Public-key cryptography in Tor and pluggable transports

Tanja Lange

Technische Universiteit Eindhoven

09 June 2016

Attend Roger's talk on Friday.

Motivation

Motivation #1 Channels are spying on our (meta-)data.
Motivation #2 Channels are modifying our (meta-)data.
Motivation #3 Channels interrupt and block suspicious communication.

DH key exchange

- Censor wants to block Tor (or whatever) traffic.
- Censor knows that Tor uses curve E : y² = x³ + ax + b over finite field 𝔽_p.
- Jefferson sends (x, y) on *E*.
- Censor intercepts message, parses it as two field elements, checks whether (x, y) is a point on E. If so, break connection.
- Hasse's theorem says there are around p points on E over IF_p; that's very small compared to p² pairs. Random chance 1/p.

DH key exchange

- Jefferson sends x, belonging to (x, y) on E.
- Each connection starts with a DH handshake, so there are several x_i.
- Censor intercepts message, parses it as one field element, checks whether x_i belongs to a point (x_i, y_i) on E.
 If so sufficiently often, break connection.
- ► Hasse's theorem says there are around p points on E over IF_p. Most come in pairs (x, ±y).
- About half of all values in \mathbb{F}_p appear as x-coordinates.
- Random chance $1/2^n$ after *n* messages.
- ► This ignores *p* not being a power of 2, e.g. worse for $p = 2^{256} 2^{224} + 2^{192} + 2^{96} 1$.

- Make transmission of points indistinguishable from random strings.
- Have significant fraction of all points covered.

- Make transmission of points indistinguishable from random strings.
- Have significant fraction of all points covered.
- This still leaves a lot of problems
 - Censor can cut *all* communication.
 - Censor can cut all https traffic.

- Make transmission of points indistinguishable from random strings.
- Have significant fraction of all points covered.
- This still leaves a lot of problems
 - Censor can cut *all* communication.
 - Censor can cut all https traffic.
- But once traffic looks uniformly random (symmetric crypto has a much easier time on this) it can be steganographically layered on top of "accepted" communication.
- Needed for Telex (Wustrow, Wolchok, Goldberg, and Halderman; USENIX 2011) and StegoTorus (Weinberg, Wang, Yegneswaran, Briesemeister, Cheung, Wang, and Boneh; ACM CCS 2012).

- Make transmission of points indistinguishable from random strings.
- Have significant fraction of all points covered.
- This still leaves a lot of problems
 - Censor can cut *all* communication.
 - Censor can cut all https traffic.
- But once traffic looks uniformly random (symmetric crypto has a much easier time on this) it can be steganographically layered on top of "accepted" communication.
- Needed for Telex (Wustrow, Wolchok, Goldberg, and Halderman; USENIX 2011) and StegoTorus (Weinberg, Wang, Yegneswaran, Briesemeister, Cheung, Wang, and Boneh; ACM CCS 2012).
- Needed also for kleptography (exfiltrating keys to the adversary), e.g. Young and Yung SCN 2010.

How to use the idea

- Let $S \subseteq \{0,1\}^t$. Here: $S \subseteq \mathbb{F}_p$.
- Want map $\iota: S \to E(S)$ and inverse (limited to set $\iota(S)$).
- Want *ι* and *ι*⁻¹ be efficiently computable and *ι*(S) be large in E(𝔽_p), e.g. cover about half of all points.
- In DH, Jefferson picks j, computes jP. If jP ∉ ι(S) he picks a new j. He sends ι⁻¹(jP). Same for Madison. On average 2 tries, only in local computation.
- ▶ In Schnorr signatures, signer Bob has public key $\tau_B = \iota^{-1}(bP)$ and private key *b*. To sign *m*, the sender picks random *r* until $rP \in \iota(S)$, computes $\tau = \iota^{-1}(rP)$, $h = H(\tau ||\tau_B||m)$, $s = r + hb \pmod{\ell}$. The signature is (τ, s) .
- Signature verification: Compute bP = ι(τ_B), rP = ι(τ), h = H(τ||τ_B||m). Compare rP + h(bP) and sP. This works: sP = (r + hb)P = rP + h(bP).

Two approaches ... and their shortcomings

Assume that p is close to power of 2.

- Hash strings to curve points; increment till valid x-coordinate is found.
 - Points can have multiple preimages.
 - Points can have no preimages.
 - Really hard to get uniform distribution (reject with probability proportional to the number of preimages? How many are there? How to get deterministic map?).
 - Finding all the preimages means point counting.
- Use curve E and its quadratic twist E'.
 - ► Each x ∈ IF_p belongs to two points: (x,±y) on E, (x,±y) on E' or (x,0) on both curves.
 - Get uniformity by switching to right curve.
 - Requires two keys for everything (doubles key size).
 - Problems with parties choose non-matching curves in DH.

Elligator!

Joint work with Bernstein, Hamburg, and Krasnova (CCS 2013).

$$y^2 = x^3 + Ax^2 + Bx$$

with $AB(A^2 - 4B) \neq 0$ (usually A = 0 included but not here).

- ▶ This curve has a point (0,0) of order 2.
- For B = 1 called *Montgomery curve* (can have C in Cy^2).
- ► Tor uses Curve25519 in ntor for building circuits (see Friday?). Curve25519 is a Montgomery curve with A = 486662 and p = 2²⁵⁵ - 19.

Elligator

- Rewrite curve equation as $y^2 = x(x^2 + Ax + B)$.
- ▶ Find two values *x*₁, *x*₂ such that

$$x_1^2+Ax_1+B=x_2^2+Ax_2+B$$
 and $x_1/x_2
eq\square.$

- In finite fields we have □·□ = □, so either x₁ or x₂ belongs to an (x, y) on the curve (except for y = 0),
- Transform equality into $x_1 + x_2 = -A$ (i.e. $x_1 = -A x_2$).
- Let $x_1/x_2 = ur^2$, where u is a fixed non-square in \mathbb{F}_p .
- Combine to $(-A x_2)/x_2 = ur^2$, i.e. $x_2 = -A/(1 + ur^2)$ and $x_1 = -Aur^2/(1 + ur^2)$.
- This defines map $\iota(r) = (x_1, \sqrt{x_1(x_1^2 + Ax_1 + B)})$ or

$$\iota(r) = (x_2, -\sqrt{x_2(x_1^2 + Ax_1 + B)})$$
 (pick the one defined).

Inverse map

 $11 \, / \, 17$

Application to Curve25519

Here $q \equiv 1 \pmod{4}$ and u = 2 is a non-square. Need to specify a square-root function for \mathbb{F}_p .

- ▶ Given a square $a \in \mathbb{F}_p$, compute $b = a^{(q+3)/8}$. (Note that $q \equiv 5 \pmod{8}$, so (q+3)/8 is an integer.) Then $b^4 = a^2$, i.e., $b^2 \in \{a, -a\}$.
- Define \sqrt{a} as |b| if $b^2 = a$ and as $|b\sqrt{-1}|$ otherwise.
- Here |b| means b if $b \in \{0, 1, \dots, (q-1)/2\}$, otherwise -b.

Cost of computing ι :

- 1 square-root computation,
- 1 inversion,
- 1 computation of square-root selection
- ► a few multiplications.

Note that the inversion and the square-root computation can be combined into one exponentiation,

More motivation

Motivation #1 Channels are spying on our (meta-)data.
Motivation #2 Channels are modifying our (meta-)data.
Motivation #3 Channels interrupt and block suspicious communication.
Motivation #4 Network nodes want to know how many of them exist.

Hidden services/onion services

- For better protection against eavesdropping, users can reach facebook at https://facebookcorewwwi.onion.
- > This means their traffic never leaves the Tor network.
- Facebook advertises their .onion page, so their existence is public.
- Other public .onion pages are xmpp servers for chat.
- Reasons for private .onion sites
 - ► Use Tor to deal with stupid network configuration (e.g. at TU/e).
 - Local chat services using Ricochet.
 - Collaborative servers (small group, not public).
 - File sharing, online shops, ...
 - Secure drop sites.
- General idea is that nobody knows all the existing sites.
- See Roger's talk for more details.

Related keys

- Alice has secret key *a* and public key A = aP on elliptic curve.
- These are known to people she wants to connect with.
- Alice's server changes location every day and there are Directory Services (DS) providing locations based on keys.

Related keys

- Alice has secret key *a* and public key A = aP on elliptic curve.
- These are known to people she wants to connect with.
- Alice's server changes location every day and there are Directory Services (DS) providing locations based on keys.
- DSs are used randomly, but all servers will likely come by in a month, so for fixed keys the directory knows all servers.
- Alice goes to a conference and doesn't want to bring a, but throw-away keys A' for each day, but
 - She doesn't want to get a new certificate for A'.
 - She doesn't want to distribute new public keys.
 - She wants to be able to decrypt after the trip, but not keep old a'.
- Idea (Zooko Wilcox-O'Hearn; Gregory Maxwell; Robert Ransom; Christian Grothoff):

If d = H(date) is public, anybody can compute A + dP or dA which are public keys for a + d or ad.

- Put d = H(date, A), for d secret from those not knowing A.
- Also used in Bitcoin (BIP 32), Tahoe-LAFS, and GNUNet.

How to use this idea?

- Make .onion addresses harder to harvest by directory servers (Tor track # 8106).
- DSs store information on location of A under the key A, along with a signature under A.
- ► Alice can produce signatures under A' from having da.
- There is no authority limiting the number of keys and servers. Of course anybody can submit a fake entry B with a signature for its alleged location under B.
- But: nobody other than Alice can produce signature under A'.
- ▶ Recall Schnorr signatures: Signature on *m* is (R, s) with R = rP, h = H(R||A||m), $s = r + ha \pmod{\ell}$. Verification:

Compute h = H(R||A||m) and compare R + h(A) and sP.

How to use this idea?

- Toss in some more: make d = H(date||P||A).
- DS receives location date for server A' with signature under A' using a' = da. Checks signature and stores information.
- ► Authorized client computes A' from A and date; asks DS for information on A'.
- Client verifies signature on information obtained from DS, using A'.
- Verification can use precomputed A' or include extra d in equations.
- A bit more tricky in practice to deal with Ed25519, which has nontrivial cofactors.
- This involves lots of non-standard crypto assumptions and modeling.