
Cryptanalysis Course

Part I

Tanja Lange

Technische Universiteit Eindhoven

28 Nov 2016

with some slides by

Daniel J. Bernstein



Main goal of this course:

We are the attackers.

We want to break ECC and RSA.

First need to understand ECC;

this is also needed for Dan’s

high-speed crypto course.

Main motivation for ECC:

Avoid index-calculus attacks

that plague finite-field DL.

See, e.g., yesterday’s talk by

P. T. H. Duong.



Diffie-Hellman key exchange

Pick some generator P ,

i.e. some group element

(using additive notation here).
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secret key a
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public key
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Bob’s
public key

b P
xxppppppp

fAlice;Bobg’s
shared secret

ab P

=
fBob;Aliceg’s
shared secret

b aP
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What does P look like &

how to compute P + Q?



The clock
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This is the curve x2 + y2 = 1.

Warning:

This is not an elliptic curve.

“Elliptic curve” 6= “ellipse.”
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Examples of points on this curve:
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1=2) = “1:30”.

(3=5; 4=5). (�3=5; 4=5).

(3=5;�4=5). (�3=5;�4=5).

(4=5; 3=5). (�4=5; 3=5).

(4=5;�3=5). (�4=5;�3=5).

Many more.
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x = sin�, y = cos�.



Addition on the clock:
y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��������

�1
P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

x2 + y2 = 1, parametrized by

x = sin�, y = cos�. Recall

(sin(�1 + �2); cos(�1 + �2)) =



Addition on the clock:
y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��������

�1
P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

x2 + y2 = 1, parametrized by

x = sin�, y = cos�. Recall

(sin(�1 + �2); cos(�1 + �2)) =

(sin�1 cos�2 + cos�1 sin�2;



Addition on the clock:
y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��������

�1
P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

x2 + y2 = 1, parametrized by

x = sin�, y = cos�. Recall

(sin(�1 + �2); cos(�1 + �2)) =

(sin�1 cos�2 + cos�1 sin�2;

cos�1 cos�2 � sin�1 sin�2).



Adding two points corresponds

to adding the angles �1 and �2.

Angles modulo 360� are a group,

so points on clock are a group.

Neutral element: angle � = 0;

point (0; 1); “12:00”.

The point with � = 180�

has order 2 and equals 6:00.

3:00 and 9:00 have order 4.

Inverse of point with �

is point with ��
since � + (��) = 0.

There are many more points

where angle � is not “nice.”
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neutral = (0; 1)� P1 = (x1; y1)��������
P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

Use Cartesian coordinates for

addition. Addition formula

for the clock x2 + y2 = 1:

sum (x1; y1) + (x2; y2) = (x3; y3)

= (x1y2 + y1x2; y1y2 � x1x2).

Note (x1; y1) + (�x1; y1) = (0; 1).

kP = P + P + � � � + P| {z }
k copies

for k � 0.
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Clocks over finite fields
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Clock(F7) =�
(x; y) 2 F7 � F7 : x2 + y2 = 1

	
.

Here F7 = f0; 1; 2; 3; 4; 5; 6g
= f0; 1; 2; 3;�3;�2;�1g
with +;�;� modulo 7.

E.g. 2 � 5 = 3 and 3=2 = 5 in F7.



>>> for x in range(7):

... for y in range(7):

... if (x*x+y*y) % 7 == 1:

... print (x,y)

...

(0, 1)

(0, 6)

(1, 0)

(2, 2)

(2, 5)

(5, 2)

(5, 5)

(6, 0)

>>>



>>> class F7:

... def __init__(self,x):

... self.int = x % 7

... def __str__(self):

... return str(self.int)

... __repr__ = __str__

...

>>> print F7(2)

2

>>> print F7(6)

6

>>> print F7(7)

0

>>> print F7(10)

3



>>> F7.__eq__ = lambda a,b: \

... a.int == b.int

>>>

>>> print F7(7) == F7(0)

True

>>> print F7(10) == F7(3)

True

>>> print F7(-3) == F7(4)

True

>>> print F7(0) == F7(1)

False

>>> print F7(0) == F7(2)

False

>>> print F7(0) == F7(3)

False



>>> F7.__add__ = lambda a,b: \

... F7(a.int + b.int)

>>> F7.__sub__ = lambda a,b: \

... F7(a.int - b.int)

>>> F7.__mul__ = lambda a,b: \

... F7(a.int * b.int)

>>>

>>> print F7(2) + F7(5)

0

>>> print F7(2) - F7(5)

4

>>> print F7(2) * F7(5)

3

>>>



Larger example: Clock(F1000003).

p = 1000003

class Fp:

...

def clockadd(P1,P2):

x1,y1 = P1

x2,y2 = P2

x3 = x1*y2+y1*x2

y3 = y1*y2-x1*x2

return x3,y3



>>> P = (Fp(1000),Fp(2))

>>> P2 = clockadd(P,P)

>>> print P2

(4000, 7)

>>> P3 = clockadd(P2,P)

>>> print P3

(15000, 26)

>>> P4 = clockadd(P3,P)

>>> P5 = clockadd(P4,P)

>>> P6 = clockadd(P5,P)

>>> print P6

(780000, 1351)

>>> print clockadd(P3,P3)

(780000, 1351)

>>>



>>> def scalarmult(n,P):

... if n == 0: \

... return (Fp(0),Fp(1))

... if n == 1: return P

... Q = scalarmult(n//2,P)

... Q = clockadd(Q,Q)

... if n % 2: Q = clockadd(P,Q)

... return Q

...

>>> n = oursixdigitsecret

>>> scalarmult(n,P)

(947472, 736284)

>>>

Can you figure out our secret n?



Clock cryptography

The “Clock Diffie–Hellman

protocol”:

Standardize large prime p &

base point (x; y) 2 Clock(Fp).

Alice chooses big secret a,

computes her public key a(x; y).

Bob chooses big secret b,

computes his public key b (x; y).

Alice computes a(b (x; y)).

Bob computes b (a(x; y)).

They use this shared secret

to encrypt with AES-GCM etc.
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secret key b

��

��

Alice’s
public key
a(X; Y )

&&NNNNNN

Bob’s
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xxpppppp

fAlice;Bobg’s
shared secret
ab (X; Y )

=
fBob;Aliceg’s
shared secret
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Warning #1:

Many p are unsafe!

Warning #2:

Clocks aren’t elliptic!

To match RSA-3072 security

need p � 21536.



Warning #3:

Attacker sees more than

public keys a(x; y) and b (x; y).

Attacker sees how much time

Alice uses to compute a(b (x; y)).

Often attacker can see time for

each operation performed by

Alice, not just total time.

This reveals secret scalar a.

Break by timing attacks, e.g.,

2011 Brumley–Tuveri.



Warning #3:

Attacker sees more than

public keys a(x; y) and b (x; y).

Attacker sees how much time

Alice uses to compute a(b (x; y)).

Often attacker can see time for

each operation performed by

Alice, not just total time.

This reveals secret scalar a.

Break by timing attacks, e.g.,

2011 Brumley–Tuveri.

Fix: constant-time code,

performing same operations

no matter what scalar is.



Exercise

How many multiplications

do you need to compute

(x1y2 + y1x2; y1y2 � x1x2)?

How many multiplications

do you need to double a point,

i.e. to compute

(x1y1 + y1x1; y1y1 � x1x1)?

How can you optimize the

computation if squarings are

cheaper than multiplications?

Assume S < M < 2S.



Addition on an Edwards curve

Change the curve on which Alice

and Bob work.

y

x

OO

//

neutral = (0; 1)�
P1 = (x1; y1)�����

P2 = (x2; y2)�fffff
P3 = (x3; y3)�[[[[[[

x2 + y2 = 1 � 30x2y2.

Sum of (x1; y1) and (x2; y2) is

((x1y2+y1x2)=(1�30x1x2y1y2),

(y1y2�x1x2)=(1+30x1x2y1y2)).



The clock again, for comparison:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��������
P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

x2 + y2 = 1.

Sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2,

y1y2 � x1x2).



“Hey, there were divisions

in the Edwards addition law!

What if the denominators are 0?”

Answer: They aren’t!

If xi = 0 or yi = 0 then

1 � 30x1x2y1y2 = 1 6= 0.

If x2 + y2 = 1 � 30x2y2

then 30x2y2 < 1

so
p

30 jxyj < 1.
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“Hey, there were divisions

in the Edwards addition law!

What if the denominators are 0?”

Answer: They aren’t!

If xi = 0 or yi = 0 then

1 � 30x1x2y1y2 = 1 6= 0.

If x2 + y2 = 1 � 30x2y2

then 30x2y2 < 1

so
p

30 jxyj < 1.

If x2
1 + y2

1 = 1 � 30x2
1y

2
1

and x2
2 + y2

2 = 1 � 30x2
2y

2
2

then
p

30 jx1y1j < 1

and
p

30 jx2y2j < 1

so 30 jx1y1x2y2j < 1

so 1 � 30x1x2y1y2 > 0.



The Edwards addition law

(x1; y1) + (x2; y2) =

((x1y2+y1x2)=(1�30x1x2y1y2),

(y1y2�x1x2)=(1+30x1x2y1y2))

is a group law for the curve

x2 + y2 = 1 � 30x2y2.

Some calculation required:

addition result is on curve;

addition law is associative.

Other parts of proof are easy:

addition law is commutative;

(0; 1) is neutral element;

(x1; y1) + (�x1; y1) = (0; 1).



Edwards curves mod p

Choose an odd prime p.

Choose a non-square d 2 Fp.

f(x; y) 2 Fp � Fp :

x2 + y2 = 1 + dx2y2g
is a “complete Edwards curve”.

Roughly p + 1 pairs (x; y).

def edwardsadd(P1,P2):

x1,y1 = P1

x2,y2 = P2

x3 = (x1*y2+y1*x2)/ \

(1+d*x1*x2*y1*y2)

y3 = (y1*y2-x1*x2)/ \

(1-d*x1*x2*y1*y2)

return x3,y3



Denominators are never 0.

But need different proof;

“x2 + y2 > 0” doesn’t work.
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Denominators are never 0.

But need different proof;

“x2 + y2 > 0” doesn’t work.

Answer: Can prove that

the denominators are never 0.

Addition law is complete.

This proof relies on

choosing non-square d.

If we instead choose square d:

curve is still elliptic, and

addition seems to work,

but there are failure cases,

often exploitable by attackers.

Safe code is more complicated.



Edwards curves are cool



ECDSA

Users can sign messages

using Edwards curves.

Take a point P on an Edwards

curve modulo a prime p > 2.

ECDSA signer needs to know

the order of P .

There are only finitely many other

points; about p in total.

Adding P to itself will eventually

reach (0; 1); let ` be the smallest

integer > 0 with `P = (0; 1).

This ` is the order of P .



The signature scheme has as

system parameters a curve E; a

base point P ; and a hash function

h with output length at least

blog2 `c + 1.

Alice’s secret key is an integer a

and her public key is PA = aP .

To sign message m,

Alice computes h(m);

picks random k;

computes R = kP = (x1; y1);

puts r � y1 mod `; computes

s � k�1(h(m) + r � a) mod `.

The signature on m is (r; s).



Anybody can verify signature

given m and (r; s):

Compute w1 � s�1h(m) mod `

and w2 � s�1 � r mod `.

Check whether the y-coordinate

of w1P +w2PA equals r modulo `

and if so, accept signature.

Alice’s signatures are valid:

w1P + w2PA =

(s�1h(m))P + (s�1 � r)PA =

(s�1(h(m) + ra))P = kP

and so the y-coordinate of this

expression equals r,

the y-coordinate of kP .



Attacker’s view on signatures

Anybody can produce an R = kP .

Alice’s private key is only used in

s � k�1(h(m) + r � a) mod `.

Can fake signatures if one can

break the DLP, i.e., if one can

compute a from PA.

Most of this course deals with

methods for breaking DLPs.

Sometimes attacks are easier: : :



If k is known for some m; (r; s)

then a � (sk� h(m))=r mod `.

If two signatures m1; (r; s1) and

m2; (r; s2) have the same value

for r: assume k1 = k2; observe

s1 � s2 = k�1
1 (h(m1) + ra �

(h(m2) + ra)); compute k =

(s1 � s2)=(h(m1) � h(m2)).

Continue as above.

If bits of many k’s are known

(biased PRNG) can attack

s � k�1(h(m) + r � a) mod `

as hidden number problem

using lattice basis reduction.



Malicious signer

Alice can set up her public key so

that two messages of her choice

share the same signature,

i.e., she can claim to have

signed m1 or m2 at will:

R = (x1; y1) and �R = (�x1; y1)

have the same y-coordinate.

Thus, (r; s) fits R = kP ,

s � k�1(h(m1) + ra) mod ` and

�R = (�k)P ,

s � �k�1(h(m2) + ra) mod ` if

a � �(h(m1)+h(m2))=2r mod `.



Malicious signer

Alice can set up her public key so

that two messages of her choice

share the same signature,

i.e., she can claim to have

signed m1 or m2 at will:

R = (x1; y1) and �R = (�x1; y1)

have the same y-coordinate.

Thus, (r; s) fits R = kP ,

s � k�1(h(m1) + ra) mod ` and

�R = (�k)P ,

s � �k�1(h(m2) + ra) mod ` if

a � �(h(m1)+h(m2))=2r mod `.

(Easy tweak: include bit of x1.)


