by

order of 2 in F�p.

So uniform random prime p � H

divides 2lcmf1;2;:::;Kg � 1

with probability 1=K1+o(1).

(1:4 : : :+ o(1))K squarings mod n

produce 2lcmf1;2;:::;Kg � 1 modn.

Similar time spent on trial division

finds far fewer primes for large H.



Safe primes

This means numbers are easy

to factor if their factors pi
have smooth pi � 1.

To construct hard instances

avoid such factors – that’s it?

ANSI does recommend

using “safe primes”, i.e.,

primes of the form 2p0 + 1

when generating RSA moduli.

This does not help against the

NFS nor against the following

algorithms.



The p + 1 factorization method

(1982 Williams)

Define (X; Y ) 2 Q�Q as the

232792560th multiple of

(3=5; 4=5) in the group Clock(Q).

The integer S2 = 5232792560X

is divisible by

82 of the primes � 103;

223 of the primes � 104;

455 of the primes � 105;

720 of the primes � 106;

etc.



Given an integer n,

compute 5232792560X mod n

and compute gcd with n,

hoping to factor n.

Many p’s not found by F�p
are found by Clock(Fp).

If �1 is not a square mod p

and p + 1 divides 232792560

then 5232792560X mod p = 0.

Proof: p � 3 (mod 4), so

(4=5 + 3i=5)p = 4=5 � 3i=5 and

so (p + 1)(3=5; 4=5) = (0; 1)

in the group Clock(Fp)

so 232792560(3=5; 4=5) = (0; 1).



The elliptic-curve method

Stage 1: Point P on E over Z=n,

compute R = sP for

s = lcmf2; 3; : : : ; B1g.

Stage 2: Small primes

B1 < q1; : : : ; qk � B2

compute Ri = qiR.

If order of P on E=Fpi
(same curve, reduce mod pi)

divides sqi, then

Ri = (0; 1) (using Edwards).

Compute gcdfn;Q y(Ri)g.



Good news (for the attacker):

All primes � H found after

reasonable number of curves.

Order of elliptic-curve group

2 [p + 1 � 2
p
p; p + 1 + 2

p
p].

If a curve fails, try another.

Plausible conjecture: if B1 is

exp
q�

1
2 + o(1)

�
logH log logH

then, for each prime p � H,

a uniform random curve mod p

has chance � 1=B
1+o(1)
1 to find p.

Find p using, � B
1+o(1)
1 curves;

� B
2+o(1)
1 squarings.

Time subexponential in H.



Bad RSA randomness

2004 Bauer–Laurie:

checked 18000 PGP RSA keys;

found 2 keys sharing a factor.

2012.02.14 Lenstra–Hughes–

Augier–Bos–Kleinjung–Wachter

“Ron was wrong, Whit is right”

(Crypto 2012): checked 7 � 106

SSL/PGP RSA keys; found 6 � 106

distinct keys; factored 12720 of

those,

thanks to shared prime factors.



2012.02.17 Heninger–

Durumeric–Wustrow–Halderman

announcement (USENIX Security

2012):

checked >107 SSL/SSH RSA

keys; factored 24816 SSL keys,

2422 SSH host keys.

“Almost all of the vulnerable keys

were generated by and are used to

secure embedded hardware devices

such as routers and firewalls, not

to secure popular web sites such

as your bank or email provider.”



These computations find q2 in

p1q1; p2q2; p3q3;

p4q2; p5q5; p6q6;

and thus also p2 and p4.

Obvious:GCD computation.

Faster: scaled remainder trees.

Nice follow-up project:

Do this with Taiwan citizen cards.

Online data base of RSA keys.

These were generated on

certified smart cards;

should have good randomness.

But: student broke 103 keys.



Closer look at the 119 primes

p29

p101

p11

p92

p110
p117

p111

p3

p108

p71

p5
p65

p100

p78

p112

p17

p104

p35

p36

p49

p70

p12

p118

p57

p61

p76

p113

p40

p84

p99

p22

p107

p26

p34

p89

p80 p95

p90

p8

p37

p82

p85

p116

p43p97

p98

p38

p106

p47

p50

p64

p114

p23

p46

p60

p7

p16

p59

p66

p33

p94

p53

p27

p73

p115

p15

p58

p63

p69

p62
p19

p39

p83
p6

p102

p68

p77

p18

p42

p81

p103

p31

p72

p91

p88

p45

p96
p79

p75

p67

p86

p54

p2

p52

p48

p25

p1

p13

p9

p109

p24

p44

p56

p32

p74

p41p105

p0

p4

p93
p51 p87

p14

p30

p21

p28

p55

p20

p10



Prime p110 appears 46 times

c0000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

000000000000000000000000000002f9



Prime p110 appears 46 times

c0000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

000000000000000000000000000002f9

which is the next prime after

2511 + 2510.



Prime p110 appears 46 times

c0000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

000000000000000000000000000002f9

which is the next prime after

2511 + 2510.

Next up

c9242492249292499249492449242492

24929249924949244924249224929249

92494924492424922492924992494924

492424922492924992494924492424e5

Several other factors exhibit such

a pattern.



Prime generation

Choose a bit pattern of length 1,

3, 5, or 7 bits, repeat it to cover

more than 512 bits, and truncate

to exactly 512 bits.



Prime generation

Choose a bit pattern of length 1,

3, 5, or 7 bits, repeat it to cover

more than 512 bits, and truncate

to exactly 512 bits.

For every 32-bit word, swap the

lower and upper 16 bits.



Prime generation

Choose a bit pattern of length 1,

3, 5, or 7 bits, repeat it to cover

more than 512 bits, and truncate

to exactly 512 bits.

For every 32-bit word, swap the

lower and upper 16 bits.

Fix the most significant two bits

to 11.



Prime generation

Choose a bit pattern of length 1,

3, 5, or 7 bits, repeat it to cover

more than 512 bits, and truncate

to exactly 512 bits.

For every 32-bit word, swap the

lower and upper 16 bits.

Fix the most significant two bits

to 11.

Find the next prime greater than

or equal to this number.



Factoring by trial division

Choose a bit pattern of length 1,

3, 5, or 7 bits, repeat it to cover

more than 512 bits, and truncate

to exactly 512 bits.

For every 32-bit word, swap the

lower and upper 16 bits.

Fix the most significant two bits

to 11.

Find the next prime greater than

or equal to this number.



Factoring by trial division

Choose a bit pattern of length 1,

3, 5, or 7 bits, repeat it to cover

more than 512 bits, and truncate

to exactly 512 bits.

For every 32-bit word, swap the

lower and upper 16 bits.

Fix the most significant two bits

to 11.

Find the next prime greater than

or equal to this number.

Do this for any pattern:

0,1,001,010,011,100,101,110

00001,00010,00011,00100,00101,: : :



Computing GCDs factored 105

moduli, of which 18 were new.



Computing GCDs factored 105

moduli, of which 18 were new.

Breaking RSA-1024

by “trial division”.

Factored 4 more keys using

patterns of length 9.



Computing GCDs factored 105

moduli, of which 18 were new.

Breaking RSA-1024

by “trial division”.

Factored 4 more keys using

patterns of length 9.

More factors by studying other

keys and using lattices.

“Factoring RSA keys from

certified smart cards:

Coppersmith in the wild”

(with D.J. Bernstein, Y.-A.

Chang, C.-M. Cheng, L.-P. Chou,

N. Heninger, N. van Someren)

http://smartfacts.cr.yp.to/


