
Crypto news and views

Daniel J. Bernstein
University of Illinois at Chicago

Technische Universiteit Eindhoven

Nadia Heninger
University of Pennsylvania

Tanja Lange
Technische Universiteit Eindhoven

Scope of this Talk

mathematical problems

cryptographic primitives

protocols

library implementations

software applications

factoring, discrete log, . . .

RSA, Diffie-Hellman, DSA, AES, RC4, SHA-1, . . .

TLS, SSH, PGP, . . .

OpenSSL, BSAFE, NSS, NaCl, . . .

Apache, Firefox, Chrome, . . .

The Cryptopocalypse

Science Daily May 2014

ar
X

iv
:1

30
6.

42
44

v1
 [

cs
.C

R]
 1

8
Ju

n
20

13
A quasi-polynomial algorithm for discrete logarithm

in finite fields of small characteristic
Improvements over FFS in small to medium characteristic

Razvan Barbulescu, Pierrick Gaudry, Antoine Joux, Emmanuel Thomé

1 Introduction
The discrete logarithm problem (DLP) was first proposed as a hard problem in cryptography in the seminal
article of Diffie and Hellman [DH76]. Since then, together with factorization, it has become one of the two
major pillars of public key cryptography. As a consequence, the problem of computing discrete logarithms has
attracted a lot of attention. From an exponential algorithm in 1976, the fastest DLP algorithms have been
greatly improved during the past 35 years. A first major progress was the realization that the DLP in finite
fields can be solved in subexponential time, i.e. L(1/2) where LN(α) = exp

(
O((logN)α(log logN)1−α)

)
.

The next step further reduced this to a heuristic L(1/3) running time in the full range of finite fields, from
fixed characteristic finite fields to prime fields [Adl79, Cop84, Gor93, Adl94, JL06, JLSV06].

Recently, practical and theoretical progress have been made [Jou13a, GGMZ13, Jou13b] with an emphasis
on small to medium characteristic finite fields and composite degree extensions. The most general and
efficient algorithm [Jou13b] gives a complexity of L(1/4 + o(1)) when the characteristic is smaller than the
square root of the extension degree. Among the ingredients of this approach, we find the use of a very
particular representation of the finite field; the use of the so-called systematic equation; and the use of
algebraic resolution of bilinear polynomial systems in the individual logarithm phase.

In the present work, we present a new discrete logarithm algorithm, in the same vein as in [Jou13b] that
uses an asymptotically more efficient descent approach. The main result gives a quasi-polynomial heuristic
complexity for the DLP in finite field of small characteristic. By quasi-polynomial, we mean a complexity
of type nO(logn) where n is the bit-size of the cardinality of the finite field. Such a complexity is smaller
than any L(ε) for ε > 0. It remains super-polynomial in the size of the input, but offers a major asymptotic
improvement compared to L(1/4 + o(1)).

The key features of our algorithm are the following.
• We keep the field representation and the systematic equations of [Jou13b].

• The algorithmic building blocks are elementary. In particular, we avoid the use of Gröbner basis
algorithms.

• The complexity result relies on three key heuristics: the existence of a polynomials representation of
the appropriate form; the fact that the smoothness probabilities of some non-uniformly distributed
polynomials are similar to the probabilities for uniformly random polynomials of the same degree; and
the linear independence of some finite field elements related to the action of PGL2(Fq).

The heuristics are very close to the ones used in [Jou13b]. In addition to the arguments in favor of these
heuristics already given in [Jou13b], we performed some experiments to validate them on practical instances.

Although we insist on the case of finite fields of small characteristic, where quasi-polynomial complexity
is obtained, our new algorithm improves the complexity discrete logarithm computations in a much larger
range of finite fields.

1

Fact: All the public-key crypto we use relies on three assumptions:

factoring integers into primes

discrete log modulo primes

discrete log in elliptic curve groups

factoring

discrete log modulo primes

elliptic curve discrete log

factoring

Discrete log over small characteristic fields
(Not actually used in any deployed crypto.)

• Factoring, discrete log have subexponential-time algorithms.

• No big algorithmic improvement since 1993.

• All progress has been Moore’s law, implementation details, etc.

Until December 2012:

2012-12-24 1175-bit and 1425-bit Joux
2013-02-11 F∗

21778 Joux
2013-02-19 F∗

21971 GGMZ
2013-02-20 L(1/4 + o(1), c) Joux
2013-03-22 F∗

24080 Joux
2013-04-11 F∗

26120 GGMZ
2013-05-21 F∗

26168 Joux

2013-06-18 nO(log n) algorithm for F∗
pn Barbulescu, Gaudry, Joux, Thomé

Discrete log over small characteristic fields
(Not actually used in any deployed crypto.)

• Factoring, discrete log have subexponential-time algorithms.

• No big algorithmic improvement since 1993.

• All progress has been Moore’s law, implementation details, etc.

Until December 2012:

2012-12-24 1175-bit and 1425-bit Joux
2013-02-11 F∗

21778 Joux
2013-02-19 F∗

21971 GGMZ
2013-02-20 L(1/4 + o(1), c) Joux
2013-03-22 F∗

24080 Joux
2013-04-11 F∗

26120 GGMZ
2013-05-21 F∗

26168 Joux

2013-06-18 nO(log n) algorithm for F∗
pn Barbulescu, Gaudry, Joux, Thomé

Extrapolated impact of hypothetical factoring algorithm improvements

Current general-purpose factoring running time for integer N:

L((64/9)1/3, 1/3) = exp
(

(64/9)1/3(lnN)1/3 ∗ (ln lnN)2/3
)

Small-characteristic field DL improvement from L(1/3)→ L(1/4)→ nO(log n).

bit length of N
1024 2048 4096

current state → L((64/9)1/3, 1/3) 86 116 156
improved constant → L((32/9)1/3, 1/3) 68 92 124
improved exponent → L((64/9)1/4, 1/4) 49 63 81

bit-security of key

• Researchers in area agree that small-characteristic techniques can’t be adapted to
factoring or large primes.

• Reminder that sometimes big progress can be made on old problems.

• There is no proof that factoring/discrete log are hard. (Polynomial hierarchy
would collapse if they were NP-hard.)

• Elliptic curve discrete log totally different story: index calculus unlikely to work.
(Already Miller 1986, Koblitz 2000.)

Some recommendations:

• Don’t hard-code algorithms or key sizes.∗ If you must, use conservative choices.

• Listen to cryptographers. This is old news.

• Think about adopting elliptic curves. (More on this later.)

January 2013

A user actually tries to use crypto!

. . . and fails. Close to #epicfail.

“It’s really annoying and complicated,
the encryption software.
. . . He kept harassing me,
but at some point he just got frustrated,
so he went to Laura.”

—Glenn Greenwald,
quoted in “How Laura Poitras helped Snowden spill his secrets”,

New York Times Magazine, 18 August 2013

Picture credit: Reuters via www.popularresistance.org

January 2013

A user actually tries to use crypto! . . . and fails.

Close to #epicfail.

“It’s really annoying and complicated,
the encryption software.
. . . He kept harassing me,
but at some point he just got frustrated,
so he went to Laura.”

—Glenn Greenwald,
quoted in “How Laura Poitras helped Snowden spill his secrets”,

New York Times Magazine, 18 August 2013

Picture credit: Reuters via www.popularresistance.org

January 2013

A user actually tries to use crypto! . . . and fails. Close to #epicfail.

“It’s really annoying and complicated,
the encryption software.
. . . He kept harassing me,
but at some point he just got frustrated,
so he went to Laura.”

—Glenn Greenwald,
quoted in “How Laura Poitras helped Snowden spill his secrets”,

New York Times Magazine, 18 August 2013

Picture credit: Reuters via www.popularresistance.org

January 2013

A user actually tries to use crypto! . . . and fails. Close to #epicfail.

“It’s really annoying and complicated,
the encryption software.
. . . He kept harassing me,
but at some point he just got frustrated,
so he went to Laura.”

—Glenn Greenwald,
quoted in “How Laura Poitras helped Snowden spill his secrets”,

New York Times Magazine, 18 August 2013

Picture credit: Reuters via www.popularresistance.org

February 2013: timing-padding-oracle attacks against TLS

This leaves a small timing channel, since MAC performance depends to

some extent on the size of the data fragment, but it is not believed

to be large enough to be exploitable, due to the large block size of

existing MACs and the small size of the timing signal.

—RFC 5246, “The Transport Layer Security (TLS) Protocol, Version 1.2”, 2008

sessions per byte of cookie (with all the sessions being au-
tomatically generated). Note that the malware does not
need the ability to inject chosen plaintext into an existing
TLS session for this attack.

How the attacks work: Our new attacks exploit the fact that,
when badly formatted padding is encountered during decryp-
tion, a MAC check must still be performed on some data to pre-
vent the known timing attacks. But what data should be used
for that calculation? The TLS 1.1 and 1.2 RFCs recommend
checking the MAC as if there was a zero-length pad. As noted
in those RFCs:

This leaves a small timing channel, since MAC per-
formance depends to some extent on the size of the
data fragment, but it is not believed to be large
enough to be exploitable, due to the large block size of
existing MACs and the small size of the timing signal.

We confirm that there are indeed small timing differences,
but, contrary to what is written in the RFCs, they can be ex-
ploited. In short, provided there is a fortuitous alignment of
various factors such as the size of MAC tags, the block cipher’s
block size, and the number of header bytes, then there will be a
time difference in the time that it takes to process TLS records
having good and bad padding, and this difference will show
up in the time at which error messages appear on the network.
This timing side-channel can then be “wrangled” into reveal-
ing plaintext data via careful statistical analysis of multiple tim-
ing samples. As we shall show, other natural methods for han-
dling MAC checking in the event of bad padding also lead to
exploitable timing differences.

It is not clear to us whether the attacks we present here were
already known to the TLS community. We suspect not, in view
of the attacks’ complexity and the state-of-the-art in attacks at
the time of writing of the TLS 1.1 RFC. However, this ques-
tion seems moot in view of the fact that attacks exist for RFC-
compliant implementations and present a threat to the security
of TLS and DTLS.

Our new attacks demonstrate that properly implementing
MEE-TLS-CBC so as to avoid all exploitable timing differences
is in fact quite difficult, and is not achieved by any of the im-
plementations we examined. A complicating factor, in addition
to dealing with padding, is the need for careful sanity checking
of various fields during decryption. We provide a detailed pre-
scription for dealing with these issues. We also discuss other,
more easily-implemented countermeasures.

1.2 Disclosure (as at 27/02/2013)

Given the large number of affected implementations, we first
notified the IETF TLS Working Group chairs, the IETF Secu-
rity Area directors and the IRTF Crypto Forum Research Group
(CFRG) chairs of our attacks in November 2012. We then be-
gan the process of contacting individual vendors:
OpenSSL addressed the attacks in versions 1.0.1d, 1.0.0k and
0.9.8y, released 05/02/2013. See http://www.openssl.
org/news/secadv_20130205.txt for further details.
NSS addressed the attacks in version 3.14.3, released
15/02/2013. See https://developer.mozilla.org/

en-US/docs/NSS/NSS_3.14.3_release_notes for
further details.
Microsoft performed an investigation and determined that the
issue had been adequately addressed in previous modifications
to their TLS and DTLS implementations
Apple were notified of our attacks in December 2012. The sta-
tus of patch development by Apple is currently unknown.
GnuTLS corrected the programming errors in decryption that
we identified in version 3.1.6 (released 02/01/2013) and ad-
dressed the attacks in versions 2.12.23, 3.0.28 and 3.1.7, re-
leased 04/02/13.
PolarSSL addressed the attacks in version 1.2.5, released
03/02/13.
CyaSSL addressed the attacks in CyaSSL version 2.5.0, re-
leased 04/02/2013.
MatrixSSL addressed the attacks in version 3.4.1, released
06/02/13.
Opera addressed the attacks in Opera version 12.13, re-
leased 30/01/2013. For further details, see www.opera.com/
docs/changelogs/unified/1213/.
F5 were notified of the attacks in December 2012. They
have informed us that their TLS dataplane traffic is not vul-
nerable due to cryptographic offload, but that local manage-
ment ports and virtual editions may be vulnerable. For fur-
ther details, see http://support.f5.com/kb/en-us/
solutions/public/14000/100/sol14190.html.
BouncyCastle addressed the attacks in version 1.48 of the Java
library, released 10/02/2013. The C# version of BouncyCas-
tle was fixed in CVS at a similar time, and will be included in
release 1.8 at a later date.
Oracle (Java) addressed the attacks as part of a special critical
patch update of JavaSE, released 19/02/2013.

In addition, a number of other companies and organisations
were given advance notice of the attacks prior to them being
made public.

We will continue to update this section as the disclosure pro-
cess progresses.

1.3 Further Details on Related Work

TLS, and in particular the TLS Handshake Protocol, has
been the subject of much analysis using a variety of security
paradigms, see for example [29, 18, 27, 5]. In general, these
analyses are at too high a level of abstraction to capture our
attacks.

Padding oracle attacks began with Vaudenay [37], who
showed that the presence of a padding oracle, that is, an ora-
cle telling an attacker whether the padding was correctly for-
matted or not, could be leveraged to build a decryption capa-
bility. Canvel et al. [6] showed that such an oracle could be
obtained for the then-current version of OpenSSL by exploiting
a timing difference in TLS decryption processing. In essence,
in OpenSSL, if the padding was incorrectly formatted, then no
MAC check was performed, while if the padding was correct,
then the MAC check was done. In turn, this meant faster pro-
duction of an error message in the “invalid padding” case than
in the “valid padding” case. Thus the padding oracle was re-
vealed through a timing side-channel. A complication for full

3

—AlFardan and Paterson,
“Lucky Thirteen: breaking the TLS and DTLS record protocols”,

IEEE Symposium on Security and Privacy 2013

February 2013: timing-padding-oracle attacks against TLS

This leaves a small timing channel, since MAC performance depends to

some extent on the size of the data fragment, but it is not believed

to be large enough to be exploitable, due to the large block size of

existing MACs and the small size of the timing signal.

—RFC 5246, “The Transport Layer Security (TLS) Protocol, Version 1.2”, 2008

sessions per byte of cookie (with all the sessions being au-
tomatically generated). Note that the malware does not
need the ability to inject chosen plaintext into an existing
TLS session for this attack.

How the attacks work: Our new attacks exploit the fact that,
when badly formatted padding is encountered during decryp-
tion, a MAC check must still be performed on some data to pre-
vent the known timing attacks. But what data should be used
for that calculation? The TLS 1.1 and 1.2 RFCs recommend
checking the MAC as if there was a zero-length pad. As noted
in those RFCs:

This leaves a small timing channel, since MAC per-
formance depends to some extent on the size of the
data fragment, but it is not believed to be large
enough to be exploitable, due to the large block size of
existing MACs and the small size of the timing signal.

We confirm that there are indeed small timing differences,
but, contrary to what is written in the RFCs, they can be ex-
ploited. In short, provided there is a fortuitous alignment of
various factors such as the size of MAC tags, the block cipher’s
block size, and the number of header bytes, then there will be a
time difference in the time that it takes to process TLS records
having good and bad padding, and this difference will show
up in the time at which error messages appear on the network.
This timing side-channel can then be “wrangled” into reveal-
ing plaintext data via careful statistical analysis of multiple tim-
ing samples. As we shall show, other natural methods for han-
dling MAC checking in the event of bad padding also lead to
exploitable timing differences.

It is not clear to us whether the attacks we present here were
already known to the TLS community. We suspect not, in view
of the attacks’ complexity and the state-of-the-art in attacks at
the time of writing of the TLS 1.1 RFC. However, this ques-
tion seems moot in view of the fact that attacks exist for RFC-
compliant implementations and present a threat to the security
of TLS and DTLS.

Our new attacks demonstrate that properly implementing
MEE-TLS-CBC so as to avoid all exploitable timing differences
is in fact quite difficult, and is not achieved by any of the im-
plementations we examined. A complicating factor, in addition
to dealing with padding, is the need for careful sanity checking
of various fields during decryption. We provide a detailed pre-
scription for dealing with these issues. We also discuss other,
more easily-implemented countermeasures.

1.2 Disclosure (as at 27/02/2013)

Given the large number of affected implementations, we first
notified the IETF TLS Working Group chairs, the IETF Secu-
rity Area directors and the IRTF Crypto Forum Research Group
(CFRG) chairs of our attacks in November 2012. We then be-
gan the process of contacting individual vendors:
OpenSSL addressed the attacks in versions 1.0.1d, 1.0.0k and
0.9.8y, released 05/02/2013. See http://www.openssl.
org/news/secadv_20130205.txt for further details.
NSS addressed the attacks in version 3.14.3, released
15/02/2013. See https://developer.mozilla.org/

en-US/docs/NSS/NSS_3.14.3_release_notes for
further details.
Microsoft performed an investigation and determined that the
issue had been adequately addressed in previous modifications
to their TLS and DTLS implementations
Apple were notified of our attacks in December 2012. The sta-
tus of patch development by Apple is currently unknown.
GnuTLS corrected the programming errors in decryption that
we identified in version 3.1.6 (released 02/01/2013) and ad-
dressed the attacks in versions 2.12.23, 3.0.28 and 3.1.7, re-
leased 04/02/13.
PolarSSL addressed the attacks in version 1.2.5, released
03/02/13.
CyaSSL addressed the attacks in CyaSSL version 2.5.0, re-
leased 04/02/2013.
MatrixSSL addressed the attacks in version 3.4.1, released
06/02/13.
Opera addressed the attacks in Opera version 12.13, re-
leased 30/01/2013. For further details, see www.opera.com/
docs/changelogs/unified/1213/.
F5 were notified of the attacks in December 2012. They
have informed us that their TLS dataplane traffic is not vul-
nerable due to cryptographic offload, but that local manage-
ment ports and virtual editions may be vulnerable. For fur-
ther details, see http://support.f5.com/kb/en-us/
solutions/public/14000/100/sol14190.html.
BouncyCastle addressed the attacks in version 1.48 of the Java
library, released 10/02/2013. The C# version of BouncyCas-
tle was fixed in CVS at a similar time, and will be included in
release 1.8 at a later date.
Oracle (Java) addressed the attacks as part of a special critical
patch update of JavaSE, released 19/02/2013.

In addition, a number of other companies and organisations
were given advance notice of the attacks prior to them being
made public.

We will continue to update this section as the disclosure pro-
cess progresses.

1.3 Further Details on Related Work

TLS, and in particular the TLS Handshake Protocol, has
been the subject of much analysis using a variety of security
paradigms, see for example [29, 18, 27, 5]. In general, these
analyses are at too high a level of abstraction to capture our
attacks.

Padding oracle attacks began with Vaudenay [37], who
showed that the presence of a padding oracle, that is, an ora-
cle telling an attacker whether the padding was correctly for-
matted or not, could be leveraged to build a decryption capa-
bility. Canvel et al. [6] showed that such an oracle could be
obtained for the then-current version of OpenSSL by exploiting
a timing difference in TLS decryption processing. In essence,
in OpenSSL, if the padding was incorrectly formatted, then no
MAC check was performed, while if the padding was correct,
then the MAC check was done. In turn, this meant faster pro-
duction of an error message in the “invalid padding” case than
in the “valid padding” case. Thus the padding oracle was re-
vealed through a timing side-channel. A complication for full

3

—AlFardan and Paterson,
“Lucky Thirteen: breaking the TLS and DTLS record protocols”,

IEEE Symposium on Security and Privacy 2013

February 2013: TLS algorithm agility to the rescue!

Typical vendor response:

To mitigate this vulnerability, configure the client-side SSL
profile to prefer RC4-SHA ciphers.

Successful upgrade: RC4 was used for >50% of TLS traffic in February 2013.

February 2013: TLS algorithm agility to the rescue!

Typical vendor response:

To mitigate this vulnerability, configure the client-side SSL
profile to prefer RC4-SHA ciphers.

Successful upgrade: RC4 was used for >50% of TLS traffic in February 2013.

February 2013: TLS algorithm agility to the rescue!

Typical vendor response:

To mitigate this vulnerability, configure the client-side SSL
profile to prefer RC4-SHA ciphers.

Successful upgrade: RC4 was used for >50% of TLS traffic in February 2013.

March 2013: attacks against RC4 in TLS

306  22nd USENIX Security Symposium	 USENIX Association

We hope that this work will help spur the adoption of
TLS 1.2 and its authenticated encryption algorithms, as
well as the transition from WPA to (the hopefully more
secure) WPA2.

1.1 Overview of Results

We present two plaintext recovery attacks on RC4 that
are exploitable in specific but realistic circumstances
when this cipher is used for encryption in TLS. Both at-
tacks require a fixed plaintext to be RC4-encrypted and
transmitted many times in succession (in the same, or in
multiple independent RC4 keystreams). Interesting can-
didates for such plaintexts include passwords and, in the
setting of secure web browsing, HTTP cookies.

A statistical analysis of ciphertexts forms the core of
our attacks. We stress that the attacks are ciphertext-
only: no sophisticated timing measurement is needed on
the part of the adversary, the attacker does not need to be
located close to the server, and no packet injection capa-
bility is required (all premises for Lucky 13). Instead, it
suffices for the adversary to record encrypted traffic for
later offline analysis. Provoking the required repeated
encryption and transmission of the target plaintext, how-
ever, might require more explicit action: e.g., resetting
TCP connections or guiding the victim to a website with
specially prepared JavaScript (see examples below).

Since both our attacks require large amounts of cipher-
text, their practical relevance could be questioned. How-
ever, they do show that the strength of RC4 in TLS is
much lower than the employed 128-bit key would sug-
gest. We freely admit that our attacks are not particularly
deep, nor sophisticated: they only require an understand-
ing of how TLS uses RC4, solid statistics on the biases
in RC4 keystreams, and some experience of how modern
browsers handle cookies. We consider it both surprising
and alarming that such simple attacks are possible for
such an important and heavily-studied protocol as TLS.
We further discuss the implications of our attack in Sec-
tion 6 and in the full version of this paper [4].

1.1.1 Our single-byte bias attack

Our first attack targets the initial 256 bytes of RC4 ci-
phertext. It is fixed-plaintext and multi-session, meaning
that it requires a fixed sequence of plaintext bytes to be
independently encrypted under a large number of (ran-
dom) keys. This setting corresponds to what is called a
“broadcast attack” in [17, 15, 23]. As we argue below,
such attacks are a realistic attack vector in TLS. Observe
that, in TLS, the first 36 bytes of the RC4 keystream are
used to encrypt a TLS Handshake Finished message.
This message is not fixed across TLS sessions. As a con-
sequence, our methods can be applied only to recover up

to 220 bytes of the TLS application plaintext.
Our attack exploits statistical biases occurring in the

first 256 bytes of RC4 keystream. Such biases, i.e., devi-
ations from uniform in the distributions of the keystream
bytes at certain positions, have been reported and the-
oretically analyzed by [17], [15], and [23]. The corre-
sponding authors also propose algorithms to exploit such
biases for plaintext recovery. In this paper, we discuss
shortcomings of their algorithms, empirically obtain a
complete view of all single-byte biases occurring in the
first 256 keystream positions, and propose a generalized
algorithm that fully exploits all these biases for advanced
plaintext recovery. As a side result of our research, in
Section 3.1 we report on significant biases in the RC4
keystream that seemingly follow specific patterns and
that have not been identified or analysed previously.

For concreteness, we describe how our single-byte
bias attack could be applied to recover cookies in HTTPS
traffic. Crucial here is to find an automated mechanism
for efficiently generating a large number of encryptions
of the target cookie. In line with the scenario employed
by the BEAST and Lucky 13 attacks against CBC-mode
encryption in TLS [3, 10], a candidate mechanism is
for JavaScript malware downloaded from an attacker-
controlled website and running in the victim’s browser
to repeatedly send HTTPS requests to a remote server.
The corresponding cookies are automatically included in
each of these requests in a predictable location, and can
thus be targeted in our attack. If client and server are
configured to use TLS session resumption, the renewal of
RC4 keys could be arranged to happen with particularly
high frequency — as required for our attack to be suc-
cessful.5 Alternatively, the attacker can cause the TLS
session to be terminated after the target encrypted cookie
is sent; the browser will automatically establish a new
TLS session when the next HTTPS request is sent.

As a second example, consider the case where IMAP
passwords6 are attacked. In a setup where an email client
regularly connects to an IMAP server for (password-
authenticated) mail retrieval, let the adversary reset the
TCP connection between client and server immediately
after the encrypted password is transmitted. In some
client configurations this might trigger an automatic re-
sumption of the session, including a retransmission of the
(encrypted) password. If this is the case, the adversary
is in the position to harvest a large set of independently
encrypted copies of the password —one per reset— pre-
cisely fulfilling the precondition of our attack.

Our single-byte bias attack is on the verge of prac-
ticality. In our experiments, the first 40 bytes of TLS
application data after the Finished message were re-
covered with a success rate of over 50% per byte, using
226 sessions. With 232 sessions, the per-byte success rate
is more than 96% for the first 220 bytes (and is 100%

2

—AlFardan, Bernstein, Paterson, Poettering, Schuldt,
“On the security of RC4 in TLS”,

USENIX Security Symposium 2013

Factoring RSA keys from certified smart cards: Coppersmith in the wild
Daniel J. Bernstein, Yun-An Chang, Chen-Mou Cheng, Li-Ping Chou, Nadia Heninger, Tanja Lange, and Nicko
van Someren. Asiacrypt 2013.

Taiwanese Citizen Digital Certificate PKI Factored 180 RSA keys in use using
guessing, trial division, and nifty math
tricks.

• Deployed crypto can fail
catastrophically with bad randomness.

• Faulty hardware RNG in Renesas
AE45C1 microcontroller.

• Failure of some Chunghwa Telecom
HiCOS PKI smart cards to
post-process output.

July 2013: TweetNaCl

nacl.cr.yp.to:
high-speed high-security NaCl
(Networking and Cryptography library).

https://twitter.com/tweetnacl:
reimplemented all NaCl functions
in just 100 tweets!

nacl.cr.yp.to
https://twitter.com/tweetnacl

August 2013

""0 t 10 (!WI. 01!()9) S:.tbpocna 10 Tcst!1'y aelb:e, G~ Jury

TO:

DaHas, TX 75204

United States District Court "" .,
Eastern District of Virginia

SUBPOENA TO TESTIFY BEFORE THE GR,.-\ND JURY

YOU ARECQMMA.,'lDED 10 appear and testify before !be Uoited States district court at the time, date.;me
place shown below to lesify before the court's grand jury. When you arrive, you must remain at the C::Ill" until the
judge or II court offioer allows yO\! to leave.

Pltte: UNITED ST A YES DlSTRlCT COURT
~Dl COllrthouseSqulrf
Alex8ndriJ. Vir,inI8l2314

II: tnd Time: July lG, lUll

________________ J-____ __

You mUll also brin& with)'O\l the folJowill& docume:1ts. clcctroni~!y l10red lnformu ion. or objecu
(bll!!'.K ifr.Ol "?plica.bl,,):

9:30 AM

In .. ddifion to your !,l:"l'SunHI"flpear"nce,you arc direeled to b ring 10 the grano jury the public lind private
encryptiun I;c)'5 used by l:.Ivabil.CQn. in any SSl.. (See orl! S<:>ekel L:.I,,<!r) or TLS (Tr:u"pon Secllrlty I...'lyer)
session$, inciudln: HTrrS ::I<~iOM with dients usin: the !lIvabil.com web site lind enl"rYflled SMTP
~"Ommun ieation~ (or Imcrnct '.:ommUn iC2{iQn~ u~ing other- protocols) ~lh mail lCrvCr.;;

Any utt:c r in form:Hl on necessary to ~ccompl!$fl tht insu ll2t1on :lncl use of tile ptnltrap device ordered by
Jud?;e BIlc;h"nnn 011 June 28, 2013, unubtrusively :o nd wiln minimum ;ntenerenl:"t to the serviee" th2t arc
>lctorded persons with respect 10 whom Ihe inst:lllati(ln and use illo take place;

If such information i3 electronically slof'1:d or unable to ~ physically transported to the ;:rand jury, you
mtty provide ~ co fly of t be information to the Feder ... l BurtllU of [nv~tig<ltion. Provi$ion of tlds illformalion
to tile FBr doc~ nOt excuse your personal appellnlnce.

Julv (I 2013 CL£RJ(

·f'!.c n&me, lId=, email.Md!el-:phonenu.mbecofthcUr.ill:d StIIleS ~lomey,-orllSSistc! United Stu~~y'who
requests this s~bpoal;l, tL"t':

". 1'I0~n.)'

JU.Ul1 W. Wi1li" m$l;"ittd Sr",r~ Attonu,.'s SII,hljn:
] [00 J\lm l '~un ,\Venlle
,\ll· .• ~"drh. , Vlq~;r.i~ 1131~ p03} 299·nOO -_ ... -

.' .. ,., .. i
'.'. , ,.4.>:" "',1\ " t :'.",,,~ fll'::~"" 1 , I.t ... , r',' ,.f. .•

" " '-". ,.' .':;'" i • . ; ', ':i,'~" '., ; ,(, ... ; '-r:''- ~ .'." ." ;,:' j • .- .~I ~ ".,
. , :" ,,1 1 ,~1 ~ ,""""1;:,,:-, \,\~""H, .. , ,,,,,,.;, "'; <.i:"'~ • .', .. "

.A:·'~ :i.'.'.lJ." \·J:I.;:~(t,' ,1:,1'1-..".,,,,,,'.,,:_,,. i;, -.:" ',~. },; ,,",I;' 'j'::"'.
,'" '.,,:. ',)1' , .. ; ." ,;,,,,,,.; 1\. · · f·c.;~ ... f-'~.··"~ ' · !.~~''- ... "' ~,

' .. , ':,' ".1 .:.\.1. ,, :,'''(;, ~. 1 '.-,' - ' •• : ... '.1 .• ; '!:.. ' '. •. -:- ' .' , .", : ~ ,
. '. ~'., . ' ",.!> , .. ,.,: .".I.,.;r,:. 'J. ;';.1 . ,,': .• f; i~, '\O.);"v~ , :; :_-'-' ,) , .

. '.,'. ; ; .,'.('.: •. ,.,;. ~/.J~ i . \"l :, ,;' "'.~"1~·; · .~ ." : . :. ' .. ' " ;, . ~'-" j

;.-" ,: ro',' . : ... " ' ~"~f,~' '~I~·f." : ,~.-;-, .. ; ! , I;.; 1">" l<;; '~",f:'"
.. ~: "-'~ . I, \'-1".;' .• ,,:, .. \. "":""~1 .' ;'~~'''' """'"-''' ' ' ~ ,! ".
,. ,' .,j ''' ' '; ''''''' ' 1,,1."" :;, ... ~t .. ,i..-, .',~~. ';;. '1'- ' , . /.", .- ',,:

.: ' .. "". ,, ~~.: ... ,:1',.,"' ... !~; \f_.',,-, ~tl "; ::' 'IW"~' " .. ,;,.~"

. ,; ;: __ L~i '\:.;/;~~'.:~;~~;~~i;~~~:··~~·;ii;<·~:~ ;~).~ '; :);r,; ~'·
: ~;:;:,: ~~ '.~,.~J.;:;.~ i ~.;:"'~:~ ;t\;:.!.;.;:-'"g';.~~·;·~/:;'~~ ";l\~~~ !" :;·.~r

.' ' ..: • '" ; ,~. , .,," . , , . ',- ' ," ", " . .-.~ ;' "'''.''''. ;J' .. --":-; ,, '.'<;':
:' .. '" - ·t:.· ;,', '. ,;, ".:,,~, ; ... ,,:,-,.._;,;~, .. ",, "': ,: . •...
, • • " :-t~" •. , .• ; .. .,. ,. "" ,,""t' ", 1.:' ! '.;. ~:. ;:.' . " \ "i-",' ,_, ."
"" ,':, , .::" .", ' r.· '. \:-: . '< , '." ~".':,~;·r!::.". .. ;. (~;' ' :

f :: . '.' '; ,",:" '!,. '.', .,: , .. ~.' . '" r" . :, "; ~.,,~~ ... :. '." . ,J ,., '.-,.' • •

, ; ,,~' ... ",..-' " •... k· . . ' t- .;1\,.1.".",: .(·t · '.-,:'

, .. ~f'" ,' .. . : >;.: ... ~ ',; , . ' ." : ' ,.
::. " ., :.,,-,' : :{.~ •. ; -" .. ;,; • • -..-:: ' : ,1 ',,, :. ;::;:: X .. ' _ ." ~'l.. _.

, ... c' ... ; ':';i". }'." ' .' 'l'<', , _,;;'. ~!- " !"o ':r"'.'~\o" ;·.,'·v' .''-10
.. ·0 - ~ . J." " b.~ ' r b·':· :'·",y,",," ;:I~ , ')l.4;'"' . _:~.;; l,
. . ' ' , __ ,-":.-•.. ; .,,"::;'''.' ~~";,- :" "' : ,,~,; :';., ;,'.>(,' :,~. 1;,·' ,I,: :"

." c , .. ;'",",) .. ,·"t "': . :'! .'~J ,'" ,:,>:("";u ""n,. ".<, lI.;.~:!'~ "
, . :' "~,,~,;, ~"- \;) '- ".k', ,, .. i:io-<: .. ,,,,l"'.:' 1 .I'l',~:!.~"" .r; . ' .. ~(;.; •. '

'}; ', .. ''- .,.",,~"""" ~\.,,_ '."~~:A.\':~;" ~'~ 'f!(.'.<'.'" "., .";~ , .• _~\.
,: -'; '. -, l :'" "~'. I---",'~ ! .).1 .• •. ~ . f' ,J.-I:fo':-<~~ • ' . , ; . , ';' .i!;:J,';, "1 ~ ~."

,' • • • ,..t _,.,1: I .• : • ; ! ·.jOt:", ... ~ ~',"'~" ~ .(.;.~ .. ':I" ! ~"; ""J~ ',", '(:~, ".
.. . '~ " .t.~'i-"', : .~', .::: -":~, ' . -... ,.,., .V ,~ •• i'"' i .' <"", .4'1 .•• ,"~
.. ; '..,.:,r.:~ .," .. ' ""}"'~""" ... 7· .;>{,, : (.".,(."". ,.,~."

· ." .. ' v·:-:. '.,-'. ,~, :' ' ,,. ., ,.',\'·'I>"'.t ll ,r .~" , ... 1.<' .~ , ..
1 >'.~, .'-'" \', ·'11 " ,-,. ;~,., "~,"' . : t,: i , I ,.;.;, '.~\, , •. ; .. t,

.~ '- '. ;::.-. ' :,'!.-" .. " , i;,,> .. ',Ii" r'''''' '1'l .\ I ' -. . ~ r. ., ~ ;.:".,
. . : ';.!'! :. : " , j . : . . ~.".,.:, ~: ;1t.<l:,J'. ~ '., .\' \'. ~ ' ... '; ~ ",',~ I'
.. : '! ' t: · 'j', , _~ .. ,;. '''~,;·'sl~)~·,-!''" h:\ '''-: ,.~\/.! · ;,' ·. >,!I>

, ,',. I X .. ~",." .. ;.'~d 1,1-.[-" ,':' :.lr.:.)l, ~t> '" J .. ' ,J;;.:',~", , 'N ;
'_"'_' . ~n,' ,~ " . ' •. !.I' .' -..: .~ , " .,.,,:,~ .. ~ ,:.Ii; ">'''-',,".I>"'':',~' . : «>"

"'" '1~' '''-···' , ~:, ' 1';'W/s"'J ~.:-t "'.;",;.; "' ~"-'::~''"'''-'I;.i'';
C ," '<$. '" ',.', . " .' .• 0, t';:""XV'~.~ " :'~"",'I : ... ;~, :;.,,: 1<.';~I)t-(.':, h\<.': ••

..... :, ,;.',"1';<1" 1.;'.\, ri.>' ;""'1" .•. "'1 ,.; '''~·'1.:'r! ,', ,.,., ., :".~ ,', •.
~.~,." ,'.~ :;;. ';; , ' .. "".';,,, ~.-'~",;,o,'~J;: , ,,-,",, · In·' ."'·, .'; .•. ,.

• ' "';:""" :1 ;.". •. >1\,",,'''''.> ~)~""h""·X •. -1,. , \, ~'.f .. \ ., : :., ,~: , :, 1, '> ;t .~,
';;;"; =,' , n·, ,. :'>0:;' :l~,h' ~'" rf'.';·'<'!II).'" t=':'(',1~' '.J~j ,,; ..
':" , '. ' . ' ,.t.~.! ,, : ~ "I ~." i,..~'.~·l1-"",," ·'~~'·," " I ,;;0: "" •. ,
t ·,,· , ;, .~< 0 •. "0 T; '~~'.: " "" .. , .<-1';';" . '~. '; ' ,";:":' .~ ""~ ' ~';'~" , ~ '.'

; ," .: '.\ , "I •. ;' .. I.'oj.:.,,;, .. ,,", l~ q' .,,; I; J-! \. ; , • (.~. ,"c,,',':'" .:' <
:~« ,) ;~ .• ,'~ \',.,... \~, --,,·,,··t · .;~":"";,,

' . ':',"; 1.';-

, .·f,.':·.' .. , .• ~ ,"('1' .~'.-~;: '.t: ·~.r ."\1.~ :1 ',', . '.' < ' .• "
. , .. ,~,- '; ""'.-:,; '-" , ~ • .,,,. < .. ' ,. " '- \"0(;.' ~ .. • ••• • -.-.

~. " ':':""''''''' .''Y~' ' ' .:",~ .. ,~,-< 1.;_ " .• ' , .. ,., •. "> .,.. :., .
.... "h~ , ·;,f ·i.' .'"..~ .. ,., ... ~"' ~" .. ;''''..".,'¥ •. ,,' ._ .' . .
'!.'~.- . : ·"','l·."'· .,.~n'~.~,"'·,'t:~,: " ~11 s:;~,1~:r: ' . ';"~'J \'-;!'! ,bV:,~· I>

,~., ' .• ~ ' .' "",~,\,, ':, '.\' ,," ,,::.,,.,.1," ','.' ', ~'~.'I<"r. ! :., : ·~<.';..M
· ". ',: "·"",,"t ':1". ·'·,., Vo.! ~\';;>'<:'·-;;·I.~(...: ·;.'"j..·· · n ,',,: .'~, " ,:,:. ,;,.~ .", ''''.v.,' ~·s;. i<~~ ;~_ :·!,.,)' .. _ , !'I,~,·~ ,;.,.\. ,,, ,~; ,',
· .' .:'-':', : . ~.: 'I) ; ~.; .;: -. ' : ,'I, ,:;_ .,j'~,-, 1''::1.) oIl) :.;; ~.", ", ;:.,~ ., .. '
• , .. •• :.: ' ., ,,:'" :, ~:.'" '. , 'I.;". , ~ "~l"."\':"":, .' ,-;-. ". :,' . , :,,,',, ',-..
" ' : '., \, .. ':, .• .• ')' '" ,:,:'".,;' , . " '~r:; " ·. ·.~ .. ""A',""; , .. \ " ' .~;.

, .;' ,., ;, I.; ,," "~:.'''~·1, ;;-" '.~) J' :': :01> H!- ; "-~' .• :: .,
.. "":, .• '->\ "' ; f'~I'·'·'."I!" ;"·~';:'~i.·!.·",, , .. ,,:{. ~';"

.. ' , .f·' _··\' .v " '~''''',f,·''',.~,:,. ,'·I.;''; <' ·''';':' , ·." , .-.!.-n '''
., :", ... ",:", '-,~ ·,, -',l·.'-'<'{J·,

:.0::;;" '.;;

. ,'.-.! .'., 'I:'~ "' ''''r "";-""'''' ' .'';' . .,;~.~,, " .' N' , .. ,. ""' , ~ ~',
:' i,';,~ I; " ,-: '''';' ~'."-" l~ I d.1),o'!~; ';.'" , .•• ".,_~ , • :'," :'.-':." ,_.

~-"" .). .. ·"c':,; '.' " , r ~.:.;;~ •.. ~. -'If ",.'.,:", ;",'{,:-.'1 •• '.' ~, .. ; .• , '" . ~.

· '.-- _" ·;·'~'\;"; r"';,~,:'I-(),-w,"o1, ' $· .. ~:n.~ '::"·,"'" ;'.::,";". t .1 '. : ',"'
',.: '" I.':' ,t: ::':"i "~"':'''''' '' t .. (. V.,;: ,~ ,\,. l.-;\f'-'.-r; •. ,,;.,; Y, ~ : _.

" " .: ,:-;\: - . "~:_:'" -,' , ' . '~ " ',',t ,' :.' ';0 r.'';' .1,,, , .' •. : ;,... .. ~'>Y'V'''''
.! ~":,;;. : ... ;. I~,~·;~.,·::;~,.y,',,": .. ~ i ."" 1'.# ."":"": ·.i·· .. ' ~'-i ~~'-

'." : i:.; ,f'-{ "<i ~. ",'" n,:·~ .'~ ':·::t.1'~I· '. ,.:' .~., 0:" ::;.~ . .. " • ~~'"
-, \" ••• ' :~ " '" -y. i '.:':> ""; ". ; ": '.,:; ,. 1 ··,'1 ... ·',·

., ',' .. _' "',.,; ",' '~.' ~., '.~ .' ~I'''_'.:!'' v. ', .>.t •. ~."" :,. ,,(.~"., ::. '_
,', '_.' '. ~. , I ~. " ",!,·, . ;' 'Nor,', .; (1.. ·" 'h.O",,~, li", ... , I .I.' ,;,0 :fJ

<~ ~ " .' . : ·~ ":ii't.~ .. · ... l,~' , ,~;"j)'(''' . ~ k·,,,.,.:I, 11!! ~ .. ,! •• ,~ ; .~!;
"1 " ~~,~ . :,. •. ..,: r. ,~: :'.: ; ; ,.·::..l' <·,~:;.~:;lI'"'~HX:J: ... f.f.' '-l.U" '10"
,<' '. ~, r _!."1_ ":'\J',V; !,:i~'.~ :J.I.'I:.o'!.~('ll • " y.,;(J'}.~ ;:~ .lf;<'-i"j"·L, /.; , .: :.:

.~ , :; :':-t , N~'.'" U;':,.:i';";'"ri!l:,t.:K. :....Jo. ,\'7<_~" ,~.H>';"in' ;,,,.,,;1(>
,;; , .. ; .. "\ .• ~,, "h ·_ ,·),'.'1I!.t !I" , ,,,,,,,' '' ''''~ ~/, ,.. !";¥-nt)) :_ ~>" "¥·'.~"'.;H,,"~ .
~ ·.;'"I.~i. V; i.'I;~·~! ,~.W'Q" \ ' 't",,~,I;,>"I." ~""""'~>J.. ~,;~<),,"W')"rr:
,,' , ' ~)~ ~' ;''';1'. '.:;' .II ;:"': :M '.""'':<'jJ! >~Il~.~cr:, ~'.d";', ;>)0:.:;.,

...,~ , " .'.~~~:·'~·:'\:.Ic',. , oJ .' ,\.) I ~X't_,1\"" t'"',"'.,' .• , -,~, •• :,':t. ~
Y,. :; .,";' ;.). ~ .' . .., "'·."I~,,~, '.';'I.", '1.;~-(: .' ,"'~l, .~~ 0:11,1 ,'~.~ .• , :.~;.

.: "":~I • "'.I ,': '_ ' .•.. : ... , .,~1tT-;;~t,: , :.:L' .~ i' ,-,(, '"' :! ·.~'I ~. : r:t.· ... ,':·
'C::. {,~,. . ••. ::" r~' ,.,::,~ I ,,\~"' .• , ;>1_ ,' ,\ . ,"",-: •. :>':' ,,", ~"' , •
',,' ;.,. ~ ". 'r",,, .. :'1 ;"tii ~>Jo,~,~:,~:~):·.; ~''''·I:.c:'l':~'' l'':t{t''''''''·:f'(~' ';"r
'~i..- ,,:~"'.,~:::' <1_ l'<tI'h« ~ :>r."1 !"II ~~ :'C);"I!,_" : .,j "~''l:'''~,j'~ ;'f:~:
',J;; .~ ;.;~ ... '. "" !~.:~":: ''''(.~~J),'C, ."tl. ' '''.'¥J ~J ,~'::- '~";''->0:'.' ":.",(':'~T:~"
,«; ~,; .f . :.~:, ' . , ; '.'~·);. ·~~r, '" ,,..,,, :1ti '''~':f ! .' :>'I.,,:J ~.r.:.7. :, t :r''':, ,:;,t
:if, I ' '<:;."'. ,. '_'." [;: "~ I" " f-<! ;~11 ;0, .. -;,,:1" 0:"""; "'<:"" .• ~' ;;. ,~! 1'" "

'. ~,:", '", ;0 , ... :<>1' " ,~ ... , 1,!,J.';-;'~' "" ~.; -,,~ , ";,,,~y~ :~'~1 " '::"~"_

' _'~ . ~~:;, .::';! '.:. :··.~·,~,!".:,l : ". k:.'t}"<'J"...:/o":<:.' .• VI-;'''')';-''
""" : /:;,: , .. ~"..:,.~.;>/-, .. :, •. ,W;,";,'_~,(f",-,{((,~ .• , .,
:,' . . _' ., " " "'~~\ r :_.~., 1";" : .t,,';.t~'" \<~ >. . I-;_~I ',":., .';

, ' .- , :.~ , '''~ ;n' [;.~. ,,:/ Yo, '~"/ '~'J' ~:".l<,';!' " k' : ."'~ . ,<,-",,, ~"
'\ '\ ,11'; :. "" , .c,:, ·l:.f;'·· ;. ~ .' .. ,,:.,s.; " .) ''';~'' ' ... '''1~II';'·:Il; ~':~·': , ' ~"
'.~' ;.'- ~\ •• I.~·N' .,,':;;,.'.;.' ' :r.-:::~,f:,·Xii':'M!~·"'::'~""'~'h~ ~J"-;A\" I,.~,
•• \ ' :" .:oi \o.' 1:\ :-'"(~''''~.:I,~ :'''' '-n·' .:.,.!,'"f." 111 •. .-~ .~!,i.l · :A'Y. ::--': :'

.) ."" """';"',i " "'c'" 'i .~.'; I, .. ~~· ' ,0:, ' . 'tN ;, ,!,< .'~i'''"".' ~~,:
,.:. ' ~".'" _,,;~ " ~. ~"""'f~":-" ~) ,~· .. ·""r , ',,, ,I",.,' ~ ... ",. \', "

" " • " I ' t · , .'''1>'.' , ·11,;.~ ., ,,: .• 1 '.1-1' ~\-'~~~~',;::.' .''''' .' ' ..
, .~_':, 'f·_" i ·;., ::.,:-._%,: , ' ,';'\1" t\o''I''I''~; ',1. ;.J,,":I
•... , - ,.' .. ·~"~I,Y.,,,,,,-,,,,,"~:tJ"-, , .1~'v''11.-l '·'"~'''''''''''''''·

, .•.. H;l:;~r', ';< ' N".' W·"~ .. , 'J""""'~:"":;t'~"r>:._,,,>.r"; ;

'.' .. ", ," ' .,."" ,~ ,¥o''''; ' <, / ,-~,r. · .• I':,o.,) .) IJ •• , .' 1<' ~:' •• ·'IM";·I '-" .. _
~ ,.'1 " ~\··.I\'h.V:::·"'''''' '~ ,: .• • , l·~;:~",.,·,1}, flI:I.')"'.'1 'fflr ';" ~w.,,,=,, .. : .

::.

.... r . • -, ,k"':;'-,.I.;;.-n.:I.;1 I . \>t.."',,., ~ ,'.,11''''.''1 ,".>l:':\"'T,,, N V""; '. ,

.-::, .- .: ';' ··"l-:'''.'fI ,.~. ,1 :::';,(h;o,.' r.u-,I J.;;,o~"1 C(" '} . :(:;.;" •

. . ~" '-(!'·'-·h';::'C""'.'l;ll~': .. • •• n).-O<~' ;:'··~.':'';'''''J '''U:'''' ,.1:C r'",:
., '",: .. \",.~, ",.'<':': ." ':' .i'I::~'-:!h:"': l ·i'¥t~ ~~".v,;£.i'l,,· .. ·.>"'I':I:' ,-' "'.,~ " ~",,-"'.,;~ :v,.~, 'I,LJI ': O!. ;""",., ." ~""I'>i:""~\."9J '1"";":~"
'~I~rt,f.)~ , ,." ~ , {(. "ii ~>.u I,1,:I<::n , »r·'I';-,\~v?o!r..~;~""" ~ '

, •.. : ,(,(,.,.1';:".\,,: "!x.,?,"';li'lvlf"':"';lJl!;"'_·'\l"~-'I': W.';'O,· ·.>' ,,~

;. ' ';,; .. ,:, :1', _,,,: ~' ; h':"."'~::;"'::""" ; '·."::;..' iltl1 : ,tc· \ : 'I'N'::,':
'.-:­
,.'.'

I; '~.~';". , !~J"I :-(N ~,! ... :~<,,-,,;.y~ -" t o"';," .JH1'iO'; ' >:,!i"",I<';, ,1
,-.~ : · iv" · "' _/W"" / , '.>:;, ';-''' :.:''''_''~' ' ; 'j:J. , ."'"

u;; (". , I"" .,;, tI·,
I ,;' ft ' .': ' ~." , ,}I\ '· '-"'1':" :" ,
;-, ·.<Il~>.,r;.!· ~ :';:'",-, ,:,'':-';\ ">r . '.~-h·;·;, .:), ''',<'': , '. ; ,h.J.!f.' "(r.,;,:.".].' ;

I .'",n~, "';':."» mf,,'!'J I."I,,",''''-.:.,,';:~ iX .. ',.':" ,.:;.. ·'t.'.l.·:·i~ ','·"('
r..". , , ~;. "~:"'!' M i , .:-.: ,I~,,"l,~ ,:1<.', :-:.:"'; : ... ",-, \": •. "'~;"'!. ; ; .

; ;'- ; ' , ~'.\.~ ," ' 1-.; ;' .. :(): .1:.-;\';"1; ,;· r-r::,J;;t.+ . . ,i:.,.~(j'J':<;I, "

.; ,) ··,_'i~,'.f .. \",:,>.,(' ;;'c:i',·.""~!.,:·"'. ";_' <; : '>'''~ '-:,
>, .• .. '1 .'\.' ~. :~I.;·" ·:'; "'·;r .. '.'~'v:;M';"'~?~·:, ." \ " ~'

• " " . , . _"1"'_ '(....... ..,.-.. ! 1';-, .. ··, :;o,::;·';,~.\·N'-'.r:'" f"·,,.:, '.'
'} . :";- .. ' ,. "'.!' ,1 ,,-.~~ I .,~:, ' I-v~",.~, r .. (... ~ r;:;:,~,"~ 1;.'.1 , ," ;

' .:J ' ... , .• ~.~,~.,. A.1"' . .-.. , .. ~,. ... ·,:": • .'i:·,, .. " ·,,>,·.

....
:. "

. _ ;: ... ,.:: ,' i·i·'·;':.).·~":\,"1:;:""" "'·;"'·"'·· ''''''''' ~ ''~
,~ "~" .. 'c'''''':(~ ,.,,,~ ' WI.n<':''>:1'<)o ~;'l<>:1m',"-'¥l.~, ' .~.
,,' ',.~.' ;~' .~1" · "-; "'·,n''-·:'1 ?>~.'~:;'~·':'-':·:I:l~" !'-r.,,~,,\,

"'(,~-:_, ... ,'d X'1.';'. - , :':; ;~~;~:' "'" ·l'a":r-if.' ;-'.'H. t~f"'~~~i ~ "';. 0
, .'.: '; "l~""'. ;,~ :" \,·,.r·' .1 '.' '~.;':'.,"";':. , r.:"~.'~"l-:'''' r,.F.:iV, ~n::~':''>
;' :,::;"," .-, ~ .. , ,"" ,(' "!f .,t .. r:,,·:::. i: !r! :!;~:';:;' :'" \l1i l(:3<h .<~u.;:'·W:lw
" , :,.;- ._ ,~," , , .. , ~"!~ •• '~';', , -<~T, ~ ~ .., ;:.;,:.., , _ r· , ':;~' .• I,"·""·
..~ ,. " • .'.' •• " ,Jo!,' ,-. ... ~."".~.<")<-"' .•. ~'''; ... (") I.~ ,,·,,;. .,.' ~?".
, . . '; .~; ... " .. ~., "('.1 ,' , .• : ." .,,,; • . :l ,~~v,,_!.;:,l1',~ Y.',,;~. , '.", •
~!';"'.i"i:4.'h' .. ~i, ,,;' ... r".:'. ;Jt ":;',,~,. " .," .. ~ ;0:; ,·" •• '" .:'.-1,

... . ~" . ; .. (';'.,,<, .'~:""''-'~'~'.:' :,"'·¥ 'As",.C ;\:<" .;",,;·, . J "'(~i;1.'-;; i'('~
!,.. :."''" 1'-'':~ ·r', ,I • • ;'-''' ",;': 'll'"','.11".!;lt"":~ ~·".";;"-··i .< .. '"r; ..
10 . , .. / :' t.'iH:.l.:!. "1'; , ' .. ;

'''.~ . ,,~, .. ' .• ;',," ... , ,,~,:.~,,~;'.l ': ":('.' ~ , : , •. ~(~.:->~~.-,. 0-,.-," __

'!',-".' .~ , .'.\I>' .. , . ." '.-"l"/"',' ', .. ,. i->«I,",j' ".r."" , ..
,,,' .. .• ~,;. : , ,-r.:.;; ~ '~I'-':·k',.,,>.(~,,,,,;_,, 'i', ~ .""(.-:: .. >1 ";-; '' ' '' .

. ;, .. i " • ,-,.,." '" " '::-. " .. "'so) .,j, : ... :,,,,, , .• ~~ ,,; . ..,~ . i: " t'f,l~. ~.,.. •

"i' -.. , ," .;' .. : :N,\ ; '-': .~"-1' J'o1:~ ' J,''':''''''':,(/' •. ~ . ;);.~.,: " .'''' (J;"> -" '" I "

,;', .~; '.~--:~;:. :: .. .t;~ ~,~~~~';4:~ > ;~::t;:;~:::~~;~ ~~':i;,;~:~~~"""
, ' " ' . . ;-:. ,_./: .; .• ·"9!.··~' I:i""""."t: l :" ., ~ ",-: .r·' ,,- ;',:

I. """. ,~:,,,~·.·:"-:''''· ';\':'; l ·'''! ?.n - .'._"".V!!,·· >.~;." "'c',
,, :, ". __ :·1. ':'.' ;::1. :r . '. " ~, ,_, , , ,; ',;! •. t.',,'.·,,' '.' ~ ~', ':.:

TLS RSA Key Exchange
Why forward secrecy is important

hello

certificate, public RSA key

RSAEncRSAkey (AES key)

AESEncAESkey (website contents)

An adversary with Lavabit’s private key can

• impersonate Lavabit.com to anyone

• decrypt traffic from now on and from any point in the past.

TLS Diffie-Hellman Key Exchange
Why forward secrecy is important

hello, g x

g y , certificate, public RSA key

RSASignRSAkey (g x , g y)

AESEncgxy (website contents)

An adversary with Lavabit’s private key can

• impersonate Lavabit.com to anyone

Forward secrecy: cannot retroactively decrypt historical traffic if the private keys were
forgotten.

Your Homework:

• If you’re an end-user, a website enables forward
secrecy if you see a cipher suite with DHE
(Diffie-Hellman ephemeral) or ECDHE
(elliptic-curve Diffie-Hellman ephemeral).

ncsc.nl has enabled forward secrecy.

ncsc.nl

• If you run a website, enable forward secrecy!
See e.g. https://bettercrypto.org

microsoft.com does not offer forward secrecy.

• If you build a privacy tool, use end-to-end
crypto.

https://bettercrypto.org
microsoft.com

DUAL EC RNG: history part I

Earliest public source (?) June 2004, draft of ANSI X9.82:

ϕ gives all but the top 16 bits ⇒ about 215 points sQ match given string.
Claim:

DUAL EC RNG: common public history part II

Various public warning signals:

• Gjøsteen (March 2006): output sequence is biased.
“While the practical impact of these results are modest, it is hard to see how
these flaws would be acceptable in a pseudo-random bit generator based on
symmetric cryptographic primitives. They should not be accepted in a generator
based on number-theoretic assumptions.”

• Brown (March 2006): security “proof”
“This proof makes essential use of Q being random.” If d with dQ = P is known
then dRi = Si+1, concludes that there might be distinguisher.

• Sidorenko & Schoenmakers (May 2006): output sequence is even more biased.
Answer: Too late to change, already implemented.

• Shumow & Ferguson (August 2007): Backdoor if d is known.

• NIST SP800-90 gets appendix about choosing points verifiably at random,
but requires use of standardized P,Q for FIPS-140 validation.

Dual EC

Points Q and P on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

r2

30 bytes

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r3

30 bytes

s4 = x(s3P)

rcRc = (rc , y(rc))

s2x(dRc) sc

match?

Graphic based on work by Ruben Niederhagen.

Dual EC

Points Q and P on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

r2

30 bytes

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r3

30 bytes

s4 = x(s3P)

rcRc = (rc , y(rc))

s2x(dRc) sc

match?

Graphic based on work by Ruben Niederhagen.

Dual EC

Points Q and P on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

r2

30 bytes

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r3

30 bytes

s4 = x(s3P)

rcRc = (rc , y(rc))

s2x(dRc) sc

match?

Graphic based on work by Ruben Niederhagen.

Dual EC

Points Q and P on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

r2

30 bytes

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r3

30 bytes

s4 = x(s3P)

rcRc = (rc , y(rc))

s2x(dRc) sc

match?

Graphic based on work by Ruben Niederhagen.

Dual EC

Points Q and P on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

r2

30 bytes

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r3

30 bytes

s4 = x(s3P)

rcRc = (rc , y(rc))

s2x(dRc) sc

match?

Graphic based on work by Ruben Niederhagen.

Dual EC

Points Q and P on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

r2

30 bytes

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r3

30 bytes

s4 = x(s3P)

rcRc = (rc , y(rc))

s2x(dRc) sc

match?

Graphic based on work by Ruben Niederhagen.

Dual EC

Points Q and P on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

r2

30 bytes

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r3

30 bytes

s4 = x(s3P)

rcRc = (rc , y(rc))

s2x(dRc) sc

match?

Graphic based on work by Ruben Niederhagen.

Dual EC

Points Q and P on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

r2

30 bytes

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r3

30 bytes

s4 = x(s3P)

rcRc = (rc , y(rc))

s2x(dRc) sc

match?

Graphic based on work by Ruben Niederhagen.

Dual EC

Points Q and P on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

r2

30 bytes

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r3

30 bytes

s4 = x(s3P)

rcRc = (rc , y(rc))

s2x(dRc) sc

match?

Graphic based on work by Ruben Niederhagen.

Dual EC

Points Q and P on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

r2

30 bytes

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r3

30 bytes

s4 = x(s3P)

r1

?

rcRc = (rc , y(rc))

s2x(dRc) sc

match?

Graphic based on work by Ruben Niederhagen.

Dual EC

Points Q and P = dQ on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

r2

30 bytes

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r3

30 bytes

s4 = x(s3P)

r1

? ECDLP!

rcRc = (rc , y(rc))

s2x(dRc) sc

match?

Graphic based on work by Ruben Niederhagen.

Basic attack

Points Q and P = dQ on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

r2

30 bytes

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r3

30 bytes

s4 = x(s3P)

r1

x(ds1Q)
rcRc = (rc , y(rc))

s2x(dRc) sc

match?

Graphic based on work by Ruben Niederhagen.

Basic attack

Points Q and P = dQ on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

r2

30 bytes

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r3

30 bytes

s4 = x(s3P)

r1
x(ds1Q)

s2 = x(s1P) = x(s1dQ)

rcRc = (rc , y(rc))

s2x(dRc) sc

match?

Graphic based on work by Ruben Niederhagen.

Basic attack

Points Q and P = dQ on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

r2

30 bytes

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r3

30 bytes

s4 = x(s3P)

r1
x(ds1Q)

s2 = x(s1P) = x(s1dQ)

rc

Rc = (rc , y(rc))

s2x(dRc) sc

match?

Graphic based on work by Ruben Niederhagen.

Basic attack

Points Q and P = dQ on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

r2

30 bytes

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r3

30 bytes

s4 = x(s3P)

s2 = x(s1P) = x(s1dQ)

rcRc = (rc , y(rc))

s2x(dRc) sc

match?

Graphic based on work by Ruben Niederhagen.

Basic attack

Points Q and P = dQ on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

r2

30 bytes

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r3

30 bytes

s4 = x(s3P)

s2 = x(s1P) = x(s1dQ)

rcRc = (rc , y(rc))

s2x(dRc) sc

match?

Graphic based on work by Ruben Niederhagen.

September 2013: NSA Bullrun program

NYT:

the NSA had inserted a back door into a 2006 standard adopted by NIST [..]
called the Dual EC DRBG standard.

. . . but surely nobody uses that!?!

NIST’s DRBG Validation List: more than 70 validations of Dual EC DRBG;
RSA’s BSAFE has Dual EC DRBG enabled as default.

NIST re-opens discussions on SP800.90; recommmends against using Dual EC.
RSA suggests changing default in BSAFE.

21 April 2014 NIST removes Dual EC from the standard.

http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html

September 2013: NSA Bullrun program

NYT:

the NSA had inserted a back door into a 2006 standard adopted by NIST [..]
called the Dual EC DRBG standard.

. . . but surely nobody uses that!?!

NIST’s DRBG Validation List: more than 70 validations of Dual EC DRBG;
RSA’s BSAFE has Dual EC DRBG enabled as default.

NIST re-opens discussions on SP800.90; recommmends against using Dual EC.
RSA suggests changing default in BSAFE.

21 April 2014 NIST removes Dual EC from the standard.

http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html

September 2013: NSA Bullrun program

NYT:

the NSA had inserted a back door into a 2006 standard adopted by NIST [..]
called the Dual EC DRBG standard.

. . . but surely nobody uses that!?!

NIST’s DRBG Validation List: more than 70 validations of Dual EC DRBG;
RSA’s BSAFE has Dual EC DRBG enabled as default.

NIST re-opens discussions on SP800.90; recommmends against using Dual EC.
RSA suggests changing default in BSAFE.

21 April 2014 NIST removes Dual EC from the standard.

http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html

September 2013: NSA Bullrun program

NYT:

the NSA had inserted a back door into a 2006 standard adopted by NIST [..]
called the Dual EC DRBG standard.

. . . but surely nobody uses that!?!

NIST’s DRBG Validation List: more than 70 validations of Dual EC DRBG;
RSA’s BSAFE has Dual EC DRBG enabled as default.

NIST re-opens discussions on SP800.90; recommmends against using Dual EC.
RSA suggests changing default in BSAFE.

21 April 2014 NIST removes Dual EC from the standard.

http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html

September 2013: NSA Bullrun program

NYT:

the NSA had inserted a back door into a 2006 standard adopted by NIST [..]
called the Dual EC DRBG standard.

. . . but surely nobody uses that!?!

NIST’s DRBG Validation List: more than 70 validations of Dual EC DRBG;
RSA’s BSAFE has Dual EC DRBG enabled as default.

NIST re-opens discussions on SP800.90; recommmends against using Dual EC.
RSA suggests changing default in BSAFE.

21 April 2014 NIST removes Dual EC from the standard.

http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html

September 2013: SHA-3 controversy erupts

How about the NIST curves?

May 2013, Bernstein & Lange: “Security dangers of the NIST curves”

Green: “Flipside: What if NIST/NSA
know a weakness in 1/10000000
curves? NIST searches space for
curves that *arent* vulnerable.”

September 2013

How about the NIST curves?

May 2013, Bernstein & Lange: “Security dangers of the NIST curves”

Green: “Flipside: What if NIST/NSA
know a weakness in 1/10000000
curves? NIST searches space for
curves that *arent* vulnerable.”

September 2013

SafeCurves: choosing safe curves for elliptic-curve cryptography

All known security criteria for
elliptic curves, machine verified.

Elligator: undetectable curve
points.

New Curve41417.

Also: can the curve be
backdoored?

http://safecurves.cr.yp.to

http://safecurves.cr.yp.to

SafeCurves: choosing safe curves for elliptic-curve cryptography

All known security criteria for
elliptic curves, machine verified.

Elligator: undetectable curve
points.

New Curve41417.

Also: can the curve be
backdoored?

http://safecurves.cr.yp.to

http://safecurves.cr.yp.to

SafeCurves: choosing safe curves for elliptic-curve cryptography

All known security criteria for
elliptic curves, machine verified.

Elligator: undetectable curve
points.

New Curve41417.

Also: can the curve be
backdoored?

http://safecurves.cr.yp.to

http://safecurves.cr.yp.to

Bitcoin goes mainstream, bringing ECDSA with it

August 2013: Android Java RNG vulnerability blamed for bitcoin thefts

1HKywxiL4JziqXrzLKhmB6a74ma6kxbSDj has stolen 59 bitcoin from addresses using
repeated ECDSA signature randomness.

Bitcoin goes mainstream, bringing ECDSA with it

February 7 2014: Mt. Gox suspends trading, possibly because of transaction
malleability.

October 2013: MUSCULAR

Official Google statement:
“We are outraged”

Unofficial Google statement:
“Fuck these guys.”

SSL crypto not great – but even worse when it’s circumvented.

October 2013: MUSCULAR

Official Google statement:
“We are outraged”

Unofficial Google statement:
“Fuck these guys.”

SSL crypto not great – but even worse when it’s circumvented.

Meanwhile at the NSA . . .

December 2013: trouble with XCB disk-encryption standard
10 Conclusion

In this paper we took a close look at XCB. Based on the study we can conclude the following:

1. XCBv2 as specified in [12] is not secure as a TES. We found an easy distinguishing attack on XCBv2. The
attack works because of a faulty padding scheme, and there seems to be no easy way to fix this problem.
However, if the inputs to XCBv2 are such that their lengths are multiples of the block length of the block
cipher, then our attack does not work. For this restricted message space XCBv2fb (the full block version of
XCBv2) is secure.

2. Even for the restricted message space, XCBv2fb (possibly) does not have the security bound as claimed
in [12]. This is due to the fact that the proof of the security theorem in [12] is wrong. The error stems from a
faulty calculation of collision probabilities in the inc function. We point out the mistake by showing concrete
examples where that the bound on the collision probabilities in the inc function as given in [12] are violated.
These examples are highly motivated by a prior study in [9].

3. We provide a corrected security analysis for XCBv2fb which is supported by a detailed proof. The correct
security bound that can be proved for XCBv2fb is worse than that claimed in [12].

4. XCBv1 does not suffer from the weaknesses as in XCBv2. The distinguishing attack which we present for
XCBv2 does not work for XCBv1. XCBv1 (as specified in [11]) is a secure TES. There was no proof of the
fact that XCBv1 is secure. We provide the first proof of security for XCBv1 along with a concrete security
bound.

5. XCBv2 was derived as a small modification of XCBv1. The authors said that the modifications were made to
enable easy analysis [12]. Though it is not very clear to us, how these modifications help in the analysis. Our
analysis reveals that any modification in an existing cryptographic scheme should be done with utmost care,
even an innocent looking change may have a grave impact on the security of the scheme.

6. XCBv2 is a part of the standard IEEE Std 1619.2-2010. Our analysis puts into serious doubts the method-
ology adopted by the working group for formulating the standard. We are surprised that an international
standardization committee for a cryptographic scheme overlooked some important security issues, which were
not so difficult to detect. Thus, our analysis of XCB indicates that contrary to the popular convention of
blindly adopting standards, the outcomes of standardization efforts should also be critically analyzed before
deploying them in a real application.

References

1. IEEE Std 1619.2-2010: IEEE standard for wide-block encryption for shared storage media. IEEE Computer Society,
March 2011. http://standards.ieee.org/findstds/standard/1619.2-2010.html.

2. D. Chakraborty and M. Nandi. An improved security bound for HCTR. In FSE, pages 441–455, 2008.
3. D. Chakraborty and P. Sarkar. A new mode of encryption providing a tweakable strong pseudo-random permutation.

In FSE, pages 293–309, 2006.
4. Debrup Chakraborty and Palash Sarkar. HCH: A new tweakable enciphering scheme using the hash-counter-hash

approach. IEEE Transactions on Information Theory, 54(4):1683–1699, 2008.
5. S. Halevi. EME*: Extending EME to handle arbitrary-length messages with associated data. In INDOCRYPT, pages

315–327, 2004.
6. S. Halevi. Invertible universal hashing and the tet encryption mode. In CRYPTO, volume 4622 of Lecture Notes in

Computer Science, pages 412–429. Springer, 2007.
7. S. Halevi and P. Rogaway. A tweakable enciphering mode. In CRYPTO, pages 482–499, 2003.
8. S. Halevi and P. Rogaway. A parallelizable enciphering mode. In CT-RSA, pages 292–304, 2004.
9. T. Iwata, K. Ohashi, and K. Minematsu. Breaking and repairing GCM security proofs. In Advances in Cryptology -

Crypto 2012, volume 7417 of Lecture Notes in Computer Science, pages 31–49. Springer, 2012.
10. Cuauhtemoc Mancillas-López, Debrup Chakraborty, and Francisco Rodríguez-Henríquez. Reconfigurable hardware

implementations of tweakable enciphering schemes. IEEE Trans. Computers, 59(11):1547–1561, 2010.

10 Conclusion

In this paper we took a close look at XCB. Based on the study we can conclude the following:

1. XCBv2 as specified in [12] is not secure as a TES. We found an easy distinguishing attack on XCBv2. The
attack works because of a faulty padding scheme, and there seems to be no easy way to fix this problem.
However, if the inputs to XCBv2 are such that their lengths are multiples of the block length of the block
cipher, then our attack does not work. For this restricted message space XCBv2fb (the full block version of
XCBv2) is secure.

2. Even for the restricted message space, XCBv2fb (possibly) does not have the security bound as claimed
in [12]. This is due to the fact that the proof of the security theorem in [12] is wrong. The error stems from a
faulty calculation of collision probabilities in the inc function. We point out the mistake by showing concrete
examples where that the bound on the collision probabilities in the inc function as given in [12] are violated.
These examples are highly motivated by a prior study in [9].

3. We provide a corrected security analysis for XCBv2fb which is supported by a detailed proof. The correct
security bound that can be proved for XCBv2fb is worse than that claimed in [12].

4. XCBv1 does not suffer from the weaknesses as in XCBv2. The distinguishing attack which we present for
XCBv2 does not work for XCBv1. XCBv1 (as specified in [11]) is a secure TES. There was no proof of the
fact that XCBv1 is secure. We provide the first proof of security for XCBv1 along with a concrete security
bound.

5. XCBv2 was derived as a small modification of XCBv1. The authors said that the modifications were made to
enable easy analysis [12]. Though it is not very clear to us, how these modifications help in the analysis. Our
analysis reveals that any modification in an existing cryptographic scheme should be done with utmost care,
even an innocent looking change may have a grave impact on the security of the scheme.

6. XCBv2 is a part of the standard IEEE Std 1619.2-2010. Our analysis puts into serious doubts the method-
ology adopted by the working group for formulating the standard. We are surprised that an international
standardization committee for a cryptographic scheme overlooked some important security issues, which were
not so difficult to detect. Thus, our analysis of XCB indicates that contrary to the popular convention of
blindly adopting standards, the outcomes of standardization efforts should also be critically analyzed before
deploying them in a real application.

References

1. IEEE Std 1619.2-2010: IEEE standard for wide-block encryption for shared storage media. IEEE Computer Society,
March 2011. http://standards.ieee.org/findstds/standard/1619.2-2010.html.

2. D. Chakraborty and M. Nandi. An improved security bound for HCTR. In FSE, pages 441–455, 2008.
3. D. Chakraborty and P. Sarkar. A new mode of encryption providing a tweakable strong pseudo-random permutation.

In FSE, pages 293–309, 2006.
4. Debrup Chakraborty and Palash Sarkar. HCH: A new tweakable enciphering scheme using the hash-counter-hash

approach. IEEE Transactions on Information Theory, 54(4):1683–1699, 2008.
5. S. Halevi. EME*: Extending EME to handle arbitrary-length messages with associated data. In INDOCRYPT, pages

315–327, 2004.
6. S. Halevi. Invertible universal hashing and the tet encryption mode. In CRYPTO, volume 4622 of Lecture Notes in

Computer Science, pages 412–429. Springer, 2007.
7. S. Halevi and P. Rogaway. A tweakable enciphering mode. In CRYPTO, pages 482–499, 2003.
8. S. Halevi and P. Rogaway. A parallelizable enciphering mode. In CT-RSA, pages 292–304, 2004.
9. T. Iwata, K. Ohashi, and K. Minematsu. Breaking and repairing GCM security proofs. In Advances in Cryptology -

Crypto 2012, volume 7417 of Lecture Notes in Computer Science, pages 31–49. Springer, 2012.
10. Cuauhtemoc Mancillas-López, Debrup Chakraborty, and Francisco Rodríguez-Henríquez. Reconfigurable hardware

implementations of tweakable enciphering schemes. IEEE Trans. Computers, 59(11):1547–1561, 2010.

10 Conclusion

In this paper we took a close look at XCB. Based on the study we can conclude the following:

1. XCBv2 as specified in [12] is not secure as a TES. We found an easy distinguishing attack on XCBv2. The
attack works because of a faulty padding scheme, and there seems to be no easy way to fix this problem.
However, if the inputs to XCBv2 are such that their lengths are multiples of the block length of the block
cipher, then our attack does not work. For this restricted message space XCBv2fb (the full block version of
XCBv2) is secure.

2. Even for the restricted message space, XCBv2fb (possibly) does not have the security bound as claimed
in [12]. This is due to the fact that the proof of the security theorem in [12] is wrong. The error stems from a
faulty calculation of collision probabilities in the inc function. We point out the mistake by showing concrete
examples where that the bound on the collision probabilities in the inc function as given in [12] are violated.
These examples are highly motivated by a prior study in [9].

3. We provide a corrected security analysis for XCBv2fb which is supported by a detailed proof. The correct
security bound that can be proved for XCBv2fb is worse than that claimed in [12].

4. XCBv1 does not suffer from the weaknesses as in XCBv2. The distinguishing attack which we present for
XCBv2 does not work for XCBv1. XCBv1 (as specified in [11]) is a secure TES. There was no proof of the
fact that XCBv1 is secure. We provide the first proof of security for XCBv1 along with a concrete security
bound.

5. XCBv2 was derived as a small modification of XCBv1. The authors said that the modifications were made to
enable easy analysis [12]. Though it is not very clear to us, how these modifications help in the analysis. Our
analysis reveals that any modification in an existing cryptographic scheme should be done with utmost care,
even an innocent looking change may have a grave impact on the security of the scheme.

6. XCBv2 is a part of the standard IEEE Std 1619.2-2010. Our analysis puts into serious doubts the method-
ology adopted by the working group for formulating the standard. We are surprised that an international
standardization committee for a cryptographic scheme overlooked some important security issues, which were
not so difficult to detect. Thus, our analysis of XCB indicates that contrary to the popular convention of
blindly adopting standards, the outcomes of standardization efforts should also be critically analyzed before
deploying them in a real application.

References

1. IEEE Std 1619.2-2010: IEEE standard for wide-block encryption for shared storage media. IEEE Computer Society,
March 2011. http://standards.ieee.org/findstds/standard/1619.2-2010.html.

2. D. Chakraborty and M. Nandi. An improved security bound for HCTR. In FSE, pages 441–455, 2008.
3. D. Chakraborty and P. Sarkar. A new mode of encryption providing a tweakable strong pseudo-random permutation.

In FSE, pages 293–309, 2006.
4. Debrup Chakraborty and Palash Sarkar. HCH: A new tweakable enciphering scheme using the hash-counter-hash

approach. IEEE Transactions on Information Theory, 54(4):1683–1699, 2008.
5. S. Halevi. EME*: Extending EME to handle arbitrary-length messages with associated data. In INDOCRYPT, pages

315–327, 2004.
6. S. Halevi. Invertible universal hashing and the tet encryption mode. In CRYPTO, volume 4622 of Lecture Notes in

Computer Science, pages 412–429. Springer, 2007.
7. S. Halevi and P. Rogaway. A tweakable enciphering mode. In CRYPTO, pages 482–499, 2003.
8. S. Halevi and P. Rogaway. A parallelizable enciphering mode. In CT-RSA, pages 292–304, 2004.
9. T. Iwata, K. Ohashi, and K. Minematsu. Breaking and repairing GCM security proofs. In Advances in Cryptology -

Crypto 2012, volume 7417 of Lecture Notes in Computer Science, pages 31–49. Springer, 2012.
10. Cuauhtemoc Mancillas-López, Debrup Chakraborty, and Francisco Rodríguez-Henríquez. Reconfigurable hardware

implementations of tweakable enciphering schemes. IEEE Trans. Computers, 59(11):1547–1561, 2010.

—Chakraborty, Hernandez-Jimenez, Sarkar,
“Another look at XCB”,

4 December 2013

December 2013: trouble with XCB disk-encryption standard
10 Conclusion

In this paper we took a close look at XCB. Based on the study we can conclude the following:

1. XCBv2 as specified in [12] is not secure as a TES. We found an easy distinguishing attack on XCBv2. The
attack works because of a faulty padding scheme, and there seems to be no easy way to fix this problem.
However, if the inputs to XCBv2 are such that their lengths are multiples of the block length of the block
cipher, then our attack does not work. For this restricted message space XCBv2fb (the full block version of
XCBv2) is secure.

2. Even for the restricted message space, XCBv2fb (possibly) does not have the security bound as claimed
in [12]. This is due to the fact that the proof of the security theorem in [12] is wrong. The error stems from a
faulty calculation of collision probabilities in the inc function. We point out the mistake by showing concrete
examples where that the bound on the collision probabilities in the inc function as given in [12] are violated.
These examples are highly motivated by a prior study in [9].

3. We provide a corrected security analysis for XCBv2fb which is supported by a detailed proof. The correct
security bound that can be proved for XCBv2fb is worse than that claimed in [12].

4. XCBv1 does not suffer from the weaknesses as in XCBv2. The distinguishing attack which we present for
XCBv2 does not work for XCBv1. XCBv1 (as specified in [11]) is a secure TES. There was no proof of the
fact that XCBv1 is secure. We provide the first proof of security for XCBv1 along with a concrete security
bound.

5. XCBv2 was derived as a small modification of XCBv1. The authors said that the modifications were made to
enable easy analysis [12]. Though it is not very clear to us, how these modifications help in the analysis. Our
analysis reveals that any modification in an existing cryptographic scheme should be done with utmost care,
even an innocent looking change may have a grave impact on the security of the scheme.

6. XCBv2 is a part of the standard IEEE Std 1619.2-2010. Our analysis puts into serious doubts the method-
ology adopted by the working group for formulating the standard. We are surprised that an international
standardization committee for a cryptographic scheme overlooked some important security issues, which were
not so difficult to detect. Thus, our analysis of XCB indicates that contrary to the popular convention of
blindly adopting standards, the outcomes of standardization efforts should also be critically analyzed before
deploying them in a real application.

References

1. IEEE Std 1619.2-2010: IEEE standard for wide-block encryption for shared storage media. IEEE Computer Society,
March 2011. http://standards.ieee.org/findstds/standard/1619.2-2010.html.

2. D. Chakraborty and M. Nandi. An improved security bound for HCTR. In FSE, pages 441–455, 2008.
3. D. Chakraborty and P. Sarkar. A new mode of encryption providing a tweakable strong pseudo-random permutation.

In FSE, pages 293–309, 2006.
4. Debrup Chakraborty and Palash Sarkar. HCH: A new tweakable enciphering scheme using the hash-counter-hash

approach. IEEE Transactions on Information Theory, 54(4):1683–1699, 2008.
5. S. Halevi. EME*: Extending EME to handle arbitrary-length messages with associated data. In INDOCRYPT, pages

315–327, 2004.
6. S. Halevi. Invertible universal hashing and the tet encryption mode. In CRYPTO, volume 4622 of Lecture Notes in

Computer Science, pages 412–429. Springer, 2007.
7. S. Halevi and P. Rogaway. A tweakable enciphering mode. In CRYPTO, pages 482–499, 2003.
8. S. Halevi and P. Rogaway. A parallelizable enciphering mode. In CT-RSA, pages 292–304, 2004.
9. T. Iwata, K. Ohashi, and K. Minematsu. Breaking and repairing GCM security proofs. In Advances in Cryptology -

Crypto 2012, volume 7417 of Lecture Notes in Computer Science, pages 31–49. Springer, 2012.
10. Cuauhtemoc Mancillas-López, Debrup Chakraborty, and Francisco Rodríguez-Henríquez. Reconfigurable hardware

implementations of tweakable enciphering schemes. IEEE Trans. Computers, 59(11):1547–1561, 2010.

10 Conclusion

In this paper we took a close look at XCB. Based on the study we can conclude the following:

1. XCBv2 as specified in [12] is not secure as a TES. We found an easy distinguishing attack on XCBv2. The
attack works because of a faulty padding scheme, and there seems to be no easy way to fix this problem.
However, if the inputs to XCBv2 are such that their lengths are multiples of the block length of the block
cipher, then our attack does not work. For this restricted message space XCBv2fb (the full block version of
XCBv2) is secure.

2. Even for the restricted message space, XCBv2fb (possibly) does not have the security bound as claimed
in [12]. This is due to the fact that the proof of the security theorem in [12] is wrong. The error stems from a
faulty calculation of collision probabilities in the inc function. We point out the mistake by showing concrete
examples where that the bound on the collision probabilities in the inc function as given in [12] are violated.
These examples are highly motivated by a prior study in [9].

3. We provide a corrected security analysis for XCBv2fb which is supported by a detailed proof. The correct
security bound that can be proved for XCBv2fb is worse than that claimed in [12].

4. XCBv1 does not suffer from the weaknesses as in XCBv2. The distinguishing attack which we present for
XCBv2 does not work for XCBv1. XCBv1 (as specified in [11]) is a secure TES. There was no proof of the
fact that XCBv1 is secure. We provide the first proof of security for XCBv1 along with a concrete security
bound.

5. XCBv2 was derived as a small modification of XCBv1. The authors said that the modifications were made to
enable easy analysis [12]. Though it is not very clear to us, how these modifications help in the analysis. Our
analysis reveals that any modification in an existing cryptographic scheme should be done with utmost care,
even an innocent looking change may have a grave impact on the security of the scheme.

6. XCBv2 is a part of the standard IEEE Std 1619.2-2010. Our analysis puts into serious doubts the method-
ology adopted by the working group for formulating the standard. We are surprised that an international
standardization committee for a cryptographic scheme overlooked some important security issues, which were
not so difficult to detect. Thus, our analysis of XCB indicates that contrary to the popular convention of
blindly adopting standards, the outcomes of standardization efforts should also be critically analyzed before
deploying them in a real application.

References

1. IEEE Std 1619.2-2010: IEEE standard for wide-block encryption for shared storage media. IEEE Computer Society,
March 2011. http://standards.ieee.org/findstds/standard/1619.2-2010.html.

2. D. Chakraborty and M. Nandi. An improved security bound for HCTR. In FSE, pages 441–455, 2008.
3. D. Chakraborty and P. Sarkar. A new mode of encryption providing a tweakable strong pseudo-random permutation.

In FSE, pages 293–309, 2006.
4. Debrup Chakraborty and Palash Sarkar. HCH: A new tweakable enciphering scheme using the hash-counter-hash

approach. IEEE Transactions on Information Theory, 54(4):1683–1699, 2008.
5. S. Halevi. EME*: Extending EME to handle arbitrary-length messages with associated data. In INDOCRYPT, pages

315–327, 2004.
6. S. Halevi. Invertible universal hashing and the tet encryption mode. In CRYPTO, volume 4622 of Lecture Notes in

Computer Science, pages 412–429. Springer, 2007.
7. S. Halevi and P. Rogaway. A tweakable enciphering mode. In CRYPTO, pages 482–499, 2003.
8. S. Halevi and P. Rogaway. A parallelizable enciphering mode. In CT-RSA, pages 292–304, 2004.
9. T. Iwata, K. Ohashi, and K. Minematsu. Breaking and repairing GCM security proofs. In Advances in Cryptology -

Crypto 2012, volume 7417 of Lecture Notes in Computer Science, pages 31–49. Springer, 2012.
10. Cuauhtemoc Mancillas-López, Debrup Chakraborty, and Francisco Rodríguez-Henríquez. Reconfigurable hardware

implementations of tweakable enciphering schemes. IEEE Trans. Computers, 59(11):1547–1561, 2010.

10 Conclusion

In this paper we took a close look at XCB. Based on the study we can conclude the following:

1. XCBv2 as specified in [12] is not secure as a TES. We found an easy distinguishing attack on XCBv2. The
attack works because of a faulty padding scheme, and there seems to be no easy way to fix this problem.
However, if the inputs to XCBv2 are such that their lengths are multiples of the block length of the block
cipher, then our attack does not work. For this restricted message space XCBv2fb (the full block version of
XCBv2) is secure.

2. Even for the restricted message space, XCBv2fb (possibly) does not have the security bound as claimed
in [12]. This is due to the fact that the proof of the security theorem in [12] is wrong. The error stems from a
faulty calculation of collision probabilities in the inc function. We point out the mistake by showing concrete
examples where that the bound on the collision probabilities in the inc function as given in [12] are violated.
These examples are highly motivated by a prior study in [9].

3. We provide a corrected security analysis for XCBv2fb which is supported by a detailed proof. The correct
security bound that can be proved for XCBv2fb is worse than that claimed in [12].

4. XCBv1 does not suffer from the weaknesses as in XCBv2. The distinguishing attack which we present for
XCBv2 does not work for XCBv1. XCBv1 (as specified in [11]) is a secure TES. There was no proof of the
fact that XCBv1 is secure. We provide the first proof of security for XCBv1 along with a concrete security
bound.

5. XCBv2 was derived as a small modification of XCBv1. The authors said that the modifications were made to
enable easy analysis [12]. Though it is not very clear to us, how these modifications help in the analysis. Our
analysis reveals that any modification in an existing cryptographic scheme should be done with utmost care,
even an innocent looking change may have a grave impact on the security of the scheme.

6. XCBv2 is a part of the standard IEEE Std 1619.2-2010. Our analysis puts into serious doubts the method-
ology adopted by the working group for formulating the standard. We are surprised that an international
standardization committee for a cryptographic scheme overlooked some important security issues, which were
not so difficult to detect. Thus, our analysis of XCB indicates that contrary to the popular convention of
blindly adopting standards, the outcomes of standardization efforts should also be critically analyzed before
deploying them in a real application.

References

1. IEEE Std 1619.2-2010: IEEE standard for wide-block encryption for shared storage media. IEEE Computer Society,
March 2011. http://standards.ieee.org/findstds/standard/1619.2-2010.html.

2. D. Chakraborty and M. Nandi. An improved security bound for HCTR. In FSE, pages 441–455, 2008.
3. D. Chakraborty and P. Sarkar. A new mode of encryption providing a tweakable strong pseudo-random permutation.

In FSE, pages 293–309, 2006.
4. Debrup Chakraborty and Palash Sarkar. HCH: A new tweakable enciphering scheme using the hash-counter-hash

approach. IEEE Transactions on Information Theory, 54(4):1683–1699, 2008.
5. S. Halevi. EME*: Extending EME to handle arbitrary-length messages with associated data. In INDOCRYPT, pages

315–327, 2004.
6. S. Halevi. Invertible universal hashing and the tet encryption mode. In CRYPTO, volume 4622 of Lecture Notes in

Computer Science, pages 412–429. Springer, 2007.
7. S. Halevi and P. Rogaway. A tweakable enciphering mode. In CRYPTO, pages 482–499, 2003.
8. S. Halevi and P. Rogaway. A parallelizable enciphering mode. In CT-RSA, pages 292–304, 2004.
9. T. Iwata, K. Ohashi, and K. Minematsu. Breaking and repairing GCM security proofs. In Advances in Cryptology -

Crypto 2012, volume 7417 of Lecture Notes in Computer Science, pages 31–49. Springer, 2012.
10. Cuauhtemoc Mancillas-López, Debrup Chakraborty, and Francisco Rodríguez-Henríquez. Reconfigurable hardware

implementations of tweakable enciphering schemes. IEEE Trans. Computers, 59(11):1547–1561, 2010.

—Chakraborty, Hernandez-Jimenez, Sarkar,
“Another look at XCB”,

4 December 2013

December 2013: acoustic attacks against GnuPG

Acoustic cryptanalysis = power analysis with acoustic transmission of power signal.
News: 4096-bit GnuPG RSA keys extracted in one hour.

Figure 5: Parabolic microphone: Brüel&Kjær 4145 microphone capsule and 2669 preamplifier, in front
of a transparent parabolic reflector (56 cm diameter), using a self-built attachment, on a tripod.

Figure 6: Parabolic microphone (same as in Figure 5), attached to the portable measurement setup (in a
padded briefcase), attacking a target laptop from a distance of 4 meters. Full key extraction is possible
in this configuration and distance (see Section 5.4).

12

—Genkin, Shamir, Tromer,
“RSA key extraction via low-bandwidth acoustic cryptanalysis”,

18 December 2013

December 2013: acoustic attacks against GnuPG

Acoustic cryptanalysis = power analysis with acoustic transmission of power signal.
News: 4096-bit GnuPG RSA keys extracted in one hour.

Figure 4: Physical setup of a key recovery attack. A mobile phone (Samsung Note II) is placed 30 cm
from a target laptop. The phone’s internal microphone points towards the laptop’s fan vents. Full key
extraction is possible in this configuration and distance (see Section 5.4).

crophone. The specifications of the microphone, amplification, filtering and A2D hardware were not
available to us. We observe that sensitivity is lower, and noise is higher than in the above setups. Fre-
quency response is also very limited: upper bounded by the 24 kHz Nyquist frequency (48 kS/s sample
rate), and in practice much lower due to transducer and filter design (recall that cellular speech codecs
filter out audio beyond 4 kHz).

2.4 Distant acquisition

Parabolic microphones. The range of our attack can be greatly enhanced by using a parabolic
reflector, which focuses incoming planar sound waves into a single focal point. To this end, we placed
the Brüel&Kjær 4145 microphone capsule at the focal point of a parabolic reflector (plastic, 56 cm
diameter, 10 cm focal distance, $40 from eBay), held by a self-built holder (see Figure 5). As discussed
in Section 5.4, this increases the effective range of our key extraction attacks from 1 meter to 4 meters
(see Figure 6).
Laser vibrometers. We conjecture that laser microphones and laser vibrometers will greatly increase
the effective range of attacks, given an optical line of sight to a reflecting surface on, or near, the target
computer. This will be studied in future works.

11

—Genkin, Shamir, Tromer,
“RSA key extraction via low-bandwidth acoustic cryptanalysis”,

18 December 2013

217

information technology systems to trust that their data, including their

financial transactions, will not be altered or stolen. Encryption-related

software, including pervasive examples such as Secure Sockets Layer (SSL)

and Public Key Infrastructure (PKI), is essential to online commerce and

user authentication. It is part of the underpinning of current

communications networks. Indeed, in light of the massive increase in

cyber-crime and intellectual property theft on-line, the use of encryption

should be greatly expanded to protect not only data in transit, but also data

at rest on networks, in storage, and in the cloud.

We are aware of recent allegations that the United States Government

has intentionally introduced “backdoors” into commercially available

software, enabling decryption of apparently secure software. We are also

aware that some people have expressed concern that such “backdoors”

could be discovered and used by criminal cartels and other governments,

and hence that some commercially available software is not trustworthy

today.

Upon review, however, we are unaware of any vulnerability created

by the US Government in generally available commercial software that

puts users at risk of criminal hackers or foreign governments decrypting

their data. Moreover, it appears that in the vast majority of generally used,

commercially available encryption software, there is no vulnerability, or

“backdoor,” that makes it possible for the US Government or anyone else

to achieve unauthorized access.174

174 Any cryptographic algorithm can become exploitable if implemented incorrectly or used improperly.

December 2013: Obama’s NSA review panel report

December 2013

Attacking Dual EC in TLS – Example: BSAFE-Java

server random ECDHE priv. key ECDSA nonce

s0

Graphics: Ruben Niederhagen.

s1

x(•P)

r1

x(•Q)

s2

x(•P)

server random

s3

x(•P)

r3

x(•Q)

s4

x(•P)

r4

x(•Q)

s5

x(•P)

ECDHE priv. key

ECDHE public key

•P

ECDSA nonce

ECDSA signature

•P

rc

sc

x(dR)

average cost: 231(Cv + 5Cf)

Exposes longterm secret key!
Impersonation attack possible!

ECDSA nonceECDSA nonce

Attacking Dual EC in TLS – Example: BSAFE-Java

server random ECDHE priv. key ECDSA nonce

s0

Graphics: Ruben Niederhagen.

s1

x(•P)

r1

x(•Q)

s2

x(•P)

server random

s3

x(•P)

r3

x(•Q)

s4

x(•P)

r4

x(•Q)

s5

x(•P)

ECDHE priv. key

ECDHE public key

•P

ECDSA nonce

ECDSA signature

•P

rc

sc

x(dR)

average cost: 231(Cv + 5Cf)

Exposes longterm secret key!
Impersonation attack possible!

ECDSA nonceECDSA nonce

Attacking Dual EC in TLS – Example: BSAFE-Java

server random ECDHE priv. key ECDSA nonce

s0

Graphics: Ruben Niederhagen.

s1

x(•P)

r1

x(•Q)

s2

x(•P)

server random

s3

x(•P)

r3

x(•Q)

s4

x(•P)

r4

x(•Q)

s5

x(•P)

ECDHE priv. key

ECDHE public key

•P

ECDSA nonce

ECDSA signature

•P

rc

sc

x(dR)

average cost: 231(Cv + 5Cf)

Exposes longterm secret key!
Impersonation attack possible!

ECDSA nonceECDSA nonce

Attacking Dual EC in TLS – Example: BSAFE-Java

server random ECDHE priv. key ECDSA nonce

s0

Graphics: Ruben Niederhagen.

s1

x(•P)

r1

x(•Q)

s2

x(•P)

server random

s3

x(•P)

r3

x(•Q)

s4

x(•P)

r4

x(•Q)

s5

x(•P)

ECDHE priv. key

ECDHE public key

•P

ECDSA nonce

ECDSA signature

•P

rc

sc

x(dR)

average cost: 231(Cv + 5Cf)

Exposes longterm secret key!
Impersonation attack possible!

ECDSA nonceECDSA nonce

Attacking Dual EC in TLS – Example: BSAFE-Java

server random ECDHE priv. key ECDSA nonce

s0

Graphics: Ruben Niederhagen.

s1

x(•P)

r1

x(•Q)

s2

x(•P)

server random

s3

x(•P)

r3

x(•Q)

s4

x(•P)

r4

x(•Q)

s5

x(•P)

ECDHE priv. key

ECDHE public key

•P

ECDSA nonce

ECDSA signature

•P

rc

sc

x(dR)

average cost: 231(Cv + 5Cf)

Exposes longterm secret key!
Impersonation attack possible!

ECDSA nonceECDSA nonce

Attacking Dual EC in TLS – Example: BSAFE-Java

server random ECDHE priv. key ECDSA nonce

s0

Graphics: Ruben Niederhagen.

s1

x(•P)

r1

x(•Q)

s2

x(•P)

server random

s3

x(•P)

r3

x(•Q)

s4

x(•P)

r4

x(•Q)

s5

x(•P)

ECDHE priv. key

ECDHE public key

•P

ECDSA nonce

ECDSA signature

•P

rc

sc

x(dR)

average cost: 231(Cv + 5Cf)

Exposes longterm secret key!
Impersonation attack possible!

ECDSA nonceECDSA nonce

Attacking Dual EC in TLS – Example: BSAFE-Java

server random ECDHE priv. key ECDSA nonce

s0

Graphics: Ruben Niederhagen.

s1

x(•P)

r1

x(•Q)

s2

x(•P)

server random

s3

x(•P)

r3

x(•Q)

s4

x(•P)

r4

x(•Q)

s5

x(•P)

ECDHE priv. key

ECDHE public key

•P

ECDSA nonce

ECDSA signature

•P

rc

sc

x(dR)

average cost: 231(Cv + 5Cf)

Exposes longterm secret key!
Impersonation attack possible!

ECDSA nonceECDSA nonce

Attacking Dual EC in TLS – Example: BSAFE-Java

server random ECDHE priv. key ECDSA nonce

s0

Graphics: Ruben Niederhagen.

s1

x(•P)

r1

x(•Q)

s2

x(•P)

server random

s3

x(•P)

r3

x(•Q)

s4

x(•P)

r4

x(•Q)

s5

x(•P)

ECDHE priv. key

ECDHE public key

•P

ECDSA nonce

ECDSA signature

•P

rc

sc

x(dR)

average cost: 231(Cv + 5Cf)

Exposes longterm secret key!
Impersonation attack possible!

ECDSA nonceECDSA nonce

Attacking Dual EC in TLS – Example: BSAFE-Java

server random ECDHE priv. key ECDSA nonce

s0

Graphics: Ruben Niederhagen.

s1

x(•P)

r1

x(•Q)

s2

x(•P)

server random

s3

x(•P)

r3

x(•Q)

s4

x(•P)

r4

x(•Q)

s5

x(•P)

ECDHE priv. key

ECDHE public key

•P

ECDSA nonce

ECDSA signature

•P

rc

sc

x(dR)

average cost: 231(Cv + 5Cf)

Exposes longterm secret key!
Impersonation attack possible!

ECDSA nonceECDSA nonce

Attacking Dual EC in TLS – Example: BSAFE-Java

server random ECDHE priv. key ECDSA nonce

s0

Graphics: Ruben Niederhagen.

s1

x(•P)

r1

x(•Q)

s2

x(•P)

server random

s3

x(•P)

r3

x(•Q)

s4

x(•P)

r4

x(•Q)

s5

x(•P)

ECDHE priv. key

ECDHE public key

•P

ECDSA nonce

ECDSA signature

•P

rc

sc

x(dR)

average cost: 231(Cv + 5Cf)

Exposes longterm secret key!
Impersonation attack possible!

ECDSA nonceECDSA nonce

Attacking Dual EC in TLS – Example: BSAFE-Java

server random ECDHE priv. key ECDSA nonce

s0

Graphics: Ruben Niederhagen.

s1

x(•P)

r1

x(•Q)

s2

x(•P)

server random

s3

x(•P)

r3

x(•Q)

s4

x(•P)

r4

x(•Q)

s5

x(•P)

ECDHE priv. key

ECDHE public key

•P

ECDSA nonce

ECDSA signature

•P

rc

sc

x(dR)

average cost: 231(Cv + 5Cf)

Exposes longterm secret key!
Impersonation attack possible!

ECDSA nonceECDSA nonce

Attacking Dual EC in TLS – Example: BSAFE-Java

server random ECDHE priv. key ECDSA nonce

s0

Graphics: Ruben Niederhagen.

s1

x(•P)

r1

x(•Q)

s2

x(•P)

server random

s3

x(•P)

r3

x(•Q)

s4

x(•P)

r4

x(•Q)

s5

x(•P)

ECDHE priv. key

ECDHE public key

•P

ECDSA nonce

ECDSA signature

•P

rc

sc

x(dR)

average cost: 231(Cv + 5Cf)

Exposes longterm secret key!
Impersonation attack possible!

ECDSA nonceECDSA nonce

Attacking Dual EC in TLS – Example: BSAFE-Java

server random ECDHE priv. key ECDSA nonce

s0

Graphics: Ruben Niederhagen.

s1

x(•P)

r1

x(•Q)

s2

x(•P)

server random

s3

x(•P)

r3

x(•Q)

s4

x(•P)

r4

x(•Q)

s5

x(•P)

ECDHE priv. key

ECDHE public key

•P

ECDSA nonce

ECDSA signature

•P

rc

sc

x(dR)

average cost: 231(Cv + 5Cf)

Exposes longterm secret key!
Impersonation attack possible!

ECDSA nonceECDSA nonce

Attacking Dual EC in TLS – Example: BSAFE-Java

server random ECDHE priv. key ECDSA nonce

s0

Graphics: Ruben Niederhagen.

s1

x(•P)

r1

x(•Q)

s2

x(•P)

server random

s3

x(•P)

r3

x(•Q)

s4

x(•P)

r4

x(•Q)

s5

x(•P)

ECDHE priv. key

ECDHE public key

•P

ECDSA nonce

ECDSA signature

•P

rc

sc

x(dR)

average cost: 231(Cv + 5Cf)

Exposes longterm secret key!
Impersonation attack possible!

ECDSA nonceECDSA nonce

Attacking Dual EC in TLS – Example: BSAFE-Java

server random ECDHE priv. key ECDSA nonce

s0

Graphics: Ruben Niederhagen.

s1

x(•P)

r1

x(•Q)

s2

x(•P)

server random

s3

x(•P)

r3

x(•Q)

s4

x(•P)

r4

x(•Q)

s5

x(•P)

ECDHE priv. key

ECDHE public key

•P

ECDSA nonce

ECDSA signature

•P

rc

sc

x(dR)

average cost: 231(Cv + 5Cf)

Exposes longterm secret key!
Impersonation attack possible!

ECDSA nonceECDSA nonce

Attacking Dual EC in TLS – Example: BSAFE-Java

server random ECDHE priv. key ECDSA nonce

s0

Graphics: Ruben Niederhagen.

s1

x(•P)

r1

x(•Q)

s2

x(•P)

server random

s3

x(•P)

r3

x(•Q)

s4

x(•P)

r4

x(•Q)

s5

x(•P)

ECDHE priv. key

ECDHE public key

•P

ECDSA nonce

ECDSA signature

•P

rc

sc

x(dR)

average cost: 231(Cv + 5Cf)

Exposes longterm secret key!
Impersonation attack possible!

ECDSA nonceECDSA nonce

Attacking Dual EC in TLS – Example: BSAFE-Java

server random ECDHE priv. key ECDSA nonce

s0

Graphics: Ruben Niederhagen.

s1

x(•P)

r1

x(•Q)

s2

x(•P)

server random

s3

x(•P)

r3

x(•Q)

s4

x(•P)

r4

x(•Q)

s5

x(•P)

ECDHE priv. key

ECDHE public key

•P

ECDSA nonce

ECDSA signature

•P

rc

sc

x(dR)

average cost: 231(Cv + 5Cf)

Exposes longterm secret key!
Impersonation attack possible!

ECDSA nonceECDSA nonce

Attacking Dual EC in TLS – Example: BSAFE-Java

server random ECDHE priv. key ECDSA nonce

s0

Graphics: Ruben Niederhagen.

s1

x(•P)

r1

x(•Q)

s2

x(•P)

server random

s3

x(•P)

r3

x(•Q)

s4

x(•P)

r4

x(•Q)

s5

x(•P)

ECDHE priv. key

ECDHE public key

•P

ECDSA nonce

ECDSA signature

•P

rc

sc

x(dR)

average cost: 231(Cv + 5Cf)

Exposes longterm secret key!
Impersonation attack possible!

ECDSA nonceECDSA nonce

Attacking Dual EC in TLS – Example: BSAFE-Java

server random ECDHE priv. key ECDSA nonce

s0

Graphics: Ruben Niederhagen.

s1

x(•P)

r1

x(•Q)

s2

x(•P)

server random

s3

x(•P)

r3

x(•Q)

s4

x(•P)

r4

x(•Q)

s5

x(•P)

ECDHE priv. key

ECDHE public key

•P

ECDSA nonce

ECDSA signature

•P

rc

sc

x(dR)

average cost: 231(Cv + 5Cf)

Exposes longterm secret key!
Impersonation attack possible!

ECDSA nonceECDSA nonce

Attacking Dual EC in TLS – Example: BSAFE-Java

server random ECDHE priv. key ECDSA nonce

s0

Graphics: Ruben Niederhagen.

s1

x(•P)

r1

x(•Q)

s2

x(•P)

server random

s3

x(•P)

r3

x(•Q)

s4

x(•P)

r4

x(•Q)

s5

x(•P)

ECDHE priv. key

ECDHE public key

•P

ECDSA nonce

ECDSA signature

•P

rc

sc

x(dR)

average cost: 231(Cv + 5Cf)

Exposes longterm secret key!
Impersonation attack possible!

ECDSA nonceECDSA nonce

Attacking Dual EC in TLS – Example: BSAFE-Java

server random ECDHE priv. key ECDSA nonce

s0

Graphics: Ruben Niederhagen.

s1

x(•P)

r1

x(•Q)

s2

x(•P)

server random

s3

x(•P)

r3

x(•Q)

s4

x(•P)

r4

x(•Q)

s5

x(•P)

ECDHE priv. key

ECDHE public key

•P

ECDSA nonce

ECDSA signature

•P

rc

sc

x(dR)

?

average cost: 231(Cv + 5Cf)

Exposes longterm secret key!
Impersonation attack possible!

ECDSA nonceECDSA nonce

Attacking Dual EC in TLS – Example: BSAFE-Java

server random ECDHE priv. key ECDSA nonce

s0

Graphics: Ruben Niederhagen.

s1

x(•P)

r1

x(•Q)

s2

x(•P)

server random

s3

x(•P)

r3

x(•Q)

s4

x(•P)

r4

x(•Q)

s5

x(•P)

ECDHE priv. key

ECDHE public key

•P

ECDSA nonce

ECDSA signature

•P

rc

sc

x(dR)

average cost: 231(Cv + 5Cf)

Exposes longterm secret key!
Impersonation attack possible!

ECDSA nonceECDSA nonce

Attacking Dual EC in TLS – Example: BSAFE-Java

server random ECDHE priv. key ECDSA nonce

s0

Graphics: Ruben Niederhagen.

s1

x(•P)

r1

x(•Q)

s2

x(•P)

server random

s3

x(•P)

r3

x(•Q)

s4

x(•P)

r4

x(•Q)

s5

x(•P)

ECDHE priv. key

ECDHE public key

•P

ECDSA nonce

ECDSA signature

•P

rc

sc

x(dR)

average cost: 231(Cv + 5Cf)

Exposes longterm secret key!
Impersonation attack possible!

ECDSA nonceECDSA nonce

Attacking Dual EC in TLS – Example: BSAFE-Java

server random ECDHE priv. key ECDSA nonce

s0

Graphics: Ruben Niederhagen.

s1

x(•P)

r1

x(•Q)

s2

x(•P)

server random

s3

x(•P)

r3

x(•Q)

s4

x(•P)

r4

x(•Q)

s5

x(•P)

ECDHE priv. key

ECDHE public key

•P

ECDSA nonce

ECDSA signature

•P

rc

sc

x(dR)

average cost: 231(Cv + 5Cf)

Exposes longterm secret key!
Impersonation attack possible!

ECDSA nonce

ECDSA nonce

Attacking Dual EC in TLS – Example: BSAFE-Java

server random ECDHE priv. key ECDSA nonce

s0

Graphics: Ruben Niederhagen.

s1

x(•P)

r1

x(•Q)

s2

x(•P)

server random

s3

x(•P)

r3

x(•Q)

s4

x(•P)

r4

x(•Q)

s5

x(•P)

ECDHE priv. key

ECDHE public key

•P

ECDSA nonce

ECDSA signature

•P

rc

sc

x(dR)

average cost: 231(Cv + 5Cf)

Exposes longterm secret key!
Impersonation attack possible!

ECDSA nonceECDSA nonce

Timings

Attack Intel Xeon Reference System 16-CPU AMD Cluster
222 Candidates (s) Expected Runtime (min) Total Runtime (min)

BSAFE-C v1.1 – 0.26 0.04∗

BSAFE-Java v1.1 75.08∗ 641 63.96∗

SChannel I 72.58∗ 619 62.97∗

SChannel II 62.79∗ 1,760 182.64∗

OpenSSL-fixed I – 0.04 0.02∗

OpenSSL-fixed II – 707 83.32∗

OpenSSL-fixed III – 2k · 707 2k · 83.32
∗measured

See much more at http://projectbullrun.org/dual-ec/.

http://projectbullrun.org/dual-ec/

Details on Intel’s RNG

[7] D. J. Johnston, ”Mircoarchitecture Specification (MAS) for PP-DRNG,” Intel
Corporation (unpublished), V1.4, 2009.

[8] C. E. Dike, ”3 Gbps Binary RNG Entropy Source,” Intel Corporation (unpublished),
2011.

[9] C. E. Dike and S. Gueron, ”Digital Symmetric Random Number Generator
Mathematics,” Intel Corporation (unpublished), 2009.

(References from “Analysis of Intel’s Ivy Bridge Digital Random Number Generator
Prepared for Intel” by Mike Hamburg, Paul Kocher, and Mark E. Marson.
Cryptography Research, Inc.)

Details on Intel’s RNG

[7] D. J. Johnston, ”Mircoarchitecture Specification (MAS) for PP-DRNG,” Intel
Corporation (unpublished), V1.4, 2009.

[8] C. E. Dike, ”3 Gbps Binary RNG Entropy Source,” Intel Corporation (unpublished),
2011.

[9] C. E. Dike and S. Gueron, ”Digital Symmetric Random Number Generator
Mathematics,” Intel Corporation (unpublished), 2009.

(References from “Analysis of Intel’s Ivy Bridge Digital Random Number Generator
Prepared for Intel” by Mike Hamburg, Paul Kocher, and Mark E. Marson.
Cryptography Research, Inc.)

Intel recommendations

David Johnston (RDRAND
designer), 2012: “It provides both
the entropy, the seeds and the
PRNG in hardware. So you can
replace the whole shebang and
eliminate software PRNGs. Just
use the output of the RDRAND
instruction wherever you need a
random number.”

Snowden at SXSW: “. . . we know that these encryption algorithms we are using today
work; typically it is the random number generators that are attacked as opposed to the
encryption algorithms themselves.”

http://blog.inside.com/blog/2014/3/10/edward-snowden-sxsw-full-transcription-and-video

Intel recommendations

David Johnston (RDRAND
designer), 2012: “It provides both
the entropy, the seeds and the
PRNG in hardware. So you can
replace the whole shebang and
eliminate software PRNGs. Just
use the output of the RDRAND
instruction wherever you need a
random number.”

Snowden at SXSW: “. . . we know that these encryption algorithms we are using today
work; typically it is the random number generators that are attacked as opposed to the
encryption algorithms themselves.”

http://blog.inside.com/blog/2014/3/10/edward-snowden-sxsw-full-transcription-and-video

Scary Paper: Stealthy Dopant-Level Hardware Trojans
by Becker, Regazzoni, Paar, and Burleson, CHES 2013

February 2014

static OSStatus

SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa, SSLBuffer signedParams,

uint8_t *signature, UInt16 signatureLen)

{

OSStatus err;

...

if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)

goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

goto fail;

goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)

goto fail;

err = sslRawVerify(ctx, ...

signature,

signatureLen);

...

fail:

SSLFreeBuffer(&signedHashes);

SSLFreeBuffer(&hashCtx);

return err;

}

April 2014

OpenSSL Security Advisory [07 Apr 2014]

==

TLS heartbeat read overrun (CVE-2014-0160)

==

A missing bounds check in the handling of the TLS heartbeat extension can be

used to reveal up to 64k of memory to a connected client or server.

Only 1.0.1 and 1.0.2-beta releases of OpenSSL are affected including

1.0.1f and 1.0.2-beta1.

Thanks for Neel Mehta of Google Security for discovering this bug and to

Adam Langley <agl@chromium.org> and Bodo Moeller <bmoeller@acm.org> for

preparing the fix.

Affected users should upgrade to OpenSSL 1.0.1g. Users unable to immediately

upgrade can alternatively recompile OpenSSL with -DOPENSSL_NO_HEARTBEATS.

1.0.2 will be fixed in 1.0.2-beta2.

“Optic Nerve” – aka Terrorists just wanna have fun

“Unfortunately . . . it would appear that a surprising
number of people use webcam conversations to show intimate
parts of their body to the other person. Also, the fact that
the Yahoo software allows more than one person to view a
webcam stream without necessarily sending a reciprocal
stream means that it appears sometimes to be used for
broadcasting pornography.”

“3% and 11% of the Yahoo webcam imagery harvested by
GCHQ contains ‘undesirable nudity’.”

But they have more problems:

“We use detection to try to censor material
which may be offensive ...”

Picture credit: Jeff Dunham via ngwanehansel.blogspot.nl

“Optic Nerve” – aka Terrorists just wanna have fun

“Unfortunately . . . it would appear that a surprising
number of people use webcam conversations to show intimate
parts of their body to the other person. Also, the fact that
the Yahoo software allows more than one person to view a
webcam stream without necessarily sending a reciprocal
stream means that it appears sometimes to be used for
broadcasting pornography.”

“3% and 11% of the Yahoo webcam imagery harvested by
GCHQ contains ‘undesirable nudity’.”

But they have more problems:

“We use detection to try to censor material
which may be offensive ...”

Picture credit: Jeff Dunham via ngwanehansel.blogspot.nl

“Optic Nerve” – aka Terrorists just wanna have fun

“Unfortunately . . . it would appear that a surprising
number of people use webcam conversations to show intimate
parts of their body to the other person. Also, the fact that
the Yahoo software allows more than one person to view a
webcam stream without necessarily sending a reciprocal
stream means that it appears sometimes to be used for
broadcasting pornography.”

“3% and 11% of the Yahoo webcam imagery harvested by
GCHQ contains ‘undesirable nudity’.”

But they have more problems:

“We use face detection to try to censor material
which may be offensive ...”

Picture credit: Jeff Dunham via ngwanehansel.blogspot.nl

“Optic Nerve” – aka Terrorists just wanna have fun

“Unfortunately . . . it would appear that a surprising
number of people use webcam conversations to show intimate
parts of their body to the other person. Also, the fact that
the Yahoo software allows more than one person to view a
webcam stream without necessarily sending a reciprocal
stream means that it appears sometimes to be used for
broadcasting pornography.”

“3% and 11% of the Yahoo webcam imagery harvested by
GCHQ contains ‘undesirable nudity’.”

But they have more problems:

“We use face detection to try to censor material
which may be offensive ...”

Picture credit: Jeff Dunham via ngwanehansel.blogspot.nl

Meanwhile at the NSA . . . “Watching Every Word in Snitch City”

“If you are bothered by
snitches in your office,
whether of the unwilling or
voluntary variety, the best
solution is to keep your
behavior above reproach. Be
a good performer, watch what
you say and do, lock your
screen when you step away
from your workstation, and
keep fodder for wagging
tongues (your Viagra stash,
photos of your wild-and-crazy
girls’ weekend in Atlantic
City) at home or out of sight.”

11 May 2014: 0.2% of Facebook HTTPS connections are MiTMed

28 May 2014: Remote code execution in GnuTLS

June 2014: A new hope

Humanity invents crypto programming language that isn’t C
JOHN MARKOFF June 4, 2014

THE HAGUE, NETHERLANDS, June 4—The C language is no longer the only
possible way to explain encryption methods to a computer, experts announced at a
conference here today.

“It was previously believed that crypto could be implemented only in languages
with dangerously sharp edges,” Dr. Cynthia Solomon said. “But our new language
shows that this isn’t the case.”

“Sure, as if you’ll actually convince anyone to use a new language,” said Vanee
Vines, an NSA spokeswoman, while trying not to laugh.

June 2014: A new hope

Humanity invents crypto programming language that isn’t C
JOHN MARKOFF June 4, 2014

THE HAGUE, NETHERLANDS, June 4—The C language is no longer the only
possible way to explain encryption methods to a computer, experts announced at a
conference here today.

“It was previously believed that crypto could be implemented only in languages
with dangerously sharp edges,” Dr. Cynthia Solomon said. “But our new language
shows that this isn’t the case.”

“Sure, as if you’ll actually convince anyone to use a new language,” said Vanee
Vines, an NSA spokeswoman, while trying not to laugh.

