
Public-key cryptography in Tor and
pluggable transports

Tanja Lange

Technische Universiteit Eindhoven

09 June 2016

1 / 17

Tor

Attend Roger’s talk on Friday.

2 / 17

Motivation

Sender
“Jefferson”

//

Network
“Eavesdropper”

//

Receiver
“Madison”

Motivation #1 Channels are spying on our (meta-)data.

Motivation #2 Channels are modifying our (meta-)data.

Motivation #3 Channels interrupt and block suspicious
communication.

3 / 17

DH key exchange

“Jefferson”

(x ,y) // E
Censor

− //

“Madison”

I Censor wants to block Tor (or whatever) traffic.

I Censor knows that Tor uses curve E : y2 = x3 + ax + b over
finite field IFp.

I Jefferson sends (x , y) on E .

I Censor intercepts message, parses it as two field elements,
checks whether (x , y) is a point on E . If so, break connection.

I Hasse’s theorem says there are around p points on E over IFp;
that’s very small compared to p2 pairs. Random chance 1/p.

4 / 17

DH key exchange

“Jefferson”
x1,x2,x3... // E

Censor

x1,x2,x3 //
“Madison”

I Jefferson sends x , belonging to (x , y) on E .
I Each connection starts with a DH handshake, so there are

several xi .
I Censor intercepts message, parses it as one field element,

checks whether xi belongs to a point (xi , yi) on E .
If so sufficiently often, break connection.

I Hasse’s theorem says there are around p points on E over IFp.
Most come in pairs (x ,±y).

I About half of all values in IFp appear as x-coordinates.
I Random chance 1/2n after n messages.
I This ignores p not being a power of 2, e.g. worse for

p = 2256 − 2224 + 2192 + 296 − 1.
5 / 17

Wanted!

I Make transmission of points indistinguishable from random
strings.

I Have significant fraction of all points covered.

I This still leaves a lot of problems
I Censor can cut all communication.
I Censor can cut all https traffic.

I But once traffic looks uniformly random (symmetric crypto
has a much easier time on this) it can be steganographically
layered on top of “accepted” communication.

I Needed for Telex (Wustrow, Wolchok, Goldberg, and
Halderman; USENIX 2011) and StegoTorus (Weinberg,
Wang, Yegneswaran, Briesemeister, Cheung, Wang, and
Boneh; ACM CCS 2012).

I Needed also for kleptography (exfiltrating keys to the
adversary), e.g. Young and Yung SCN 2010.

6 / 17

Wanted!

I Make transmission of points indistinguishable from random
strings.

I Have significant fraction of all points covered.
I This still leaves a lot of problems

I Censor can cut all communication.
I Censor can cut all https traffic.

I But once traffic looks uniformly random (symmetric crypto
has a much easier time on this) it can be steganographically
layered on top of “accepted” communication.

I Needed for Telex (Wustrow, Wolchok, Goldberg, and
Halderman; USENIX 2011) and StegoTorus (Weinberg,
Wang, Yegneswaran, Briesemeister, Cheung, Wang, and
Boneh; ACM CCS 2012).

I Needed also for kleptography (exfiltrating keys to the
adversary), e.g. Young and Yung SCN 2010.

6 / 17

Wanted!

I Make transmission of points indistinguishable from random
strings.

I Have significant fraction of all points covered.
I This still leaves a lot of problems

I Censor can cut all communication.
I Censor can cut all https traffic.

I But once traffic looks uniformly random (symmetric crypto
has a much easier time on this) it can be steganographically
layered on top of “accepted” communication.

I Needed for Telex (Wustrow, Wolchok, Goldberg, and
Halderman; USENIX 2011) and StegoTorus (Weinberg,
Wang, Yegneswaran, Briesemeister, Cheung, Wang, and
Boneh; ACM CCS 2012).

I Needed also for kleptography (exfiltrating keys to the
adversary), e.g. Young and Yung SCN 2010.

6 / 17

Wanted!

I Make transmission of points indistinguishable from random
strings.

I Have significant fraction of all points covered.
I This still leaves a lot of problems

I Censor can cut all communication.
I Censor can cut all https traffic.

I But once traffic looks uniformly random (symmetric crypto
has a much easier time on this) it can be steganographically
layered on top of “accepted” communication.

I Needed for Telex (Wustrow, Wolchok, Goldberg, and
Halderman; USENIX 2011) and StegoTorus (Weinberg,
Wang, Yegneswaran, Briesemeister, Cheung, Wang, and
Boneh; ACM CCS 2012).

I Needed also for kleptography (exfiltrating keys to the
adversary), e.g. Young and Yung SCN 2010.

6 / 17

How to use the idea

I Let S ⊆ {0, 1}t . Here: S ⊆ IFp.

I Want map ι : S → E (S) and inverse (limited to set ι(S)).

I Want ι and ι−1 be efficiently computable and ι(S) be large in
E (IFp), e.g. cover about half of all points.

I In DH, Jefferson picks j , computes jP. If jP 6∈ ι(S) he picks a
new j . He sends ι−1(jP). Same for Madison.
On average 2 tries, only in local computation.

I In Schnorr signatures, signer Bob has public key
τB = ι−1(bP) and private key b.
To sign m, the sender picks random r until rP ∈ ι(S),
computes τ = ι−1(rP), h = H(τ ||τB ||m), s = r + hb (mod `).
The signature is (τ, s).

I Signature verification:
Compute bP = ι(τB), rP = ι(τ), h = H(τ ||τB ||m).
Compare rP + h(bP) and sP.
This works: sP = (r + hb)P = rP + h(bP).

7 / 17

Two approaches . . . and their shortcomings

Assume that p is close to power of 2.
I Hash strings to curve points; increment till valid x-coordinate

is found.
I Points can have multiple preimages.
I Points can have no preimages.
I Really hard to get uniform distribution (reject with probability

proportional to the number of preimages? How many are
there? How to get deterministic map?).

I Finding all the preimages means point counting.

I Use curve E and its quadratic twist E ′.
I Each x ∈ IFp belongs to two points: (x ,±y) on E , (x ,±y) on

E ′ or (x , 0) on both curves.
I Get uniformity by switching to right curve.
I Requires two keys for everything (doubles key size).
I Problems with parties choose non-matching curves in DH.

8 / 17

Elligator!
Joint work with Bernstein, Hamburg, and Krasnova (CCS 2013).

We use slightly different curve shape.

y2 = x3 + Ax2 + Bx

with AB(A2 − 4B) 6= 0 (usually A = 0 included but not here).

I This curve has a point (0, 0) of order 2.

I For B = 1 called Montgomery curve (can have C in Cy2).

I Tor uses Curve25519 in ntor for building circuits (see Friday?).
Curve25519 is a Montgomery curve with A = 486662 and
p = 2255 − 19.

9 / 17

Elligator

I Rewrite curve equation as y2 = x(x2 + Ax + B).

I Find two values x1, x2 such that

x21 + Ax1 + B = x22 + Ax2 + B and x1/x2 6= �.

I In finite fields we have 6 �· 6 � = �, so either x1 or x2 belongs
to an (x , y) on the curve (except for y = 0),

I Transform equality into x1 + x2 = −A (i.e. x1 = −A− x2).

I Let x1/x2 = ur2, where u is a fixed non-square in IFp.

I Combine to (−A− x2)/x2 = ur2, i.e. x2 = −A/(1 + ur2) and
x1 = −Aur2/(1 + ur2).

I This defines map ι(r) = (x1,
√
x1(x21 + Ax1 + B)) or

ι(r) = (x2,−
√
x2(x21 + Ax1 + B)) (pick the one defined).

10 / 17

Inverse map

I ι(S) is the set of (x , y) ∈ E (IFp) with
I x 6= −A,
I if y = 0 then x = 0, and
I −ux(x + A) = �.

I If (x , y) ∈ ι(S) then r̄ ∈ S is defined and ι(r̄) = (x , y):

r̄ =


√
−x/((x + A)u) if y ∈

√
IF2

p;√
−(x + A)/(ux) if y /∈

√
IF2

p.

11 / 17

Application to Curve25519

Here q ≡ 1 (mod 4) and u = 2 is a non-square.
Need to specify a square-root function for IFp.

I Given a square a ∈ IFp, compute b = a(q+3)/8.
(Note that q ≡ 5 (mod 8), so (q + 3)/8 is an integer.)
Then b4 = a2, i.e., b2 ∈ {a,−a}.

I Define
√
a as |b| if b2 = a and as

∣∣b√−1
∣∣ otherwise.

I Here |b| means b if b ∈ {0, 1, . . . , (q − 1)/2}, otherwise −b.

Cost of computing ι:

I 1 square-root computation,

I 1 inversion,

I 1 computation of square-root selection

I a few multiplications.

Note that the inversion and the square-root computation can be
combined into one exponentiation,

12 / 17

More motivation

Sender
“Jefferson”

//

Network
“Eavesdropper”

//

Receiver
“Madison”

Motivation #1 Channels are spying on our (meta-)data.

Motivation #2 Channels are modifying our (meta-)data.

Motivation #3 Channels interrupt and block suspicious
communication.

Motivation #4 Network nodes want to know how many of them
exist.

13 / 17

Hidden services/onion services

I For better protection against eavesdropping, users can reach
facebook at https://facebookcorewwwi.onion.

I This means their traffic never leaves the Tor network.

I Facebook advertises their .onion page, so their existence is
public.

I Other public .onion pages are xmpp servers for chat.
I Reasons for private .onion sites

I Use Tor to deal with stupid network configuration (e.g. at
TU/e).

I Local chat services using Ricochet.
I Collaborative servers (small group, not public).
I File sharing, online shops, . . .
I Secure drop sites.

I General idea is that nobody knows all the existing sites.

I See Roger’s talk for more details.

14 / 17

Related keys
I Alice has secret key a and public key A = aP on elliptic curve.
I These are known to people she wants to connect with.
I Alice’s server changes location every day and there are

Directory Services (DS) providing locations based on keys.

I DSs are used randomly, but all servers will likely come by in a
month, so for fixed keys the directory knows all servers.

I Alice goes to a conference and doesn’t want to bring a, but
throw-away keys A′ for each day, but

I She doesn’t want to get a new certificate for A′.
I She doesn’t want to distribute new public keys.
I She wants to be able to decrypt after the trip, but not keep

old a′.
I Idea (Zooko Wilcox-O’Hearn; Gregory Maxwell; Robert

Ransom; Christian Grothoff):
If d = H(date) is public, anybody can compute A + dP or dA
which are public keys for a + d or ad .

I Put d = H(date,A), for d secret from those not knowing A.
I Also used in Bitcoin (BIP 32), Tahoe-LAFS, and GNUNet.

15 / 17

Related keys
I Alice has secret key a and public key A = aP on elliptic curve.
I These are known to people she wants to connect with.
I Alice’s server changes location every day and there are

Directory Services (DS) providing locations based on keys.
I DSs are used randomly, but all servers will likely come by in a

month, so for fixed keys the directory knows all servers.
I Alice goes to a conference and doesn’t want to bring a, but

throw-away keys A′ for each day, but
I She doesn’t want to get a new certificate for A′.
I She doesn’t want to distribute new public keys.
I She wants to be able to decrypt after the trip, but not keep

old a′.
I Idea (Zooko Wilcox-O’Hearn; Gregory Maxwell; Robert

Ransom; Christian Grothoff):
If d = H(date) is public, anybody can compute A + dP or dA
which are public keys for a + d or ad .

I Put d = H(date,A), for d secret from those not knowing A.
I Also used in Bitcoin (BIP 32), Tahoe-LAFS, and GNUNet.

15 / 17

How to use this idea?

I Make .onion addresses harder to harvest by directory servers
(Tor track # 8106).

I DSs store information on location of A under the key A, along
with a signature under A.

I Alice can produce signatures under A′ from having da.

I There is no authority limiting the number of keys and servers.
Of course anybody can submit a fake entry B with a signature
for its alleged location under B.

I But: nobody other than Alice can produce signature under A′.

I Recall Schnorr signatures: Signature on m is (R, s)
with R = rP, h = H(R||A||m), s = r + ha (mod `).
Verification:
Compute h = H(R||A||m) and compare R + h(A) and sP.

16 / 17

How to use this idea?

I Toss in some more: make d = H(date||P||A).

I DS receives location date for server A′ with signature under A′

using a′ = da. Checks signature and stores information.

I Authorized client computes A′ from A and date; asks DS for
information on A′.

I Client verifies signature on information obtained from DS,
using A′.

I Verification can use precomputed A′ or include extra d in
equations.

I A bit more tricky in practice to deal with Ed25519, which has
nontrivial cofactors.

I This involves lots of non-standard crypto assumptions and
modeling.

17 / 17

