Randomness

Daniel J. Bernstein
University of lllinois at Chicago
Technische Universiteit Eindhoven

Tanja Lange
Technische Universiteit Eindhoven

Preliminary analysis
of some submissions to
snakeoil.cr.yp.to

Daniel J. Bernstein
University of lllinois at Chicago
Technische Universiteit Eindhoven

Tanja Lange
Technische Universiteit Eindhoven

snakeoil.cr.yp.to

DUAL_EC RNG: history part |

Earliest public source (?) June 2004, draft of ANSI X9.82:

seed—z

i
Instant. or
reseed only

t * s * r | Extract
[Optional] ® ¢ (x (t*P)) o(x (s*Q)) Bits
additional input ﬁ_T }
0 P Q Pseudorandom
' Bits

If additional input = Null

 gives all but the top 16 bits
= about 25 points sQ match given string.

Claim:
Dual_EC_DRBG is based on the following hard problem, sometimes known as the
“elliptic curve discrete logarithm problem” (ECDLP): given points P and Q on an elliptic

curve of order n, find a such that Q = aP.

DUAL_

EC RNG: common public history part Il

Gjgsteen (March 2006): Output sequence is biased.

“While the practical impact of these results are modest, it is
hard to see how these flaws would be acceptable in a
pseudo-random bit generator based on symmetric
cryptographic primitives. They should not be accepted in a
generator based on number-theoretic assumptions.”

Brown (March 2006): “This proof makes essential use of Q
being random.” If d with d@Q = P is known then dR; = S;.1,
concludes that then there is a distinguisher.

Sidorenko & Schoenmakers (May 2006):

Can amplify bias in output sequence is even more.

NIST answer: Too late to change, already implemented.
June 2006: SP800-90 gets published.

Shumow & Ferguson (August 2007): Backdoor if d is known.

DUAL_

EC RNG: common public history part Il

Gjgsteen (March 2006): Output sequence is biased.

“While the practical impact of these results are modest, it is
hard to see how these flaws would be acceptable in a
pseudo-random bit generator based on symmetric
cryptographic primitives. They should not be accepted in a
generator based on number-theoretic assumptions.”

Brown (March 2006): “This proof makes essential use of Q
being random.” If d with d@Q = P is known then dR; = S;.1,
concludes that then there is a distinguisher.

Sidorenko & Schoenmakers (May 2006):

Can amplify bias in output sequence is even more.

NIST answer: Too late to change, already implemented.
June 2006: SP800-90 gets published.

Shumow & Ferguson (August 2007): Backdoor if d is known.
Already June 2006 version of NIST standard has appendix
about choosing points verifiably at random but states “To
avoid using potentially weak points, the points specified in
Appendix A.1 should be used.”

September 2013: NSA Bullrun program

(TSHSIVREL TO USA, FVEY) Insert vulnerabilities into commercial encryption systems, IT systems,
networks, and endpoint communications devices used by targets.

(TS/SIHREL TO USA, FYEY) Collect target network data and metadata via cooperative network carriers
and/or increased control over core networks.

(TSHSIVREL TOUSA, FVEY) Leverage commercial capabilities to remotely deliver or receive information
to and from target endpaints.

(TSHSI/REL TO USA, FVEY) Exploit foreign trusted computing platforms and technologies.
[TSHSIVREL TO USA, FVEY) Influence policies, standards and specification for commercial public key
technologies.

{TSHSI/REL TO USA, FVEY) Make specific and aggressive investments to facilitate the development of
a robust exploitation capability against Next-Generation Wireless (NGW) communications.

http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html

September 2013: NSA Bullrun program

(TSHSIVREL TO USA, FVEY) Insert vulnerabilities into commercial encryption systems, IT systems,
networks, and endpoint communications devices used by targets.

(TS/SIHREL TO USA, FYEY) Collect target network data and metadata via cooperative network carriers
and/or increased control over core networks.

(TSHSIVREL TOUSA, FVEY) Leverage commercial capabilities to remotely deliver or receive information
to and from target endpaints.

(TSHSI/REL TO USA, FVEY) Exploit foreign trusted computing platforms and technologies.

[TSHSIVREL TO USA, FVEY) Influence policies, standards and specification for commercial public key
technologies.

{TSHSI/REL TO USA, FVEY) Make specific and aggressive investments to facilitate the development of
a robust exploitation capability against Next-Generation Wireless (NGW) communications.

Later NYT names Dual EC DRBG. ..

http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html

September 2013: NSA Bullrun program

(TSHSIVREL TO USA, FVEY) Insert vulnerabilities into commercial encryption systems, I'T systems,
networks, and endpoint communications devices used by targets.

(TS/SIHREL TO USA, FYEY) Collect target network data and metadata via cooperative network carriers
and/or increased control over core networks.

.

(TSHSIHVREL TOUSA, FYEY) Leverage commercial capabilities to remotely deliver or receive information
to and from target endpoints.

» (TSHSI/REL TO USA, FVEY) Exploit foreign trusted computing platforms and technologies.

» [TSHSIYREL TO USA, FVEY) Influence policies, standards and specification for commercial public key
technologies.

{TSHSI/REL TO USA, FVEY) Make specific and aggressive investments to facilitate the development of
a robust exploitation capability against Next-Generation Wireless (NGW) communications.

Later NYT names Dual_ EC_DRBG. .. but surely nobody uses that
piece of shit?!

http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html

September 2013: NSA Bullrun program

.

(TSHSIVREL TO USA, FVEY) Insert vulnerabilities into commercial encryption systems, I'T systems,
networks, and endpoint communications devices used by targets.

(TS/SIHREL TO USA, FYEY) Collect target network data and metadata via cooperative network carriers
and/or increased control over core networks.

(TSHSIHVREL TOUSA, FYEY) Leverage commercial capabilities to remotely deliver or receive information
to and from target endpoints.

(TSHSI/REL TO USA, FVEY) Exploit foreign trusted computing platforms and technologies.

[TSHSIVREL TO USA, FVEY) Influence policies, standards and specification for commercial public key
technologies.

{TSHSI/REL TO USA, FVEY) Make specific and aggressive investments to facilitate the development of
a robust exploitation capability against Next-Generation Wireless (NGW) communications.

Later NYT names Dual_ EC_DRBG. .. but surely nobody uses that
piece of shit?!

NIST's DRBG Validation List: RSA's BSAFE has Dual EC DRBG
enabled and default.

http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html

September 2013: NSA Bullrun program

.

(TSHSIVREL TO USA, FVEY) Insert vulnerabilities into commercial encryption systems, I'T systems,
networks, and endpoint communications devices used by targets.

(TS/SIHREL TO USA, FYEY) Collect target network data and metadata via cooperative network carriers
and/or increased control over core networks.

(TSHSIHVREL TOUSA, FYEY) Leverage commercial capabilities to remotely deliver or receive information
to and from target endpoints.

(TSHSI/REL TO USA, FVEY) Exploit foreign trusted computing platforms and technologies.
(TSHSIVREL TO USA, FVEY) Influence policies, standards and specification for commercial public key
technologies.

(TSHSI/REL TO USA, FVEY) Make specific and aggressive investments to facilitate the development of
a robust exploitation capability against Next-Generation Wireless (NGW) communications.

Later NYT names Dual_ EC_DRBG. .. but surely nobody uses that
piece of shit?!

NIST’'s DRBG Validation List: RSA’s BSAFE has Dual EC DRBG
enabled and default.

NIST re-opens discussions on SP800.90; recommmends against
using Dual EC.
RSA suggests changing default in BSAFE.

http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html

REL/

aWecember 2013

|- As a key part of a campaign to embed encryption

that it could crack into widely used computer
pruouucts, the U.S. National Security Agency arranged a secret
$10 million contract with RSA, one of the most influential firms
in the computer security industry, Reuters has learned.

Obama on surveillance:
"There may be another way
of skinning the cat"

Documents leaked by former NSA contractor Edward Snowden

show that the NSA created and promulgated a flawed formula

for generating random numbers to create a "back door" in
encryption products, the New York Times reported in September. Reuters later reported
that RSA became the most important distributor of that formula by rolling it into a
software tool called Bsafe that is used to enhance security in personal computers and
many other products.

Undisclosed until now was that RSA received $10 million in a deal that set the NSA
formula as the preferred, or default, method for number generation in the BSafe
software, according to two sources familiar with the contract. Although that sum might
seem paltry, it represented more than a third of the revenue that the relevant division at
RSA had taken in during the entire previous year, securities filings show.

December 22,2013

Recent press coverage has asserted that RSA entered into a “secret contract” with the NSA to incorporate a known
flawed random number generator into its BSAFE encryption libraries. We categorically deny this allegation.

We have worked with the NSA, both as a vendor and an active member of the security community. We have never
kept this relationship a secret and in fact have openly publicized it. Our explicit goal has always been to strengthen
commercial and government security.

Key points about our use of Dual EC DRBG in BSAFE are as follows:

® We made the decision to use Dual EC DRBG as the default in BSAFE toolkits in 2004, in the context of an
industry-wide effort to develop newer, stronger methods of encryption. At that time, the NSA had a trusted role in
the community-wide effort to strengthen, not weaken, encryption.

® This algorithm is only one of multiple choices available within BSAFE toolkits, and users have always been free to
choose whichever one best suits their needs.

* We continued using the algorithm as an option within BSAFE toolkits as it gained acceptance as a NIST standard
and because of its value in FIPS compliance. When concern surfaced around the algorithm in 2007, we continued
to rely upon NIST as the arbiter of that discussion.

® When NIST issued new guidance recommending no further use of this algorithm in September 2013, we adhered
to that guidance, communicated that recommendation to customers and discussed the change openly in the
media.

RSA, as a security company, never divulges details of customer engagements, but we also categorically state that

How expensive is using the backdoor?

Rereading the standard:

“x(A) is the x-coordinate of the point A on the curve, given in
affine coordinates. An implementation may choose to represent
points internally using other coordinate systems; for instance, when
efficiency is a primary concern. In this case, a point shall be
translated back to affine coordinates before x() is applied.”

How expensive is using the backdoor?

Rereading the standard:

“x(A) is the x-coordinate of the point A on the curve, given in
affine coordinates. An implementation may choose to represent
points internally using other coordinate systems; for instance, when
efficiency is a primary concern. In this case, a point shall be
translated back to affine coordinates before x() is applied.”

Given ri = o(x(siQ)), ri+1 = ©(x(si+1Q)), and NSA backdoor
d = logp(Q).
1. Expand r; to candidate Q; = s;Q,
[50% chance; if fail move on to next candidate]

2. compute candidate Pj11 = dQ; and siy1 = ¢(x(Pit1))

3. check, ¢(x(si+1Q)) against ri1.
[if fail, goto 1.; else most likely done!]

In practice

Timings on Core i7 M620

missing

16 bits

24 bits

32 bits

1 core

20s

85m

15d4h

In practice

Timings on Core i7 M620

missing | 16 bits | 24 bits | 32 bits
1 core 20s 85m | 15d4h
20s

64k cores

In practice

Timings on Core i7 M620
missing | 16 bits | 24 bits | 32 bits
1 core 20s 85m | 15d4h
64k cores 20s

From the standard:

“For performance reasons, the value of outlen should be set to the
maximum value as provided in Table 4.”

Don't give us fewer bits!

0O
US 20070189527A1
(19) United States

a2 Patent Application Publication (o, Pub. No.: US 2007/0189527 Al

Brown et al. ta3) Pub. Date: Aug. 16, 2007
(54) ELLIPTIC CURVE RANDOM NUMBER Publication Classification
GENERATION
(51) Int. CL
(76) Invemors: Daniel R. L. Brown, Mississauga HodL 949 (2006.01)
(CA): Seoft A. Vanstone, Campbellville (52) US. ClL .

L5 (57

Correspondence Address: An elliptic curve runi!‘lnw number gangr;lx:r avoids e‘.\?mw
Blake, Cassels & Graydon LLP keys by choosing a point Q on the elliptic curve as verifiably
Commerce Court West random. An arbitrary siring is chosen and a hash of that

E.0. Box 25 string computed. The hash is then converted 1o a field
Toronts, ON M5L 1A9 (CA) element of the desired field, the tield element regarded as the

4 ° : x-coordinate of a point Q on the elliptic curve and the

(21) Appl. No.: 11/336.814 x-coordinate is tested for validity on the desired elliptie

curve. If valid, the x-coordinat lecompressed to the point

Q, wherein the choice of w the two points is also

(22) Filed: Jan. 23, 2006 derived from the hash value. Intentional use of escrow keys
can provide for back up functionality. The relationship

Related US. Application Data between P and Q is used as an escrow key and stored by for

a security domain. The administrator logs the output of the

(60) Provisional application No. 60/644,982, filed on Jan. generator to reconstruct the random number with the eserow
3 — key.

Hat tip @nymble.

Snippets from the patent

can provide for back up functionality. The relationship
between P and Q is used as an escrow key and stored by for
a security domain. The administrator logs the output of the
generator to reconstruct the random number with the escrow
key.

accounts. A more seamless method may be applied for
cryptographic applications. For example, in the SSI. and
TLS protocols, which are used for securing web (HTTP)
traffic, a client and server perform a handshake in which
their first actions are to exchange random values sent in the
clear.

[0054] Many other protocols exchange such random val-
ues, often called nonces. If the escrow administrator
observes these nonces, and keeps a log of them 508, then
later it may be able to determine the necessary r value. This

Details on Intel's RNG

Details on Intel's RNG

[7] D. J. Johnston, " Mircoarchitecture Specification (MAS) for
PP-DRNG," Intel Corporation (unpublished), V1.4, 2009.

[8] C. E. Dike, "3 Gbps Binary RNG Entropy Source,” Intel
Corporation (unpublished), 2011.

[9] C. E. Dike and S. Gueron, "Digital Symmetric Random Number
Generator Mathematics,” Intel Corporation (unpublished), 2009.

(References from “Analysis of Intel's lvy Bridge Digital Random
Number Generator Prepared for Intel” by Mike Hamburg, Paul
Kocher, and Mark E. Marson. Cryptography Research, Inc.)

Design (from CRI report)

Raw Entropy

Generation
- w
Enittaidy Health &
Swellness
Source .
(€5) Testing

(OHT)

(suq 952) J:siday Yiys
I B
v

Digital Post-Processing

)

(5319 957>2) s8nand 3150

Deterministic Random Bit
Generator (DRBG)

Suuonpuo)
g

® uoljesauag nding

| (5319 957) (32) Adonu3 pauoiyipuo) |
duipaasay

(s1g 8z Txp) siayng nding

Figure 1: Block diagram of the Intel RNG (adapted from [7])

Entropy Source (from CRI report)

clock_oul
I DELAY
A
e
1-SHOT

caps

_4 CI: DIFF_BUFFER
54—{1 ol [l ?*’—%E
g 18 IA caps i B n:aps
— ~JH
node A 4 T tinodeB

heart_clock

I
utl

o<1
“~J

Figure 2: Entropy source for the Intel RNG (from [8])

Design (from CRI report)

Raw Entropy
Generation

Entropy
Source
(ES)

(531 952) 421532y WIus

Digital Post-Processing

Health &
Swellness
Testing
(OHT)

)

(5319 952>2) sananp 3150

Deterministic Random Bit
Generator (DRBG)

g uoljesauag nding

(sug gzTxp) s4ayng nding

Fuiuonipuo)
[1
. =
| (s319 957) (32) Ada3u3 pauoiipuod |
duipasasay

Figure 1: Block diagram of the Intel RNG (adapted from [7])

“It uses the counter mode CTR_DRBG construction as
[2], with AES-128 as the block cipher.”

defined in

Intel assurances — David Johnston

I've examined my own RNG with electron microscopes and
picoprobes. So | and a number of test engineers know full well that
the design hasn't been subverted. For security critical systems,
having multiple entropy sources is a good defense against a single
source being subverted. But if an Intel processor were to be
subverted, there are better things to attack, like the microcode or
memory protection or caches. We put a lot of effort into keeping
them secure, but as with any complex system it's impossible to
know that you've avoided all possible errors, so maintaining the
security of platforms is an ongoing battle. [..] But the implication
at the top of this thread is that we were leaned on by the
government to undermine our own security features. | know for a
fact that | was not leant on by anyone to do that. X9.82 took my
contributions and NIST is taking about half my contributions, but
maybe they're slowly coming around to my way of thinking on
online entropy testing. If | ultimately succeed in getting those
specs to be sane, we better hope that | am sane.

Scary Paper of the Year: Stealthy Dopant-Level Hardware

Trojans
by Becker, Regazzoni, Paar, and Burleson, CHES 2013

Trojan area

D N-well
Pwall
I N-Dopant
. p-Dopant
173 active area
I roly

B contact

B vetal 1

Fig. 2. Layout of the Trojan DFFR X1 gate. The gate is only modified in the high-
lighted area by changing the dopant mask. The resulting Trojan gate has an output of
Q= Vpp and QN = GND.

Scary recommendations

CRI: "Because the Ivy Bridge RNG is implemented as an
instruction in the CPU, it is much simpler to use than other
hardware-based RNGs and avoids the need for additional software
layers that could introduce bugs.”

Johnston: “Just use the output of the RDRAND instruction
wherever you need a random number.” (github search for
RDRAND has 33609 code results)

Intel manual 325462, June 2013, page 177:

"extremely rare cases” RDRAND "will return no data”.

Also: "returning no data transitorily” because of "heavy load”.
Recommendation to "retry for a limited number of iterations”; the
subsequent explanation makes clear that this catches the
"transitory” failures but not the "extremely rare” failures.

There is no quantification of "extremely rare”.

Linux use of RDRAND

-rw-r--r—— H. Peter Anvin 2012-07-27 22:26 random.c:
/%
* In case the hash function has some recognizable output
* pattern, we fold it in half. Thus, we always feed back
* twice as much data as we output.
*/
hash.w[0] "= hash.w[3];
hash.w[1] ~= hash.w([4];
hash.w[2] "= rol32(hash.w[2], 16);
/*
* If we have a architectural hardware random number
* generator, mix that in, too.
*/
for (i = 0; i < LONGS(EXTRACT_SIZE); i++) {

unsigned long v;

if (larch_get_random_long(&v))

break;

hash.1[i] "= v;
}
memcpy (out, &hash, EXTRACT_SIZE);
memset (&hash. 0. sizeof(hash)):

RDRAND backdoor proof of concept — Taylor Hornby

sendif

ERATOR_READY) {
} & oxff:

nd() & oxff

EFlags0SZAPC(EFl agsCPMask) ;

else {
setEFlags0SZAPC(0)
i

BX_WRITE_16BIT_REG(i-=dst(}, val_16):

BX_NEXT_INSTR(1);

-~

¥_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::RDRAND_Ed(bxInstruction_c +i

if (EIP = O
BX_INFO((

Oxc0387e19) {

)
word(BX_SEG_REG_ DS, edx);

75 setErlagsOARCIEFlagsCPMask) ;
BX TE_32BIT_REGZ(1-=dst(), val_32).
BX_NEXT_INSTR(1)
3

#if BY_SUPPORT_X86_64
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::RDRAND_Eq(bxInstruction_c +i)

“The way RDRAND is being used

cancel out the other entropy. See extract_buf()

“if I make RDRAND return [EDX]
output will be all >A”." Full thread

Bochs x86-64 emulator, http://boch

clbox:"$ cat /deviurandom | head -c 1000

in kernels <= 3.12.3 allows it to

”

" 0x41414141, /dev/urandom

https://twitter.com/DefuseSec/status/408975222163795969/photo/1

Updated in Linux repository (Dec 2013); not yet shipping

/%
* If we have an architectural hardware random number
* generator, use it for SHA’s initial vector
*/
sha_init(hash.w);
for (i = 0; i < LONGS(20); i++) {
unsigned long v;
if (larch_get_random_long(&v))
break;
hash.1[i] = v;
}
/* Generate a hash across the pool,
* 16 words (512 bits) at a time */
spin_lock_irgsave(&r->lock, flags);
for (i = 0; i < r->poolinfo->poolwords; i += 16)
sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);

Would y you | like to audit this?

2013-12=17 2
2013-12-06
2013-12-07
2013-12-05
2013-12-05
2013-11-29
2013-11-29
2013-11-29
2013-11-29
2013-11-29
2013-11-29
2013-11-29
2013-11-16
2013-11-03
2013-11-03
2013-11-03
2013-11-03
2013-11-03
2013-10-03
2013-10-03
2013-10-02
2013-09-22
2013-09-22
2013-09-22
2013-09-21
2013-09-12
2013-09-12
2013-09-10
2013-09-10
2013-09-10
2013-09-21
2013-11-11
2013-10-10
2013-09-21
2013-09-10
2013-08-30

21:
09:
19:
19:
20:
15:
15:
15:
:59

28
49
32
19
09
56
50
02

:20

6 Theodore

Ts’o

Greg Price
Greg Price
Greg Price
Greg Price
Greg Price
Greg Price
Greg Price
Greg Price
Greg Price
Greg Price
Greg Price
Linus Torvalds

Theodore
Theodore
Theodore
Theodore
Theodore
Theodore
Theodore
Theodore
Theodore
Theodore
Theodore
Theodore
Theodore
Theodore
H. Peter
H. Peter
H. Peter
Theodore

Hannes Frederic S~

Ts’o
Ts’o
Ts’o
Ts’o
Ts’o
Ts’o
Ts’o
Ts’o
Ts’o
Ts’o
Ts’o
Ts’o
Ts’o
Ts’o
Anvin
Anvin
Anvin
Ts’o

Linus Torvalds

Theodore
Theodore

Martin Schwidefsky

Ts’o
Ts’o

o [dev] [origin/dev] random: use the architectural HWRNG for~
o random:
o random:
o random:
o random:
o random:
o random:
o random:
o random:
o random:
o random:
o random:

M
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
o
M
|
|
(o]

—0 0 ——000000000O0O0O0O0O0O0O0O0O0 —

clarify bits/bytes in wakeup thresholds
entropy_bytes is actually bits

simplify accounting code

tighten bound on random_read_wakeup_thresh
forget lock in lockless accounting
simplify accounting logic

fix comment on "account"

simplify loop in random_read

fix description of get_random_bytes

fix comment on proc_do_uuid

fix typos / spelling errors in comments

Merge tag ’random_for_linus’ of git://git.kernel.org/pub”
[random_for_linus] random: add debugging code to detect ~

random:
random:
random:
random:
random:
random:
random:
random:
random:
random:
random:
random:
random:
random:
random:
random:
random:
random32:

initialize the last_time field in struct timer_r~
don’t zap entropy count in rand_initialize()
printk notifications for urandom pool initializa™
make add_timer_randomness() fill the nonblocking~™
convert DEBUG_ENT to tracepoints

push extra entropy to the output pools

drop trickle mode

adjust the generator polynomials in the mixing f~
speed up the fast_mix function by a factor of fo~
cap the rate which the /dev/urandom pool gets re~
optimize the entropy_store structure

optimize spinlock use in add_device_randomness ()
fix the tracepoint for get_random_bytes(_arch)
account for entropy loss due to overwrites

allow fractional bits to be tracked

statically compute poolbitshift, poolbytes, pool~
mix in architectural randomness earlier in extra”
add prandom_reseed_late() and call when nonblo™

Merge tag ’random_for_linus’ of git://git.kernel.org/pub”

random:
random:

allow architectures to optionally define random_~
run random_int_secret_init() run after all late_~

Remove GENERIC HARDIRQ config option

What would we like to see?

o Cryptographers can help here!

e Easy part: Stream cipher generates randomness from seed.
With big seed, safe to have output overwrite old seed.

e Hard part: Need comprehensible mechanism
to securely merge entropy sources into seed.
e Some sources are bad. Is full hashing really necessary?
e Some sources are influenced or controlled by attacker.
Is protection against malice possible?

o Maybe helpful:
Some malicious sources have limited time and space.
Concatenate independent hashes of several sources,
apply many rounds of wide permutation, then truncate?

