Factorization: state of the art

1. Batch NFS
2. Factoring into coprimes
3. ECM

D. J. Bernstein
University of lllinois at Chicago

Tanja Lange
Technische Universiteit Eindhoven

Merging congruences

Problem: Convert

£ =a (mod 299),

£ =06 (mod 799)

into a single congruence.

Solution:
z=799-180-a —299-481 -6
(mod 299 - 799).

Underlying computation,
by Euclid’s algorithm:
799 - 180 — 299 - 481 = 1.

Problem: Convert

£ =a (mod 299),
=06 (mod 793)

into a single congruence.

Much more difficult.
Can't write 1 as 7934 + 299v;
793 and 299 aren’'t coprime.

Euclid's algorithm discovers
gcd{299, 793} = 13: specifically,
13 =793 -20 — 299 - 53,

299 =13 -23, 793 = 13- 61.

gcd{13,23} = 1. Thus
£ =a (mod?299) <=
£ =a (mod 13),

z=a (mod 23).

gcd{13,61} = 1. Thus
£=b (mod793) <—
=056 (mod 13),

=06 (mod 61).

Underlying computations:
23-4—-13 -7 =1;
61-3—-13-14 =1.

Assuming a = b6 (mod 13):
£ =a (mod 299),
b (mod 793) <—
(mod 13),
(mod 23),
(mod 61) <=
—1-23:-61-a
+13-21-61-a
—13-23-51-0
(mod 13 - 23 - 61).

T

a
a
b

8 8 8 8
11

Problem: Convert
z=a (mod 103816603),

=06 (mod 22649627)
into a single congruence.

gcd{103816603, 22649627 }=187:
103816603 = 187 - 555169:
22649627 = 187 - 121121

Now encounter another difficulty:
187, 555169 aren't coprime;
congruence mod 103816603
IS not equivalent to

separate congruences
mod 187 and mod 555169.

Continue computing gcds
and exact quotients:

gcd{555169, 187} = 17;
555169/17 = 32657;
187/17 = 11;

32657/17 = 1921;
1921/17 = 113;
121121/11 = 11011;
11011/11 = 1001;
1001/11 = 91.

11,17,91,113 are coprime;
103816603 = 11 - 17+ -113:
22649627 = 114 -17 - 91.

z=--- (mod11%-17%.91-113).

The natural coprime base

For any set S C {1,2,3,...}:

There is a unique set “cb S
C {2,3,...} such that
e cb S can be obtained
from {1} U S via product,
exact quotient, gcd;
e cbS is coprime: gcd{a, b} =1
for all distinct a,b € cb S; and
e S can be obtained
from {1} Ucb S via product.

e.g. ch{103816603, 22649627}
= {11,17,91, 113}

Can use any coprime base
to merge congruences:
e.g., set of prime divisors.

Complete prime factorizations:
103816603 = 11 - 174 - 113;
22649627 =7 - 114 - 13- 17.

{7,11,13,17,113}
IS a coprime base for
{103816603, 22649627 }.

But primality is overkill.

We only need coprimality.

Finding multiplicative relations

Define

u1 = 91,

uy = 119;

u3z = 221;

ugq = 1547;

us = 6398073.

Does u%952681 u%513335ug34643
equal 1,}708632,4393467

Each side has logarithm
~ 19466590.674872.

Which (a, b, c,d, e) € Z° have

ucl"uguguﬁfug =1in Q7

Factor into primes:

u1 = p1p2 Where p1 =7
and pr» = 13;

uo = p1p3 Where p3 = 17;
U3 = P2P3; U4 = P1P2P3;
us = PiP5P;.

Now ulugu3u§f UE =

abd4e a—+CH dIZe |C|d|e.
P1 Py P3 :

and p1, po, 3 are distinct primes.

b d _
u1u2u3u4u5 =1

(a +b6+d 4e,...):0<:>
(a,b,¢c,d,e) €

(1,1,1,—-2,0)Z+(3,2,0,—1,-1)Z.

Primality 1s again overkill.
All we needed was coprimality.

For any coprimes p1, po, .. .:

pclzlng--- —1

iff (a1,a2,...) =0.
Use in index calculus.

a1 ,.a2

iff (a1, a2,...) mod 2 =0.

Use in index calculus mod 2:
e.g., in NFS.

Bad RSA randomness

2004 Bauer—Laurie:

checked 18000 PGP RSA keys;
found 2 keys sharing a factor.

2012.02.14 Lenstra—Hughes—
Augier—Bos—Kleinjung—\Wachter
“Ron was wrong, Whit is right”
(to appear, Crypto 2012):
checked 7 - 10° SSL/PGP RSA
ceys; found 6 - 10° distinct keys;
factored 12720 of those,
thanks to shared prime factors.

2012.02.17 Heninger—
Durumeric—\Wustrow—Halderman

announcement (to appear,
USENIX Security 2012):

checked >10" SSL/SSH RSA
keys; factored 24816 SSL keys,
2422 SSH host keys.

“Almost all of the vulnerable keys

were generated by and are used to
secure embedded hardware devices
such as routers and firewalls, not
to secure popular web sites such
as your bank or email provider.”

These computations factored
the RSA keys into coprimes.

e.g. Factoring RSA keys

P191. P292, P343,

P4q42, P545, P396

into coprimes produces
P191, P2 - 42, P3 - G3,

P4 - q2,P595, P3 - 46,
assuming pi, P2, P3, P4, Ps,
41, 92 43, 45, g6 distinct.

Long history

More examples, applications
of factoring into coprimes: see
1890 Stieltjes; 1974 Collins;
1985 Kaltofen; 1985 Della
Dora DiCrescenzo Duval; 1986
Bach Miller Shallit: 1986 von
zur Gathen; 1986 Luneburg;
1989 Pohst Zassenhaus; 1990
Teitelbaum; 1990 Smedley; 1993
Bach Driscoll Shallit; 1994 Ge;
1994 Buchmann Lenstra; 1996
Bernstein: 1997 Silverman:; 1998
Cohen Diaz y Diaz Olivier; 1998
Storjohann; . ..

Speed of factoring into coprimes

Obvious algorithm to compute

cb S and factor $ over cb S:
O(n3) bit ops for n input bits.
(frequently reinvented)

More careful algorithm, avoiding

pointless ged calculations: O(n?).
(1990 Bach Driscoll Shallit)

Can do much better for large n:
n1t0o(). in fact n(lgn)°W.
(1995 Bernstein)

n(lgn)*t°l) (2004 Bernstein)

n(lgn)*°() is worst-case,
handling many obscure situations.

Most applications are
much more constrained.
Take advantage of constraints:

n(lgn)3t°() sometimes
n(lg n)2+o(1)_

Many more tweaks
save constant factors
or noticeable 1 + o(1) factors.

Slides coming up:
how these algorithms work,
with the most important tweaks.

Algebraic algorithms

Jo

\
ho

X mu

N
/]

+ add

T

\/

/’L1

tiplies its two Inputs.
s Its two Inputs.

+~ subtracts its two inputs.

This "R-algebraic algorithm”

computes product hAg+hi1z+ hoz?

of fo + fiz,go + 912 € Rlz].

More precisely: It computes

the coeffs of the product

(on standard basis 1, z, z°)

given the coeffs of the factors
(on standard bases 1,z and 1, z).

3 mults, 4 adds.
Compare to obvious algorithm:
4 mults, 1 add.

(1963 Karatsuba)

Total R-algebraic complexity

Are 3 mults, 4 adds
better than 4 mults, 1 add?

Depends on cost metric.

Cost metric for now: “R-ops”.
+ (“add”): 1 R-op.

+~ (also “add”): 1 R-op.
X (“mult”): 1 R-op.
Constant in R: 0 R-ops.

3 mults, 4 adds: 7 R-ops.
4 mults, 1 add: 5 R-ops.

6 R-ops to multiply in C
(on standard basis 1, 2):

L RSk

X X

s

4 R-ops to multiply by v/1:

rd
P

i Il

N

Many other cost measures.

Some measures emphasize adds.

e.g. floating point on one core
of Core 2 Quad: #cycles

~ max{#R-adds, #R-mults} /2.
Typically more adds than mults.

Some measures emphasize mults.
e.g. Dedicated hardware

for floating-point arithmetic:
mults more expensive than adds.

For simplicity we'll take
#R-adds + #R-mults.

Fast Fourier transforms

Define {,, € C as exp(271z/n).
Define Ty, : Clz]/(z"™ — 1) — C"
as f— f(1), f(¢n), .-, I 7?%_1)-

Can very quickly compute 7T,.

First publication of fast algorithm:
1866 Gauss.

Easy to see that Gauss's FFT uses
O(nlgmn) arithmetic operations

ifne{1,24,.8,...}.

Several subsequent reinventions,
ending with 1965 Cooley/Tukey.

Inverse map is also very fast.

Multiplication in C™ is very fast.

1966 Sande, 1966 Stockham:
Can very quickly multiply

in Clz]/(z™ — 1) or C[z] or R[z]
by mapping C|z]/(z™ — 1) to C".
“Fast convolution.”

Given f,g € Clz|/(z" — 1):
compute fg as Tgl(Tn(f)Tn(g)).

Given f,g € Clz], deg fg < n:
compute fg from
its image in Clz|/(z" — 1).

Cost O(nlgn).

A closer look at costs

More precise analysis of Gauss
FFT (and Cooley-Tukey FFT):

Clz]/(z™ — 1) < C™ using
n lgn C-adds (2 ops each),
(nlgn)/2 C-mults (6 each),
ifne{1,24,.8,...}.

Total cost bnlgn.

After peephole optimizations:
cost bnlgn — 10n + 16

if n €44,8,16,32,...}.

Either way, 5nlgn 4+ O(n).

What about cost of convolution?

bnlgn 4+ O(n) to compute T, (f),
bnlgn + O(n) to compute T,(9),
O(n) to multiply in C”,

similar 5nlgn + O(n) for T, 1.

Total cost 15nlgn + O(n)
to compute fg € Clz]/(z™ — 1)

given f,g € Clz]/(z™ — 1).

Total cost (15/2)nlgn + O(n)
to compute fg € R[z]/(z" — 1)
given f,g € Rlz]/(z™ — 1): map
R[z]/(z" — 1) < R2 @ C"/2-]
(Gauss) to save half the time.

1968 R. Yavne: Can do better!
Cost 4nlgn + O(n)

to map Clz]/(z" — 1) — C",
ifne{l,24,8,16,...}.

1968 R. Yavne: Can do better!
Cost 4nlgn + O(n)

to map Clz]/(z" — 1) — C",
ifne{l,24,8,16,...}.

2004 James Van Buskirk:
Can do better!
Cost (34/9)nlgn + O(n).

Expositions of the algorithm:
Frigo, Johnson,

in [EEE Trans. Signal Processing;
Lundy, Van Buskirk,

in Computing;

Bernstein, AAECC.

Understanding the FFT

If f € Clz] and
fmodzt—1=

fo+ fiz + f2$2 + f3:1:3 then
fmodz?—1=

(fo+ fo) + (fi + f3)z,
fmodz?+1=

(fo— f2) +(f1— f3)z.

Given f mod zt — 1
8 R-ops to compute
fmodz?—1,fmodz?+1.

“C[z]-morphism C[z]/(z* —1) <
Clz]/(z* - 1) ® C[z]/(z* + 1)

If f € Clz] and
f mod 2™ — r? =
fo+ fiz+---+ fzn_1$2n_1 then
f mod 2™ — r =
(fo+rfn) +(f1+7fnr1)z
+ (fo+ 7 fny2)z? + -,
fmodz™ +r =
(fo—7fn)+(f1 —7Tfns1)m
+ (f2 _Tfn+2)$2—|—'--.

< 10n R-ops to compute

fot+rfn, i +rfnet, ...,
fo—rfn. f1 —Tfnst,

Note: can compute in place.

The FFT: Do this recursively!

fmodz*—1

/N

fmodz?—1 f modz?+1

A

fmod fmod f mod f mod
zr—1 z+4+1 z—1 xT+1

) f-1) FG) F(-)
(expository idea: 1972 Fiduccia)

Modulus tree for one step:

ﬁ!3272, . 7,2

N,

n_ g Tz 4+ 7

T

Modulus tree for full size-4 FFT:

z* — 1

/N

2 — 1 2 1+ 1

/NN

t—1 zz+1 zxz—1 x+1

Alternative: the twisted FFT

If f € Clz] and
fmodz™ + 1=

go + 91T + 923:2 + - - - then
f((opz) mod ™ — 1 =

90 + (ng1T + (5,908° + - - -

“C-morphism Clz|/(z" + 1) —»
Clz]/(z" = 1) by z = Cnz.”

Modulus tree:

Tz +1

®|

" — 1

Merge with the original FFT trick:
22" — 1

/BN

" — 1 " + 1

®|

" — 1

“Twisted FFT" applies
this modulus tree recursively.

bnlgn + O(n) R-ops,
just like the original FFT.

The split-radix FFT

FFT and twisted FFT end up with

same number of mults by (,,,

same number of mults by Cn/Q,

same number of mults by ¢, /4,
etc.

Is this necessary? No!

Split-radix FFT: more easy mults.
“"Don’t twist until you see

the whites of their 2's.”

(Same idea shows up in,
e.g., Furer mult algorithm.)

T
AN
" — 1 2" 11
/BN
" — 1 " +1
l@n l@a}
" — 1 " — 1

Split-radix FFT applies
this modulus tree recursively.
4nlgn + O(n) R-ops.

Compare to how twisted FFT
splits 4n Iinto 2n,n, n:

£ 1

VN

(12n) |

The tangent FFT

Several ways to achieve
6 R-ops for mult by e

One approach: Factor e*/

as (1 +2tan@)cosé.
2 R-ops for mult by cos?é.
4 R-ops for mult by 1 4+ 2tané.

For stability and symmetry,
use max{|cos@|, |sin 8|}
instead of cos 6.

Surprise (Van Buskirk):
Can merge some cost-2 mults!

Rethink basis of Clz|/(z™ — 1).

Instead of 1. z..... 2" 1 use
1/8p0.Z/Sn1,---, a;'”'_l/sn,n_l
where s,, | =
max{ cos% |'sin % b
max{ cos% |'sin % b

21k - 2k
max{ | cos n716 || sin n716 3
Now (99,91, ..., gn_1) represents

gO/Sn,O + - gn—lxn_l/sn,n—l-

Note that sp k= Sy k1n/s-

Note that C,,/?L(sn/zhk/sn,/c) IS
::(1 + g2 tan -) or ::(COt- e 'Z.)

Look at how split-radix
splits 8n Iinto 2n, 2n,2n,n, n:

" _1
/16n\
\ \
2?1 "4l 22" —i Mg
}/.\ 12 :C8n 12n Cg_nl
Y
—1 o |

Can Cz?nl
Y Y
| ™ —1

New basis saves 12n:
dn in (gy, twist, 4n in anl twist,
2n in Cap twist, 2n in ¢, twist.

New basis costs 8n:
4n to change basis of 2" + 1,

4n to change basis
of top-left £2™ — 1.

Overall 68n instead of 72n.
Recurse: (34/9)nlgn 4+ O(n),
as in 2004 Van Buskirk.

Open: Can 34/9 be improved?

Integer multiplication via FFT

(1971 Pollard; independently
1971 Nicholson; independently
1971 Schonhage Strassen)

Write two n-bit integers
as polys of degree O(n/lgn)
with O(lg n)-bit coefficients.

Multiply in R[z], by FFT,
using floating-point arithmetic.

Round coefficients to integers.

©(n) R-ops on coefficients,
each with precision ©(lgn).
= n(lgn)1T°) bit ops.

More subtle FFT applications

violate this structure

for integer multiplication.

Still n(lgn)ttod),
but save non-constant factors.

Surveys of techniques:

http://cr.yp.to/papers.html
#m3

http://cr.yp.to/papers.html
#multapps

http://cr.yp.to/papers.html#m3
http://cr.yp.to/papers.html#m3
http://cr.yp.to/papers.html#multapps
http://cr.yp.to/papers.html#multapps

Product trees

n(lgn)2+°o) bit ops
where n is number of input bits:
Given z1,%o,..., x4 € Z,
compute 12 - Tf.

Actually compute

product tree of z1,zo, ..., T,.
Root Is 1o - - - Ty.

Has left subtree if £k > 2:
product tree of 1, ..., Zrg/07.
Also right subtree it £k > 2:
product tree of Trg/o141, ..., Ty

e.g. tree for 23, 29, 84, 15, 58, 19:

026142840
ST
56028 16530
7 XN N
667 84 870 19
/N 7N\
23 29 15 58

Tree has <(Ign)1t°() levels.
Each level: <n(lgn)?*t°() pits.

Obtain each level using
n(lgn)1to) bit ops
by multiplying lower-level pairs.

FFT doubling

(2004 Kramer)

Consider product tree for
T1, T2, X3, T4, €ach b/4 bits.

Compute £1z» as
—1
FFTb/z(FFTb/z(a;l) FFTb/Q(::cg)).

Compute £1Z>Z3T4 as
FFT, H(FFTy(z122) FFTy(z324)).
First half of FFTy(z122) is

FETy/o(z122), already known!

For large product trees,
1.5 4 o(1) speedup.

Integer division

n(lgn)1to) bit ops
where n is number of input bits:
Given a, b € Z with 6 # 0,

compute |a/b| and a mod b.

Idea: If r is close to 1/b
then (2 — rb)r is much closer.

(idea: 1740 Simpson;
n1to(1) bit ops: 1966 Cook:
many subsequent speedups)

Remainder trees

Remainder tree

of r,x1,xo, ..., z, has

one node r mod ¢t for each node ¢
in product tree of 1, o, ..., T/ .

e.g. remainder tree of
223092870, 23, 29, 84, 15, 58, 19:

223092870
TN
45402 3990
;// \\ <\
510 0
%"\ / N\
17 0 46

n(lgn)2+o(1) bit ops:
Given r € Z and
nonzero 1,...,Ty € Z,
compute remainder tree
of r,x1,...,Ty.

In particular, compute
r mod z1,...,7 mod .

In particular, see which of
T1,...,T divide 7.

(1972 Moenck Borodin,
for “single precision” z;'s,
whatever exactly that means)

Scaled remainder trees

Replace almost all of the
divisions with multiplications.
Constant-factor speedup.

(speedup in function-field case,
using polynomial reversal etc.:
2003 Bostan Lecerf Schost;
structure: 2004 Bernstein)

With redundancies eliminated
(1992 Montgomery,

2004 Kramer, etc.):

new structure is 2.6 + o(1)
times faster than remainder tree.

Scaled remainder tree:

n1n2n3n4 mod 1

/ \

P
o mod 1 n mod 1

/—modl /—modl

—modl —modl

Represent each P/--- mod 1
as a nearby floating-point number.

e.g. Scaled remainder tree for
P = 8675309, n1 = 10,
no = 20, n3 = 30, ng = 40:

O 14712083

0. 5450 O 4242

045 072

Integer gcd

n(lgn)2to) bit ops:
Given a, beZ, compute gcd{a, b}.
(1971 Schonhage;

core idea: 1938 Lehmer;
n(lgn)®to(1): 1971 Knuth)

Better bound when a

Is much larger than b:

< n(lg ,n)1+0(1) 4 m(lgm)2+0(1)
where m is number of bits in b.
ldea: gcd{b, a mod b}.

Modular squaring ad nauseam

n(lgn)2to) bit ops:
Given a,b € Z with a # 0,
compute gcd{a, 6> }.

Algorithm:

Compute b mod a,

b*> mod a = (b mod a)? mod a,
b* mod a = (b mod a)? mod a,
b3 mod a = (6* mod a)? mod a,
etc., until bzk' with 2% > n.
Then compute gcd{a, 6}
as gcd{a, b2ch mod a}.

Factoring a, b into coprimes

Givena,b€e Z, a> b > 2:
Compute ag=a; gg = gcd{ag, b};
a1 = ag/90; 91 = ged{ay, 93}

ay = a1/91; g2 = gcd{a, g% };
etc., stopping when g, = 1.

How long does this take?

e.g. g — 21003100 , _ 5137313,

ag = 21003100 o _ 5100313
ay =387 g, = 3%

ay — 361 g, — 352,

a3 =3°, g3 =37,

Q4 — 1, g4 — 1.

Consider a prime ».
Define e = ordp a: 1.e.,

p€ divides a but p¢t! doesn't.
Define f = ordy b.

e > f 3f 7f
e < |fl 3f 7fl 15f
ordy aple e e e
odpgole| f| f f
ordpa1|0le—fl e—fl e—f
ordy, g1|0le — f 2f 2f
ordy, as|0 Ole — 3fle — 3f
ordy g2 |0 Ole — 3f 4f
ordy a3|0 0 Ole —7f
ordy g3|0 0 Ole —T7f

2 <p*<a<2"soe<mn.
Thus g, =1 for k = [lgn].

Ops to divide a; by g;,
square g;, and compute

ged{ait1. 9 }:
< n(lgn)o) 4 m;(Igm;)>+ol)

where m; is number of bits in g;.

a=ag|]giso) m;<O(n)

Total ops for all a;, g;:
< n(lg n)2+0(1)_

Next step: Compute
zo = go/gcd{ 90, 95° },

z1 = g1/8cd{91, 9},
etcC.

Write m; = m; + mMj41.
/ I\2-+o0(1
Ops < Zmi(lgmi) o(1)

e.g. a= 21003100 h — 2137313:

go = 2100313 o _ 3%
92 =73%93=3, 94 =1,
29 =210 2, =1, 2, =1,
T3 = 39,

Compute

b mod g1, b6 mod g, ...

using a remainder tree; and
yo=gcd{b, z3°},

y1=gcd{ g0, z{° },

yQ:gcc{gcc{b mod g1, 91}, :BSO}
y3=gcd{ gcd{b mod g2, 92}, 253° },

ys=gcd{ ged{b mod g3, g3}, 2° },
etc.

n(lgn)2+o(1) bit ops.

e.g. a= 21003100 h — 2137313:

To = 2100 z1=1, zo=1, 3 = 39;
Yo = 2137, y1=1, yo=1, y3 = 313,

Now cb{a, b} is disjoint union of

C3{$o Y0/T0},

{a/c} 11}, 16/gcd1b, 0™ 1} =11},

e.g. Cb{21003100, 2137313} _
cb{2190 2371 U cb{3?, 313}

Recursion multiplies total ops
by a constant factor, since

product zo(yo/T0)T1Y12292 - -
is at most ab/al/3 < (a.b)5/6

n(lgn)2t°) bit ops
to compute cb{a, b}.

What about cb S for #S5 > 37

n(lgn)2to) if Ilg 4P € (Ign)°):
multiset S, coprime set P

— ged{s, p™}

for each s € 5, each p € P.
n(lgn)2toll):;

a, coprime set @ — cb({a} U Q).

More complicated than the case
@ = {b} but same basic ideas.

n(lg n)3+0(1):
coprime set P, coprime set ()
— cb(P U Q).

ldea of cb(P U Q) algorithm:
Replace @ with cb({a} U Q)
for each a € P successively.

But that's too slow if #£P is large,
so first replace P with P’ having

#P' € O(lgn) and cbP' =cb P.
e.g. POP1P4P5PEPY -+ € P,

n(lgn)*tol): S5 cb S,

ldea of cb(P U Q) algorithm:
Replace @ with cb({a} U Q)
for each a € P successively.

But that's too slow if #£P is large,
so first replace P with P’ having

#P' € O(lgn) and cbP' =cb P.
e.g. POP1P4P5PEPY -+ € P,

n(lgn)*tol): S5 cb S,

Having computed = cb S,
how to factor S over Q7

ldea of cb(P U Q) algorithm:
Replace @ with cb({a} U Q)
for each a € P successively.

But that's too slow if #£P is large,
so first replace P with P’ having

#P' € O(lgn) and cbP' =cb P.
e.g. POP1P4P5PEPY -+ € P,

n(lgn)*tol): S5 cb S,

Having computed = cb S,
how to factor S over Q7

More generally,
how to factor S over
when @ is any coprime set?

Coprime factors, union

n(lgn)2to) bit ops:

Given z1,zo,...,x2, € Z and
finite set @ C Z — {0}, compute
pe :z1zr -z mod p =0}

Special case that » is prime
or that @ = cb{z1,...,z4}:
see whether p divides

any of 1,9, ..., Ty.

Algorithm:

1. Use a product tree to
compute r =212 - - - Ty.

2. Use a remainder tree to see
which » € Q divide 7.

Coprime factors, separately

n(lgn)3t°) bit ops:

Given z1, o, ..., T, € £ and
finite coprime set @,

compute {p € @ : £1 mod p = 0},
.., {p€e @z, modp=0}.
(2000 Bernstein)

Algorithm for £ > 1:

1. Replace @ with
{peQ :z1 -z, modp =0}

2. If k=1, print Q and stop.

3. Recurse on z4, ..., Zrk /2], Q.

4. Recurse on /0141, - - T, (.

Factor 2543, 67660, 8967, 7598
over {2,3,5,7,11,13,17}

/\

2543,6766 8967, 7593
over over
2,3,7,17 2,3,7,17

AV

2043 6766 3967 7593
over over over over
2,17 2,17 2,3, 7 2,3,7

Each level: < n(lgn)?to() pits.

Exponents of a coprime

n(lgn)2to) bit ops:
Given nonzero v,z € Z,
find e, p¢, z/p¢ with maximal e.

Algorithm:
1. If z mod p # 0:
Print 0, 1, £ and stop.
2. Find f,(p*)!, 7 = (z/p)/(p*)]
with maximal f.
3. If » mod p =0: Print
2f + 2, (p?)! p?, r/p and stop.
4. Print 2f + 1, (p%) p, 7.

Exponents of coprimes

n(lgn)3t°) bit ops:
Given finite coprime set)
and nonzero z € Z, find maximal

e[oo P2/ [peq PP

Algorithm:
1. Replace @ with

{pe @ :zmodp=0}
2. Find maximal f, s, r with

s= (%)), r=(z/[1p)/s.
3. Find T={p € @ : r mod p=0}.

4. Print e, s| [,er o7/ |per P
where e(p) = 2f(p*) + [p € T].

Smooth parts, old approach

n(lgn)3t°) bit ops:

Given nonzero z1,Z2,...,Z, € Z
and finite coprime set @,
compute (-smooth part of z1,
()-smooth part of z», ...,

(J-smooth part of z,.

(J-smooth means product of
powers of elements of Q.

(?-smooth part means
largest (Q-smooth divisor.
In particular, see which of
1,2, ..., T are smooth.

Algorithm:
1. Find @1 = {p: 1 mod p = 0},

..., Qr=A4p:zy mod p =0}
2. For each 7 separately:

Find maximal e, s, r with

S = HpEQi pe(p), r=zi/s.
Print s.

e.g. factoring

2543, 6766, 8967, 7598

over {2,3,5,7,11,13, 17}
2543 over {}, smooth part 1;
6766 {2,17}, smooth part 34;
8967 {3, 7}, smooth part 147;
7598 {2}, smooth part 2.

Smooth parts, better approach

Given nonzero z1,Zo, ..., T, € L
and finite coprime set Q:
Typically n(lg n)2+°(1) bit ops
to obtain smooth parts of z's.
(2004 Franke Kleinjung

Morain Wirth, in ECPP context)

Algorithm:
Compute r = | pe@ P and then
r mod Z1,...,7 mod Tg.

For each 1 separately:
Replace z; by
z;/gcd{z;, r mod z;}
repeatedly until gcd is 1.

Slight variant (2004 Bernstein):
Always n(lgn)2T°1) bit ops.

Compute smooth part of z; as

2C

gcd{a;z-, (r mod z;)° mod a:z}

where ¢ = [Iglgz;]|.

Or, to see if z; is smooth,

see if (r mod :1:,,;)211C mod z; = 0.

Slight variant (2004 Bernstein):
Always n(lgn)2T°1) bit ops.

Compute smooth part of z; as

2C

gcd{a;z-, (r mod z;)° mod a:z}

where ¢ = [Iglgz;]|.

Or, to see if z; is smooth,

see if (r mod :1:,,;)211C mod z; = 0.

Minor problem: These algorithms
don't factor the smooth numbers.

Slight variant (2004 Bernstein):
Always n(lgn)2T°1) bit ops.

Compute smooth part of z; as

gcd{z;, (r mod ;)% mod z;

where ¢ = [Iglgz;]|.

Or, to see if z; is smooth,

see if (r mod :1:,,;)211C mod z; = 0.

Minor problem: These algorithms
don't factor the smooth numbers.

Solution: Feed smooth numbers
to the old algorithm.

Normally very few smooth
numbers, so this is very fast.

Smoothness without hermits

Typical application: NFS.
Want to find nontrivial subset of
T1,Z7, ... with square product.

¢ is set of small primes.

Don’t want all smooth numbers.
Want smooth numbers only if
they are built from primes that
divide the other numbers.

Directly find those numbers,
without ever looking at (.

Compute r = 21z2 - - - Ty.
Compute (r/x1) mod zq, ...,
(r/z)) mod z.

For each 1 separately: see if
((r/z;) mod z;)2 mod z; = 0
where ¢ = |Iglg z;].

Finds z; iff all primes in z;
are divisors of other z's.
n(lgn)2+o(1) bit ops.
(2004 Bernstein)

Compute (r/z1) mod z1, ...,
(r/z;) mod z, by computing
r mod 7, ..., 7 mod :B%c
(1972 Moenck Borodin)

Variant:

Compute r = 21z2 - - - Ty.

Compute (r/z1) mod z1, ...,
(r/x)) mod xy.

For each 1 separately: see if
gcd{(r/z;) mod z;, z;} > 1.

Variant:

Compute r = 21z2 - - - Ty.

Compute (r/z1) mod z1, ...,
(r/x)) mod xy.

For each 1 separately: see if
gcd{(r/z;) mod z;, z;} > 1.

Finds z; iff at least one prime in
z; I1s a divisor of other z's.

Variant:

Compute r = 21z2 - - - Ty.

Compute (r/z1) mod z1, ...,
(r/x)) mod xy.

For each 1 separately: see if
gcd{(r/z;) mod z;, z;} > 1.

Finds z; iff at least one prime in
z; I1s a divisor of other z's.

This 1s a good algorithm
for checking RSA keys
to find shared primes.

