
1

Public-key cryptography

Daniel J. Bernstein

Tanja Lange

Part I

Elliptic-curve crypto

15 Aug 2017



2

Diffie-Hellman key exchange

Pick some generator P ,

i.e. some group element

(using additive notation here).

Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key

aP
&&NNNNNNN

Bob’s
public key

b P
xxppppppp

fAlice;Bobg’s
shared secret

ab P

=
fBob;Aliceg’s
shared secret

b aP



2

Diffie-Hellman key exchange

Pick some generator P ,

i.e. some group element

(using additive notation here).

Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key

aP
&&NNNNNNN

Bob’s
public key

b P
xxppppppp

fAlice;Bobg’s
shared secret

ab P

=
fBob;Aliceg’s
shared secret

b aP

What does P look like &

how to compute P + Q?



3

The clock

y

x

OO

//

This is the curve x2 + y2 = 1.

Warning:

This is not an elliptic curve.

“Elliptic curve” 6= “ellipse.”



4

Adding two points corresponds

to adding the angles �1 and �2.

Angles modulo 360� are a group,

so points on clock are a group.

Neutral element: angle � = 0;

point (0; 1); “12:00”.

The point with � = 180�

has order 2 and equals 6:00.

3:00 and 9:00 have order 4.

Inverse of point with �

is point with ��
since � + (��) = 0.

There are many more points

where angle � is not “nice.”



5

Addition on the clock:
y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��������

�1
P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

x2 + y2 = 1, parametrized by

x = sin�, y = cos�.



5

Addition on the clock:
y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��������

�1
P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

x2 + y2 = 1, parametrized by

x = sin�, y = cos�. Recall

(sin(�1 + �2); cos(�1 + �2)) =



5

Addition on the clock:
y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��������

�1
P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

x2 + y2 = 1, parametrized by

x = sin�, y = cos�. Recall

(sin(�1 + �2); cos(�1 + �2)) =

(sin�1 cos�2 + cos�1 sin�2;



5

Addition on the clock:
y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��������

�1
P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

x2 + y2 = 1, parametrized by

x = sin�, y = cos�. Recall

(sin(�1 + �2); cos(�1 + �2)) =

(sin�1 cos�2 + cos�1 sin�2;

cos�1 cos�2 � sin�1 sin�2).



6

Clock addition without sin, cos:
y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��������
P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

Use Cartesian coordinates for

addition. Addition formula

for the clock x2 + y2 = 1:

sum (x1; y1) + (x2; y2) = (x3; y3)



6

Clock addition without sin, cos:
y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��������
P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

Use Cartesian coordinates for

addition. Addition formula

for the clock x2 + y2 = 1:

sum (x1; y1) + (x2; y2) = (x3; y3)

= (x1y2 + y1x2; y1y2 � x1x2).

Note (x1; y1) + (�x1; y1) = (0; 1).

kP = P + P + � � � + P| {z }
k copies

for k � 0.



7

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.



7

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;

4

5

�
=

�
117

125
;
�44

125

�
.



7

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;

4

5

�
=

�
117

125
;
�44

125

�
.

4

�
3

5
;

4

5

�
=

�
336

625
;
�527

625

�
.



7

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;

4

5

�
=

�
117

125
;
�44

125

�
.

4

�
3

5
;

4

5

�
=

�
336

625
;
�527

625

�
.

(x1; y1) + (0; 1) =



7

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;

4

5

�
=

�
117

125
;
�44

125

�
.

4

�
3

5
;

4

5

�
=

�
336

625
;
�527

625

�
.

(x1; y1) + (0; 1) = (x1; y1).



7

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;

4

5

�
=

�
117

125
;
�44

125

�
.

4

�
3

5
;

4

5

�
=

�
336

625
;
�527

625

�
.

(x1; y1) + (0; 1) = (x1; y1).

(x1; y1) + (�x1; y1) =



7

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;�
p

3=4)

= (�1=2;�
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;�
p

3=4) + (�1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

�
3

5
;

4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;

4

5

�
=

�
117

125
;
�44

125

�
.

4

�
3

5
;

4

5

�
=

�
336

625
;
�527

625

�
.

(x1; y1) + (0; 1) = (x1; y1).

(x1; y1) + (�x1; y1) = (0; 1).



8

Clock cryptography

The “Clock Diffie–Hellman

protocol”:

Standardize large prime p &

base point (x; y) 2 Clock(Fp).

Alice chooses big secret a,

computes her public key a(x; y).

Bob chooses big secret b,

computes his public key b (x; y).

Alice computes a(b (x; y)).

Bob computes b (a(x; y)).

They use this shared secret

to encrypt with AES-GCM etc.



9

Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key
a(X; Y )

&&NNNNNN

Bob’s
public key
b (X; Y )

xxpppppp

fAlice;Bobg’s
shared secret
ab (X; Y )

=
fBob;Aliceg’s
shared secret
b a(X; Y )



9

Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key
a(X; Y )

&&NNNNNN

Bob’s
public key
b (X; Y )

xxpppppp

fAlice;Bobg’s
shared secret
ab (X; Y )

=
fBob;Aliceg’s
shared secret
b a(X; Y )

Warning #1:

Many p are unsafe!

Warning #2:

Clocks aren’t elliptic!

To match RSA-3072 security

need p � 21536.



10

Warning #3:

Attacker sees more than

public keys a(x; y) and b (x; y).

Attacker sees how much time

Alice uses to compute a(b (x; y)).

Often attacker can see time for

each operation performed by

Alice, not just total time.

This reveals secret scalar a.

Break by timing attacks, e.g.,

2011 Brumley–Tuveri.



10

Warning #3:

Attacker sees more than

public keys a(x; y) and b (x; y).

Attacker sees how much time

Alice uses to compute a(b (x; y)).

Often attacker can see time for

each operation performed by

Alice, not just total time.

This reveals secret scalar a.

Break by timing attacks, e.g.,

2011 Brumley–Tuveri.

Fix: constant-time code,

performing same operations

no matter what scalar is.



11

Addition on an Edwards curve

Change the curve on which Alice

and Bob work.

y

x

OO

//

neutral = (0; 1)�
P1 = (x1; y1)�����

P2 = (x2; y2)�fffff
P3 = (x3; y3)�[[[[[[

x2 + y2 = 1 � 30x2y2.

Sum of (x1; y1) and (x2; y2) is

((x1y2+y1x2)=(1�30x1x2y1y2),

(y1y2�x1x2)=(1+30x1x2y1y2)).



12

The clock again, for comparison:

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��������
P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

x2 + y2 = 1.

Sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2,

y1y2 � x1x2).



13

“Hey, there were divisions

in the Edwards addition law!

What if the denominators are 0?”

Answer: They aren’t!

If xi = 0 or yi = 0 then

1 � 30x1x2y1y2 = 1 6= 0.

If x2 + y2 = 1 � 30x2y2

then 30x2y2 < 1

so
p

30 jxyj < 1.



13

“Hey, there were divisions

in the Edwards addition law!

What if the denominators are 0?”

Answer: They aren’t!

If xi = 0 or yi = 0 then

1 � 30x1x2y1y2 = 1 6= 0.

If x2 + y2 = 1 � 30x2y2

then 30x2y2 < 1

so
p

30 jxyj < 1.

If x2
1 + y2

1 = 1 � 30x2
1y

2
1

and x2
2 + y2

2 = 1 � 30x2
2y

2
2

then
p

30 jx1y1j < 1

and
p

30 jx2y2j < 1



13

“Hey, there were divisions

in the Edwards addition law!

What if the denominators are 0?”

Answer: They aren’t!

If xi = 0 or yi = 0 then

1 � 30x1x2y1y2 = 1 6= 0.

If x2 + y2 = 1 � 30x2y2

then 30x2y2 < 1

so
p

30 jxyj < 1.

If x2
1 + y2

1 = 1 � 30x2
1y

2
1

and x2
2 + y2

2 = 1 � 30x2
2y

2
2

then
p

30 jx1y1j < 1

and
p

30 jx2y2j < 1

so 30 jx1y1x2y2j < 1

so 1 � 30x1x2y1y2 > 0.



14

The Edwards addition law

(x1; y1) + (x2; y2) =

((x1y2+y1x2)=(1�30x1x2y1y2),

(y1y2�x1x2)=(1+30x1x2y1y2))

is a group law for the curve

x2 + y2 = 1 � 30x2y2.

Some calculation required:

addition result is on curve;

addition law is associative.

Other parts of proof are easy:

addition law is commutative;

(0; 1) is neutral element;

(x1; y1) + (�x1; y1) = (0; 1).



15

Edwards curves mod p

Choose an odd prime p.

Choose a non-square d 2 Fp.

f(x; y) 2 Fp � Fp :

x2 + y2 = 1 + dx2y2g
is a “complete Edwards curve”.

Roughly p + 1 pairs (x; y).

Denominators are never 0.

But proof is different;

“x2 + y2 > 0” doesn’t work.

This proof relies on

choosing non-square d.



16

Edwards curves are cool



17

More elliptic curves

Edwards curves are elliptic.

Easiest way to understand

elliptic curves is Edwards.

Geometrically, all elliptic curves

are Edwards curves.

Algebraically,

more elliptic curves exist

(not always point of order 4).

Every odd-char curve can be

expressed as Weierstrass curve

v2 = u3 + a2u
2 + a4u + a6.

Warning: “Weierstrass” has

different meaning in char 2.



18

Addition on Weierstrass curve

v2 = u3 + u2 + u + 1

�P1

�P2

��(P1 + P2)
99999999999999999999 �P1 + P2

u
//

vOO

Slope � = (v2 � v1)=(u2 � u1).

Note that u1 6= u2. Some points

missing, in particular 1.



19

Doubling on Weierstrass curve

v2 = u3 � u

�P1
� �2P1

lllllllllllllllllllll

� 2P1

u
//

vOO

Slope � = (3u2
1 � 1)=(2v1).



20

In most cases

(u1; v1) + (u2; v2) =

(u3; v3) where (u3; v3) =

(�2�u1�u2; �(u1�u3)�v1):

u1 6= u2, “addition” (alert!):

� = (v2 � v1)=(u2 � u1).

Total cost 1I + 2M + 1S.

(u1; v1) = (u2; v2) and v1 6= 0,

“doubling” (alert!):

� = (3u2
1 + 2a2u1 + a4)=(2v1).

Total cost 1I + 2M + 2S.

Also handle some exceptions:

(u1; v1) = (u2;�v2); 1 as input.

Messy to implement and test.



21

Birational equivalence

Starting from point (x; y)

on x2 + y2 = 1 + dx2y2:

Define A = 2(1 + d)=(1 � d),

B = 4=(1 � d);

u = (1 + y)=(B(1 � y)),

v = u=x = (1 + y)=(Bx(1 � y)).

(Skip a few exceptional points.)

Then (u; v) is a point on

a Weierstrass curve:

v2 = u3 + (A=B)u2 + (1=B2)u.

Easily invert this map:

x = u=v, y = (Bu� 1)=(Bu+ 1).



22

Attacker can transform Edwards

curve to Weierstrass curve and

vice versa; n(x; y) 7! n(u; v).

) Same hardness of finding n!

Can choose curve representation

so that implementation of attack

is faster/easier.

System designer can choose curve

representation so that protocol

runs fastest; no need to worry

about security degradation.

Optimization targets are different.



22

Elliptic-curve groups

P1

P2

−P1 − P2

P1 + P2

2P1

−2P1



21

Elliptic-curve groups

P1

P2

−P1 − P2

P1 + P2

2P1

−2P1

Following algorithms will need a

unique representative per point.

For that, Weierstrass curves are

the speed leader.



22

The discrete-logarithm problem

Define p = 1000003 and

consider the Weierstrass curve

y2 = x3 � x over Fp.

This curve has



22

The discrete-logarithm problem

Define p = 1000003 and

consider the Weierstrass curve

y2 = x3 � x over Fp.

This curve has

1000004 = 22 � 532 � 89

points and P = (101384; 614510)

is a point of order 2 � 532 � 89.



22

The discrete-logarithm problem

Define p = 1000003 and

consider the Weierstrass curve

y2 = x3 � x over Fp.

This curve has

1000004 = 22 � 532 � 89

points and P = (101384; 614510)

is a point of order 2 � 532 � 89.

In general, point counting over Fp
runs in time polynomial in log p.

Number of points in

[p + 1 � 2
p
p; p + 1 + 2

p
p].

The group is isomorphic to

Z=k�Z=m, where kjm and kj(p�
1).



23

Can we find an integer

n 2 f1; 2; 3; : : : ; 500001g
such that nP =

(670366; 740819)?

This point was generated as a

multiple of P , so DL is valid.

Could find n by brute force.

Is there a faster way?



24

The rho method

Simplified, non-parallel rho:

Make a pseudo-random walk

in the group hP i,
where the next step depends

on current point: Wi+1 = f(Wi).



25



25



25



25



25



25



25



25



25



25



25



25



25



25



25



25



25



25



25



25



25



25



25



25



25



25



25



25



25

Birthday paradox:

Randomly choosing from `

elements picks one element twice

after about
p
�`=2 draws.



26

The walk now enters a cycle.

Cycle-finding algorithm

(e.g., Floyd) quickly detects this.



27

Assume that for each point

we know ai; bi 2 Z=`Z

so that Wi = aiP + biQ.

Then Wi = Wj means that

aiP + biQ = ajP + bjQ

so (bi � bj)Q = (aj � ai)P .

If bi 6= bj the DLP is solved:

n = (aj � ai)=(bi � bj) mod `:



27

Assume that for each point

we know ai; bi 2 Z=`Z

so that Wi = aiP + biQ.

Then Wi = Wj means that

aiP + biQ = ajP + bjQ

so (bi � bj)Q = (aj � ai)P .

If bi 6= bj the DLP is solved:

n = (aj � ai)=(bi � bj) mod `:

E.g. f(Wi) = a(Wi)P + b(Wi)Q,

starting from some initial

combination W0 = a0P + b0Q.

If any Wi and Wj collide then

Wi+1 = Wj+1, Wi+2 = Wj+2,

etc.



28

If functions a(W ) and b(W ) are

random modulo `, iterations

perform a random walk in hP i.
If a and b are chosen such that

f(Wi) = f(�Wi) then the walk

is defined on equivalence classes

under �.

There are only d`=2e different

classes. This reduces the average

number of iterations by a factor

of almost exactly
p

2.

In general, Pollard’s rho method

can be combined with any easily

computed group automorphism of

small order.



29

Parallel collision search

Running Pollard’s rho method on

N computers gives speedup of

� p
N from increased likelihood

of finding collision.

Want better way to spread

computation across clients. Want

to find collisions between walks

on different machines, without

frequent synchronization!

Better method due to van

Oorschot and Wiener (1999).

Declare some subset of hP i to

be distinguished points.



30

Parallel rho: Perform many walks

with different starting points

but same update function f .

If two different walks

find the same point then

their subsequent steps will match.

Terminate each walk once it hits

a distinguished point and report

the point along with ai and bi to

server.

Server receives, stores, and sorts

all distinguished points.

Two walks reaching same

distinguished point give collision.

This collision solves the DLP.



31



31



31



31



31



32

Attacker chooses frequency and

definition of distinguished points.

Tradeoffs are possible:

If distinguished points are rare, a

small number of very long walks

will be performed. This reduces

the number of distinguished

points sent to the server but

increases the delay before a

collision is recognized.

If distinguished points are

frequent, many shorter walks will

be performed.

In any case do not wait for cycle.

Total # of iterations unchanged.



33



34

Additive walks

Generic rho method requires two

scalar multiplications for each

iteration.

Could replace by double-scalar

multiplication; could further

merge the 2-scalar multiplications

across several parallel iterations.



34

Additive walks

Generic rho method requires two

scalar multiplications for each

iteration.

Could replace by double-scalar

multiplication; could further

merge the 2-scalar multiplications

across several parallel iterations.

More efficient: use additive walk:

Start with W0 = a0P + b0Q & put

f(Wi) = Wi + cjP + djQ

where j = h(Wi).



35

Pollard’s initial proposal:

Use x(Wi) mod 3 as h

and update:

Wi+1 =8<
:
Wi + P for x(Wi) mod 3 = 0
2Wi for x(Wi) mod 3 = 1
Wi + Q for x(Wi) mod 3 = 2

Easy to update ai and bi.

(ai+1; bi+1) =8<
:

(ai + 1; bi) for x(Wi) mod 3 = 0
(2ai; 2bi) for x(Wi) mod 3 = 1
(ai; bi + 1) for x(Wi) mod 3 = 2



36

Additive walk requires only one

addition per iteration.

h maps from hP i to

f0; 1; : : : ; r � 1g, and

Rj = cjP + djQ are

precomputed for each

j 2 f0; 1; : : : ; r � 1g.

Easy coefficient update:

Wi = aiP + biQ,

where ai and bi are defined

recursively as follows:

ai+1 = ai + ch(Wi) and

bi+1 = bi + dh(Wi).



37

Additive walks have

disadvantages:

The walks are noticeably

nonrandom; this means they need

more iterations than the generic

rho method to find a collision.

This effect disappears as r grows,

but but then the precomputed

table R0; : : : ; Rr�1 does not fit

into fast memory. This depends

on the platform, e.g. trouble for

GPUs.

There is more trouble with adding

walks,



38

e.g., in combination with

negation.



39

Randomness of adding walks

Let h(W ) = i with probability pi.

Fix a point T , and let W and

W 0 be two independent uniform

random points.

Let W 6= W 0 both map to T .

This event occurs if



39

Randomness of adding walks

Let h(W ) = i with probability pi.

Fix a point T , and let W and

W 0 be two independent uniform

random points.

Let W 6= W 0 both map to T .

This event occurs if

simultaneously for i 6= j:

T = W + Ri = W 0 + Rj ;

h(W ) = i; h(W 0) = j.

These conditions have probability

1=`2, pi, and pj respectively.



40

Summing over all (i; j)

gives the overall probability�P
i 6=j pipj

�
=`2 =�P

i;j pipj �
P

i p
2
i

�
=`2 =�

1 �Pi p
2
i

�
=`2.

This means that the probability

of an immediate collision from W

and W 0 is
�
1 �Pi p

2
i

�
=`, where

we added over the ` choices of T .

In the simple case that all the pi
are 1=r, the difference from the

optimal
p
�`=2 iterations is a

factor of

1=
p

1 � 1=r � 1 + 1=(2r).



41

Various heuristics leading to

standard
p

1 � 1=r formula

in different ways:

1981 Brent–Pollard;

2001 Teske;

2009 ECC2K-130 paper,

eprint 2009/541.



41

Various heuristics leading to

standard
p

1 � 1=r formula

in different ways:

1981 Brent–Pollard;

2001 Teske;

2009 ECC2K-130 paper,

eprint 2009/541.

2010 Bernstein–Lange:

Standard formula is wrong!

There is a further slowdown

from higher-order anti-collisions:

e.g. W +Ri +Rk 6= W 0 +Rj +Rl

if Ri + Rk = Rj + Rl.

� 1% slowdown for ECC2K-130.



42

DLs in intervals

Want to use knowledge

that DL is in a

small interval [a; b],

much smaller than `.

We can use this in baby-step

giant-step algorithm.

How to use this in a

memory-less algorithm?



43

Standard interval method:

Pollard’s kangaroo method.

Pollard’s kangaroos do small

jumps around the interval.



43

Standard interval method:

Pollard’s kangaroo method.

Pollard’s kangaroos do small

jumps around the interval.

Real kangaroos sleep



43

Standard interval method:

Pollard’s kangaroo method.

Pollard’s kangaroos do small

jumps around the interval.

Real kangaroos sleep

(at least outside Australia).



44

Kangaroo method

in Australia

Main actor:



44

The tame kangaroo

starts at a known

multiple of P , e.g. bP .



44

The tame kangaroo jumps.

Jumps are determined

by current position.



44

The tame kangaroo jumps.

Jumps are determined

by current position.

Average jump distance

is
p
b� a.



44

The tame kangaroo jumps.

Jumps are determined

by current position.

Average jump distance

is
p
b� a.



44

The tame kangaroo jumps.

Jumps are determined

by current position.

Average jump distance

is
p
b� a.



45

The tame kangaroo stops

after a fixed number of jumps

(about
p
b� a many).

The tame kangaroo installs a trap

and waits.



46

The wild kangaroo

starts at point Q.

Follows the same instructions for

jumps.



47

But we don’t know where

the starting point Q is.

Know Q = nP with n 2 [a; b].

Hope that the paths of the tame

and wild kangaroo intersect.

Similar to the rho method the

kangaroos will hop on the same

path from that point onwards.

Eventually the wild kangaroo falls

into the trap.

(Or disappears in the distance if

paths have not intersected.

Start a fresh one

from Q + P;Q + 2P; : : :.)



48

Same story in math

Kangaroo = sequence Xi 2 hP i.
Starting point X0 = s0P .

Distance d0 = 0.

Step set: S = fs1P; : : : ; sLPg,

with si on average

s = �
p
b� a.

Hash function

H : hP i ! f1; 2; : : : ; Lg.

Update function

di+1 = di + sH(Xi); i = 0; 1; 2; : : :,

Xi+1= Xi + sH(Xi)P; i = 0; 1; 2; : : :.



49

Tame kangaroo starts at

X0 = bP ,

wild kangaroo starts at

X 0
0 = Q = nP .

Trap: distance dN ,

endpoint XN = (b + dN)P .

Picture credit:

Christine van Vredendaal.



50

Parallel kangaroo method

Use an entire herd

of tame kangaroos,

all starting

around ((b� a)=2)P : : :



51

: : : and define certain spots as

distinguished points

Also start a herd of

wild kangaroos around Q.

Hope that one wild and

one tame kangaroo

meet at one distinguished point.


