
Randomness

Daniel J. Bernstein
University of Illinois at Chicago

Technische Universiteit Eindhoven

Tanja Lange
Technische Universiteit Eindhoven



Preliminary analysis
of some submissions to
snakeoil.cr.yp.to

Daniel J. Bernstein
University of Illinois at Chicago

Technische Universiteit Eindhoven

Tanja Lange
Technische Universiteit Eindhoven

snakeoil.cr.yp.to


DUAL EC RNG: history part I

Earliest public source (?) June 2004, draft of ANSI X9.82:

ϕ gives all but the top 16 bits
⇒ about 215 points sQ match given string.

Claim:



DUAL EC RNG: common public history part II
• Gjøsteen (March 2006): Output sequence is biased.

“While the practical impact of these results are modest, it is
hard to see how these flaws would be acceptable in a
pseudo-random bit generator based on symmetric
cryptographic primitives. They should not be accepted in a
generator based on number-theoretic assumptions.”

• Brown (March 2006): “This proof makes essential use of Q
being random.” If d with dQ = P is known then dRi = Si+1,
concludes that then there is a distinguisher.

• Sidorenko & Schoenmakers (May 2006):
Can amplify bias in output sequence is even more.
NIST answer: Too late to change, already implemented.

• June 2006: SP800-90 gets published.
• Shumow & Ferguson (August 2007): Backdoor if d is known.

• Already June 2006 version of NIST standard has appendix
about choosing points verifiably at random but states “To
avoid using potentially weak points, the points specified in
Appendix A.1 should be used.”



DUAL EC RNG: common public history part II
• Gjøsteen (March 2006): Output sequence is biased.

“While the practical impact of these results are modest, it is
hard to see how these flaws would be acceptable in a
pseudo-random bit generator based on symmetric
cryptographic primitives. They should not be accepted in a
generator based on number-theoretic assumptions.”

• Brown (March 2006): “This proof makes essential use of Q
being random.” If d with dQ = P is known then dRi = Si+1,
concludes that then there is a distinguisher.

• Sidorenko & Schoenmakers (May 2006):
Can amplify bias in output sequence is even more.
NIST answer: Too late to change, already implemented.

• June 2006: SP800-90 gets published.
• Shumow & Ferguson (August 2007): Backdoor if d is known.
• Already June 2006 version of NIST standard has appendix

about choosing points verifiably at random but states “To
avoid using potentially weak points, the points specified in
Appendix A.1 should be used.”



September 2013: NSA Bullrun program

Later NYT names Dual EC DRBG. . . but surely nobody uses that
piece of shit?!

NIST’s DRBG Validation List: RSA’s BSAFE has Dual EC DRBG
enabled and default.

NIST re-opens discussions on SP800.90; recommmends against
using Dual EC.
RSA suggests changing default in BSAFE.

http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html


September 2013: NSA Bullrun program

Later NYT names Dual EC DRBG. . .

but surely nobody uses that
piece of shit?!

NIST’s DRBG Validation List: RSA’s BSAFE has Dual EC DRBG
enabled and default.

NIST re-opens discussions on SP800.90; recommmends against
using Dual EC.
RSA suggests changing default in BSAFE.

http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html


September 2013: NSA Bullrun program

Later NYT names Dual EC DRBG. . . but surely nobody uses that
piece of shit?!

NIST’s DRBG Validation List: RSA’s BSAFE has Dual EC DRBG
enabled and default.

NIST re-opens discussions on SP800.90; recommmends against
using Dual EC.
RSA suggests changing default in BSAFE.

http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html


September 2013: NSA Bullrun program

Later NYT names Dual EC DRBG. . . but surely nobody uses that
piece of shit?!

NIST’s DRBG Validation List: RSA’s BSAFE has Dual EC DRBG
enabled and default.

NIST re-opens discussions on SP800.90; recommmends against
using Dual EC.
RSA suggests changing default in BSAFE.

http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html


September 2013: NSA Bullrun program

Later NYT names Dual EC DRBG. . . but surely nobody uses that
piece of shit?!

NIST’s DRBG Validation List: RSA’s BSAFE has Dual EC DRBG
enabled and default.

NIST re-opens discussions on SP800.90; recommmends against
using Dual EC.
RSA suggests changing default in BSAFE.

http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html


December 2013





How expensive is using the backdoor?

Rereading the standard:
“x(A) is the x-coordinate of the point A on the curve, given in
affine coordinates. An implementation may choose to represent
points internally using other coordinate systems; for instance, when
efficiency is a primary concern. In this case, a point shall be
translated back to affine coordinates before x() is applied.”

Given ri = ϕ(x(siQ)), ri+1 = ϕ(x(si+1Q)), and NSA backdoor
d = logP(Q).

1. Expand ri to candidate Qi = siQ,
[50% chance; if fail move on to next candidate]

2. compute candidate Pi+1 = dQi and si+1 = ϕ(x(Pi+1))

3. check, ϕ(x(si+1Q)) against ri+1.
[if fail, goto 1.; else most likely done!]



How expensive is using the backdoor?

Rereading the standard:
“x(A) is the x-coordinate of the point A on the curve, given in
affine coordinates. An implementation may choose to represent
points internally using other coordinate systems; for instance, when
efficiency is a primary concern. In this case, a point shall be
translated back to affine coordinates before x() is applied.”

Given ri = ϕ(x(siQ)), ri+1 = ϕ(x(si+1Q)), and NSA backdoor
d = logP(Q).

1. Expand ri to candidate Qi = siQ,
[50% chance; if fail move on to next candidate]

2. compute candidate Pi+1 = dQi and si+1 = ϕ(x(Pi+1))

3. check, ϕ(x(si+1Q)) against ri+1.
[if fail, goto 1.; else most likely done!]



In practice

Timings on Core i7 M620
missing 16 bits 24 bits 32 bits

1 core 20s 85m 15d4h

64k cores 20s

From the standard:

“For performance reasons, the value of outlen should be set to the
maximum value as provided in Table 4.”

Don’t give us fewer bits!



In practice

Timings on Core i7 M620
missing 16 bits 24 bits 32 bits

1 core 20s 85m 15d4h

64k cores 20s

From the standard:

“For performance reasons, the value of outlen should be set to the
maximum value as provided in Table 4.”

Don’t give us fewer bits!



In practice

Timings on Core i7 M620
missing 16 bits 24 bits 32 bits

1 core 20s 85m 15d4h

64k cores 20s

From the standard:

“For performance reasons, the value of outlen should be set to the
maximum value as provided in Table 4.”

Don’t give us fewer bits!



Hat tip @nymble.



Snippets from the patent



Details on Intel’s RNG

[7] D. J. Johnston, ”Mircoarchitecture Specification (MAS) for
PP-DRNG,” Intel Corporation (unpublished), V1.4, 2009.

[8] C. E. Dike, ”3 Gbps Binary RNG Entropy Source,” Intel
Corporation (unpublished), 2011.

[9] C. E. Dike and S. Gueron, ”Digital Symmetric Random Number
Generator Mathematics,” Intel Corporation (unpublished), 2009.

(References from “Analysis of Intel’s Ivy Bridge Digital Random
Number Generator Prepared for Intel” by Mike Hamburg, Paul
Kocher, and Mark E. Marson. Cryptography Research, Inc.)



Details on Intel’s RNG

[7] D. J. Johnston, ”Mircoarchitecture Specification (MAS) for
PP-DRNG,” Intel Corporation (unpublished), V1.4, 2009.

[8] C. E. Dike, ”3 Gbps Binary RNG Entropy Source,” Intel
Corporation (unpublished), 2011.

[9] C. E. Dike and S. Gueron, ”Digital Symmetric Random Number
Generator Mathematics,” Intel Corporation (unpublished), 2009.

(References from “Analysis of Intel’s Ivy Bridge Digital Random
Number Generator Prepared for Intel” by Mike Hamburg, Paul
Kocher, and Mark E. Marson. Cryptography Research, Inc.)



Design (from CRI report)



Entropy Source (from CRI report)



Design (from CRI report)

“It uses the counter mode CTR DRBG construction as defined in
[2], with AES-128 as the block cipher.”



Intel assurances – David Johnston

I’ve examined my own RNG with electron microscopes and
picoprobes. So I and a number of test engineers know full well that
the design hasn’t been subverted. For security critical systems,
having multiple entropy sources is a good defense against a single
source being subverted. But if an Intel processor were to be
subverted, there are better things to attack, like the microcode or
memory protection or caches. We put a lot of effort into keeping
them secure, but as with any complex system it’s impossible to
know that you’ve avoided all possible errors, so maintaining the
security of platforms is an ongoing battle. [..] But the implication
at the top of this thread is that we were leaned on by the
government to undermine our own security features. I know for a
fact that I was not leant on by anyone to do that. X9.82 took my
contributions and NIST is taking about half my contributions, but
maybe they’re slowly coming around to my way of thinking on
online entropy testing. If I ultimately succeed in getting those
specs to be sane, we better hope that I am sane.



Scary Paper of the Year: Stealthy Dopant-Level Hardware
Trojans
by Becker, Regazzoni, Paar, and Burleson, CHES 2013



Scary recommendations

CRI: “Because the Ivy Bridge RNG is implemented as an
instruction in the CPU, it is much simpler to use than other
hardware-based RNGs and avoids the need for additional software
layers that could introduce bugs.”

Johnston: “Just use the output of the RDRAND instruction
wherever you need a random number.” (github search for
RDRAND has 33 609 code results)

Intel manual 325462, June 2013, page 177:
”extremely rare cases” RDRAND ”will return no data”.
Also: ”returning no data transitorily” because of ”heavy load”.
Recommendation to ”retry for a limited number of iterations”; the
subsequent explanation makes clear that this catches the
”transitory” failures but not the ”extremely rare” failures.
There is no quantification of ”extremely rare”.



Linux use of RDRAND
-rw-r--r-- H. Peter Anvin 2012-07-27 22:26 random.c:

/*

* In case the hash function has some recognizable output

* pattern, we fold it in half. Thus, we always feed back

* twice as much data as we output.

*/

hash.w[0] ^= hash.w[3];

hash.w[1] ^= hash.w[4];

hash.w[2] ^= rol32(hash.w[2], 16);

/*

* If we have a architectural hardware random number

* generator, mix that in, too.

*/

for (i = 0; i < LONGS(EXTRACT_SIZE); i++) {

unsigned long v;

if (!arch_get_random_long(&v))

break;

hash.l[i] ^= v;

}

memcpy(out, &hash, EXTRACT_SIZE);

memset(&hash, 0, sizeof(hash));



RDRAND backdoor proof of concept – Taylor Hornby

“The way RDRAND is being used in kernels <= 3.12.3 allows it to
cancel out the other entropy. See extract buf().”
“if I make RDRAND return [EDX] ^ 0x41414141, /dev/urandom
output will be all ’A’.” Full thread

https://twitter.com/DefuseSec/status/408975222163795969/photo/1


Updated in Linux repository (Dec 2013); not yet shipping

/*

* If we have an architectural hardware random number

* generator, use it for SHA’s initial vector

*/

sha_init(hash.w);

for (i = 0; i < LONGS(20); i++) {

unsigned long v;

if (!arch_get_random_long(&v))

break;

hash.l[i] = v;

}

/* Generate a hash across the pool,

* 16 words (512 bits) at a time */

spin_lock_irqsave(&r->lock, flags);

for (i = 0; i < r->poolinfo->poolwords; i += 16)

sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);



Would you like to audit this?
2013-12-17 21:16 Theodore Ts’o o [dev] [origin/dev] random: use the architectural HWRNG for~

2013-12-06 21:28 Greg Price o random: clarify bits/bytes in wakeup thresholds

2013-12-07 09:49 Greg Price o random: entropy_bytes is actually bits

2013-12-05 19:32 Greg Price o random: simplify accounting code

2013-12-05 19:19 Greg Price o random: tighten bound on random_read_wakeup_thresh

2013-11-29 20:09 Greg Price o random: forget lock in lockless accounting

2013-11-29 15:56 Greg Price o random: simplify accounting logic

2013-11-29 15:50 Greg Price o random: fix comment on "account"

2013-11-29 15:02 Greg Price o random: simplify loop in random_read

2013-11-29 14:59 Greg Price o random: fix description of get_random_bytes

2013-11-29 14:58 Greg Price o random: fix comment on proc_do_uuid

2013-11-29 14:58 Greg Price o random: fix typos / spelling errors in comments

2013-11-16 10:19 Linus Torvalds M-| Merge tag ’random_for_linus’ of git://git.kernel.org/pub~

2013-11-03 18:24 Theodore Ts’o | o [random_for_linus] random: add debugging code to detect ~

2013-11-03 16:40 Theodore Ts’o | o random: initialize the last_time field in struct timer_r~

2013-11-03 07:56 Theodore Ts’o | o random: don’t zap entropy count in rand_initialize()

2013-11-03 06:54 Theodore Ts’o | o random: printk notifications for urandom pool initializa~

2013-11-03 00:15 Theodore Ts’o | o random: make add_timer_randomness() fill the nonblocking~

2013-10-03 12:02 Theodore Ts’o | o random: convert DEBUG_ENT to tracepoints

2013-10-03 01:08 Theodore Ts’o | o random: push extra entropy to the output pools

2013-10-02 21:10 Theodore Ts’o | o random: drop trickle mode

2013-09-22 16:04 Theodore Ts’o | o random: adjust the generator polynomials in the mixing f~

2013-09-22 15:24 Theodore Ts’o | o random: speed up the fast_mix function by a factor of fo~

2013-09-22 15:14 Theodore Ts’o | o random: cap the rate which the /dev/urandom pool gets re~

2013-09-21 19:42 Theodore Ts’o | o random: optimize the entropy_store structure

2013-09-12 14:27 Theodore Ts’o | o random: optimize spinlock use in add_device_randomness()

2013-09-12 14:10 Theodore Ts’o | o random: fix the tracepoint for get_random_bytes(_arch)

2013-09-10 23:16 H. Peter Anvin | o random: account for entropy loss due to overwrites

2013-09-10 23:16 H. Peter Anvin | o random: allow fractional bits to be tracked

2013-09-10 23:16 H. Peter Anvin | o random: statically compute poolbitshift, poolbytes, pool~

2013-09-21 18:06 Theodore Ts’o | o random: mix in architectural randomness earlier in extra~

2013-11-11 12:20 Hannes Frederic S~ o | random32: add prandom_reseed_late() and call when nonblo~

2013-10-10 12:31 Linus Torvalds M-| Merge tag ’random_for_linus’ of git://git.kernel.org/pub~

2013-09-21 13:58 Theodore Ts’o | o random: allow architectures to optionally define random_~

2013-09-10 10:52 Theodore Ts’o | o random: run random_int_secret_init() run after all late_~

2013-08-30 09:39 Martin Schwidefsky o | Remove GENERIC_HARDIRQ config option

2013-06-13 19:37 Joe Perches o-| char: Convert use of typedef ctl_table to struct ctl_tab~

2013-05-24 15:55 Jiri Kosina o random: fix accounting race condition with lockless irq en~

2013-05-24 15:55 Jarod Wilson o drivers/char/random.c: fix priming of last_data

2013-04-30 15:27 Andy Shevchenko o lib/string_helpers: introduce generic string_unescape



What would we like to see?

• Cryptographers can help here!

• Easy part: Stream cipher generates randomness from seed.
With big seed, safe to have output overwrite old seed.

• Hard part: Need comprehensible mechanism
to securely merge entropy sources into seed.

• Some sources are bad. Is full hashing really necessary?

• Some sources are influenced or controlled by attacker.
Is protection against malice possible?

• Maybe helpful:
Some malicious sources have limited time and space.
Concatenate independent hashes of several sources,
apply many rounds of wide permutation, then truncate?


