
Cryptanalysis Course

Part III – DLPs in intervals

Tanja Lange

Technische Universiteit Eindhoven

30 November 2016

with some slides by

Daniel J. Bernstein





Additive walks

Generic rho method requires two

scalar multiplications for each

iteration.

Could replace by double-scalar

multiplication; could further

merge the 2-scalar multiplications

across several parallel iterations.



Additive walks

Generic rho method requires two

scalar multiplications for each

iteration.

Could replace by double-scalar

multiplication; could further

merge the 2-scalar multiplications

across several parallel iterations.

More efficient: use additive walk:

Start with W0 = a0P and put

f(Wi) = Wi + cjP + djQ

where j = h(Wi).



Pollard’s initial proposal:

Use x(Wi) mod 3 as h

and update:

Wi+1 =8<
:
Wi + P for x(Wi) mod 3 = 0
2Wi for x(Wi) mod 3 = 1
Wi + Q for x(Wi) mod 3 = 2

Easy to update ai and bi.

(ai+1; bi+1) =8<
:

(ai + 1; bi) for x(Wi) mod 3 = 0
(2ai; 2bi) for x(Wi) mod 3 = 1
(ai; bi + 1) for x(Wi) mod 3 = 2



Additive walk requires only one

addition per iteration.

h maps from hP i to

f0; 1; : : : ; r � 1g, and

Rj = cjP + djQ are

precomputed for each

j 2 f0; 1; : : : ; r � 1g.

Easy coefficient update:

Wi = aiP + biQ,

where ai and bi are defined

recursively as follows:

ai+1 = ai + ch(Wi)
and

bi+1 = bi + dh(Wi)
.



Additive walks have

disadvantages:

The walks are noticeably

nonrandom; this means they need

more iterations than the generic

rho method to find a collision.

This effect disappears as r grows,

but but then the precomputed

table R0; : : : ; Rr�1 does not fit

into fast memory. This depends

on the platform, e.g. trouble for

GPUs.

More trouble with adding walks

later.



Randomness of adding walks

Let h(W ) = i with probability pi.

Fix a point T , and let W and

W 0 be two independent uniform

random points.

Let W 6= W 0 both map to T .

This event occurs if



Randomness of adding walks

Let h(W ) = i with probability pi.

Fix a point T , and let W and

W 0 be two independent uniform

random points.

Let W 6= W 0 both map to T .

This event occurs if

simultaneously for i 6= j:

T = W + Ri = W 0 + Rj ;

h(W ) = i; h(W 0) = j.

These conditions have probability

1=`2, pi, and pj respectively.



Summing over all (i; j)

gives the overall probability�P
i 6=j pipj

�
=`2 =�P

i;j pipj �
P

i p
2
i

�
=`2 =�

1�Pi p
2
i

�
=`2.

This means that the probability

of an immediate collision from W

and W 0 is
�
1�Pi p

2
i

�
=`, where

we added over the ` choices of T .

In the simple case that all the pi
are 1=r, the difference from the

optimal
p
�`=2 iterations is a

factor of

1=
p

1� 1=r � 1 + 1=(2r).



Various heuristics leading to

standard
p

1� 1=r formula

in different ways:

1981 Brent–Pollard;

2001 Teske;

2009 ECC2K-130 paper,

eprint 2009/541.



Various heuristics leading to

standard
p

1� 1=r formula

in different ways:

1981 Brent–Pollard;

2001 Teske;

2009 ECC2K-130 paper,

eprint 2009/541.

2010 Bernstein–Lange:

Standard formula is wrong!

There is a further slowdown

from higher-order anti-collisions:

e.g. W +Ri +Rk 6= W 0 +Rj +Rl

if Ri + Rk = Rj + Rl.

� 1% slowdown for ECC2K-130.



Eliminating storage

Usual description: each walk

keeps track of ai and bi
with Wi = aiP + biQ.

This requires each client to

implement arithmetic modulo `

or at least keep track of

how often each Rj is used.

For distinguished points

these values are

transmitted to server (bandwidth)

which stores them as

e.g. (Wi; ai; bi) (space).



2009 ECC2K-130 paper:

Remember where you started.

If Wi = Wj is the collision of

distinguished points,

can recompute these walks

with ai; bi; aj , and bj ;

walk is deterministic!

Server stores 245 distinguished

points; only needs to know

coefficients for 2 of them.

Our setup: Each walk remembers

seed; server stores distinguished

point and seed.

Saves time, bandwidth, space.



Negation and rho

W = (x; y) and �W = (x;�y)

have same x-coordinate.

Search for x-coordinate collision.

Search space for collisions is

only d`=2e; this gives factor
p

2

speedup : : : if f(Wi) = f(�Wi).

To ensure f(Wi) = f(�Wi):

Define j = h(jWij) and

f(Wi) = jWij+ cjP + djQ.

Define jWij as, e.g., lexicographic

minimum of Wi;�Wi.

This negation speedup

is textbook material.



Problem: this walk can

run into fruitless cycles!

Example: If jWi+1j = �Wi+1

and h(jWi+1j) = j = h(jWij)
then Wi+2 = f(Wi+1) =

�Wi+1 + cjP + djQ =

�(jWij+cjP+djQ)+cjP+djQ =

�jWij so jWi+2j = jWij
so Wi+3 = Wi+1

so Wi+4 = Wi+2 etc.

If h maps to r different values

then expect this example to occur

with probability 1=(2r)

at each step.

Known issue, not quite textbook.



Eliminating fruitless cycles

Issue of fruitless cycles is known

and several fixes are proposed.

See appendix of full version ePrint

2011/003 for even more details

and historical comments.

Summary: most of them

got it wrong.



Eliminating fruitless cycles

Issue of fruitless cycles is known

and several fixes are proposed.

See appendix of full version ePrint

2011/003 for even more details

and historical comments.

Summary: most of them

got it wrong.

So what to do?

Choose a big r, e.g. r = 2048.

1=(2r) = 1=4096 small;

cycles infrequent.



Define j(x; y)j to mean

(x; y) for y 2 f0; 2; 4; : : : ; p� 1g
or

(x;�y) for y 2 f1; 3; 5; : : : ; p� 2g.

Precompute points

R0; R1; : : : ; Rr�1 as known

random multiples of P .



Define j(x; y)j to mean

(x; y) for y 2 f0; 2; 4; : : : ; p� 1g
or

(x;�y) for y 2 f1; 3; 5; : : : ; p� 2g.

Precompute points

R0; R1; : : : ; Rr�1 as known

random multiples of P .

Can do full scalar multiplication in

inversion-free coordinates!

Start each walk at a point

W0 = jb0Qj,
where b0 is chosen randomly.

Compute W1;W2; : : : as

Wi+1 = jWi + Rh(Wi)
j.



Occasionally , every w iterations,

check for fruitless cycles

of length 2.

For those cases change the

definition of Wi as follows:

Compute Wi�1 and check

whether Wi�1 = Wi�3.

If Wi�1 6= Wi�3, put Wi = Wi�1.

If Wi�1 = Wi�3, put

Wi = j2 minfWi�1;Wi�2gj,
where min means

lexicographic minimum.

Doubling the point

makes it escape the cycle.



Cycles of length 4, 6, or 12

occur far less frequently.

Cycles of length 4, or 6

are detected when checking

for cycles of length 12;

so skip individual ones.

Same way of escape:

define Wi =

j2minfWi�1;Wi�2;Wi�3;Wi�4;

Wi�5;Wi�6;Wi�7;Wi�8;

Wi�9;Wi�10;Wi�11;Wi�12gj
if trapped

and Wi = Wi�1 otherwise.



Do not store all these points!

When checking for cycle,

store only potential entry point

Wi�13 (one coordinate, for

comparison) and the

smallest point encountered since

(to escape).

For large DLP

look for larger cycles;

in general, look for

fruitless cycles of even lengths

up to � (log `)=(log r).



How to choose w?

Fruitless cycles of length 2 appear

with probability � 1=(2r).

These cycles persist

until detected.

After w iterations,

probability of cycle � w=(2r),

wastes � w=2 iterations

(on average) if it does appear.

Do not choose w

as small as possible!

If a cycle has not appeared then

the check wastes an iteration.



The overall loss is approximately

1 + w2=(4r) iterations out of w.

To minimize the quotient

1=w + w=(4r) we take w � 2
p
r.

Cycles of length 2c appear with

probability � 1=rc,

optimal checking frequency is

� 1=rc=2.

Loss rapidly disappears

as c increases.

Can use lcm of cycle lengths

to check.



Concrete example: 112-bit DLP

Use r = 2048. Check for 2-cycles

every 48 iterations.

Check for larger cycles much less

frequently.

Unify the checks for 4-cycles and

6-cycles into a check for 12-cycles

every 49152 iterations.

Choice of r has big impact!

r = 512 calls for checking

for 2-cycles every 24 iterations.

In general, negation overhead

� doubles when table size

is reduced by factor of 4.



Bernstein, Lange, Schwabe

(PKC 2011):

Our software solves

random ECDL on the same curve

(with no precomputation)

in 35.6 PS3 years on average.

For comparison:

Bos–Kaihara–Kleinjung–Lenstra–

Montgomery software

uses 65 PS3 years on average.



Bernstein, Lange, Schwabe

(PKC 2011):

Our software solves

random ECDL on the same curve

(with no precomputation)

in 35.6 PS3 years on average.

For comparison:

Bos–Kaihara–Kleinjung–Lenstra–

Montgomery software

uses 65 PS3 years on average.

First big speedup:

We use the negation map.

Second speedup: Fast arithmetic.



Why are we confident this works?

We only have 1 PlayStation-3,

not 200 used in their record.

Don’t want to wait for 36 years

to show that we actually compute

the right thing.



Why are we confident this works?

We only have 1 PlayStation-3,

not 200 used in their record.

Don’t want to wait for 36 years

to show that we actually compute

the right thing.

Can produced scaled versions:

Use same prime field

(so that we can compare the field

arithmetic) and same curve shape

y2 = x3 � 3x + b

but vary b to get curves with

small subgroups.



This produces other curves, and

many of those have smaller order

subgroups.

Specify DLP in subgroup of size

250, or 255, or 260 and show that

the actual running time matches

the expectation.

And that DLP is correct.

We used same property for a

point to be distinguished as in

big attack; probability is 2�20.

Need to watch out that walks

do not run into rho-type cycles

(artefact of small group order).

We aborted overlong walks.



New record

Announced 29 Nov 2016,

most work by Ruben Niederhagen

(@cryptocephaly on twitter).

Elliptic curve over F2127 ,

DLP in subgroup of order 2117:35.

Used parallel Pollard rho,

DP criterion: 30 top bits equal 0.

Expectedp
�2117:35=4=230 � 379 821 956

DPs, but ended up needing

968 531 433.

Computations ran on 64 to 576

FPGAs in parallel.



DLs in intervals

Want to use knowledge

that DL is in a

small interval [a; b],

much smaller than `.

We can use this in baby-step

giant-step algorithm.

How to use this in a

memory-less algorithm?



Standard interval method:

Pollard’s kangaroo method.

Pollard’s kangaroos do small

jumps around the interval.



Standard interval method:

Pollard’s kangaroo method.

Pollard’s kangaroos do small

jumps around the interval.

Real kangaroos sleep



Standard interval method:

Pollard’s kangaroo method.

Pollard’s kangaroos do small

jumps around the interval.

Real kangaroos sleep

(at least outside Australia).



Kangaroo method

in Australia

Main actor:



The tame kangaroo

starts at a known

multiple of P , e.g. bP .



The tame kangaroo jumps.

Jumps are determined

by current position.



The tame kangaroo jumps.

Jumps are determined

by current position.

Average jump distance

is
p
b� a.



The tame kangaroo jumps.

Jumps are determined

by current position.

Average jump distance

is
p
b� a.



The tame kangaroo jumps.

Jumps are determined

by current position.

Average jump distance

is
p
b� a.



The tame kangaroo stops

after a fixed number of jumps

(about
p
b� a many).

The tame kangaroo installs a trap

and waits.



The wild kangaroo

starts at point Q.

Follows the same instructions for

jumps.



But we don’t know where

the starting point Q is.

Know Q = nP with n 2 [a; b].

Hope that the paths of the tame

and wild kangaroo intersect.

Similar to the rho method the

kangaroos will hop on the same

path from that point onwards.

Eventually the wild kangaroo falls

into the trap.

(Or disappears in the distance if

paths have not intersected.

Start a fresh one

from Q + P;Q + 2P; : : :.)



Same story in math

Kangaroo = sequence Xi 2 hP i.
Starting point X0 = s0P .

Distance d0 = 0.

Step set: S = fs1P; : : : ; sLPg,

with si on average

s = �
p
b� a.

Hash function

H : hP i ! f1; 2; : : : ; Lg.

Update function

di+1 = di + sH(Xi)
; i = 0; 1; 2; : : :,

Xi+1= Xi + sH(Xi)
P; i = 0; 1; 2; : : :.



Tame kangaroo starts at

X0 = bP ,

wild kangaroo starts at

X 0
0 = Q = nP .

Trap: distance dN ,

endpoint XN = (b + dN)P .

Picture credit:

Christine van Vredendaal.



Parallel kangaroo method

Use an entire herd

of tame kangaroos,

all starting

around ((b� a)=2)P : : :



: : : and define certain spots as

distinguished points

Also start a herd of

wild kangaroos around Q.

Hope that one wild and

one tame kangaroo

meet at one distinguished point.



Pairings

Let (G1;+); (G2;+) and (GT ; �)
be groups of prime order ` and let

e : G1 � G2 ! GT
be a map satisfying

e(P + Q;R0) = e(P;R0)e(Q;R0);

e(P;R0 + S0) = e(P;R0)e(P; S0):

Request further that e is

non-degenerate in the first

argument, i.e., if for some P

e(P;R0) = 1 for all R0 2 G2,

then P is the identity in G1

Such an e is called a bilinear map

or pairing.



Consequences of pairings

Assume that G1 = G2,

in particular e(P; P ) 6= 1:

Then for all triples

(P1; P2; P3) 2 hP i3
one can decide in time polynomial

in log ` whether

logP (P3) = logP (P1) logP (P2)

by comparing

e(P1; P2) and e(P; P3).

This means that the decisional

Diffie-Hellman problem is easy.



The DL system G1 is at most as

secure as the system GT .

Even if G1 6= G2 one can

transfer the DLP in G1

to a DLP in GT ,

provided one can find an element

P 0 2 G2 such that the map

P ! e(P; P 0) is injective.

Pairings are interesting attack

tool if DLP in GT is easier

to solve; e.g. if GT has index

calculus attacks.



We want to define pairings

G1 � G2 ! GT
preserving the group structure.

The pairings we will use

map to the multiplicative group of

a finite extension field Fqk .

More precisely, GT � Fqk , order `.

To embed the points of order `

into Fqk there need to be `-th

roots of unity are in F�
qk

.

The embedding degree k satisfies

k is minimal with ` j qk � 1.



E is supersingular if

for jE(Fq)j = q + 1� t, q = pr,

it holds that t � 0 mod p.

Otherwise it is ordinary.

Example:

y2 + y = x3 + a4x + a6 over F2r

is supersingular:

Each (x; y) point also gives

(x; y + 1) 6= (x; y).

All points come in pairs,

except for 1,

so jE(F2r )j = 1+even,

so t � 0 mod 2.



Embedding degrees

Let E be supersingular and

q = p � 5, i.e p > 2
p
p.

Hasse’s Theorem states

jtj � 2
p
p.

E supersingular implies

t � 0 mod p, so t = 0 and

jE(Fp)j = p + 1:

Obviously

(p + 1) j p2 � 1 = (p + 1)(p� 1)

so k � 2 for supersingular curves

over prime fields.



Distortion maps

For supersingular curves there

exist maps

� : E(Fq) ! E(Fqk)

i.e. maps G1 ! G2, giving

ẽ(P; P ) 6= 1 for ẽ(P; P ) =

e(P; �(P )):

Such a map is called a

distortion map.

These maps are important since

the only pairings we know how to

compute are variants of

Weil pairing and Tate pairing

which have e(P; P ) = 1.



Examples:

y2 = x3 + a4x,

for p � 3 (mod 4).

Distortion map

(x; y) 7! (�x;p�1y).

y2 = x3 +a6, for p � 2 (mod 3).

Distortion map (x; y) 7! (jx; y)

with j3 = 1; j 6= 1.

In both cases, #E(Fp) = p + 1,

so k = 2.



Example from Tuesday:

p = 1000003 � 3 mod 4 and

y2 = x3 � x over Fp.

Has 1000004 = p + 1 points.

P = (101384; 614510) is a point

of order 500002.

nP = (670366; 740819).

Construct Fp2 as Fp(i).

�(P ) = (898619; 614510i).

Invoke magma and compute

e(P; �(P )) = 387265 + 276048i;

e(Q; �(P )) = 609466 + 807033i.

Solve with index calculus to get

n = 78654.

(Btw. this is the clock).



Summary of pairings

Menezes, Okamoto, and Vanstone

for E supersingular:

For p = 2 have k � 4.

For p = 3 we k � 6

Over Fp, p � 5 have k � 2.

These bounds are attained.

Not only supersingular curves:

MNT curves are non-supersingular

curves with small k.

Other examples constructed for

pairing-based cryptography –

but small k unlikely to occur for

random curve.



Summary of other attacks

Definition of embedding degree

does not cover all attacks.

For Fpn watch out that pairing

can map to Fpkm with m < n.

Watch out for this when selecting

curves over Fpn .

Anomalous curves:

If E=Fp has #E(Fp) = p

then transfer E(Fp) to (Fp;+).

Very easy DLP.

Not a problem for Koblitz curves,

attack applies to

order-p subgroup.



Weil descent:

Maps DLP in E over Fpmn

to DLP on variety J over Fpn .

J has larger dimension; elements

represented as polynomials of low

degree. ) index calculus.

This is efficient if dimension of J

is not too big.

Particularly nice to compute

with J if it is the Jacobian of a

hyperelliptic curve C.

For genus g get complexity

Õ(p
2� 2

g+1 ) with the factor

base described before, since

polynomials have degree <= g.


