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NTRU

@ Introduced by Hoffstein—Pipher-Silverman in 1998.

@ Security related to lattice problems; pre-version cryptanalyzed with
LLL by Coppersmith and Shamir.

e System parameters (p, g, t), p prime, integers t, q, gcd(p, q) = 1.

@ All computations done in ring R = Z[x]/(xP — 1).
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NTRU

@ Introduced by Hoffstein—Pipher-Silverman in 1998.

@ Security related to lattice problems; pre-version cryptanalyzed with
LLL by Coppersmith and Shamir.

e System parameters (p, g, t), p prime, integers t, q, gcd(p, q) = 1.

@ All computations done in ring R = Z[x]/(xP — 1).

@ Private key: f, g € R sparse with coefficients in {—1,0,1}.
Additional requirement: f must be invertible in R modulo gq.

@ Public key h =3g/f mod gq.

@ Can see this as lattice with basis matrix

_(qlb O
o=(# )

where H corresponds to multiplication by h/3 modulo x? — 1.
(g, f) is a short vector in the lattice as result of

(k,f)B = (kg +f-h/3,f) = (g,f)
for some polynomial k (from fh/3 = g — kq).
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Classic NTRU

e System parameters (p, g, t), p prime, integers t, q, gcd(p, q) = 1.
@ All computations done in ring R = Z[x]/(xP — 1), some use additional
reduction modulo g, ring denoted by R,.
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Classic NTRU

e System parameters (p, g, t), p prime, integers t, q, gcd(p, q) = 1.

@ All computations done in ring R = Z[x]/(xP — 1), some use additional
reduction modulo g, ring denoted by R,.

e Private key: f, g € R with coefficients in {—1,0, 1}, almost all
coefficients are zero (small fixed number are nonzero).
Additional requirement: f must be invertible in R modulo g and
modulo 3.

@ Public key h =3g/f mod gq.
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Classic NTRU

e System parameters (p, g, t), p prime, integers t, q, gcd(p, q) = 1.

@ All computations done in ring R = Z[x]/(xP — 1), some use additional
reduction modulo g, ring denoted by R,.

e Private key: f, g € R with coefficients in {—1,0, 1}, almost all
coefficients are zero (small fixed number are nonzero).
Additional requirement: f must be invertible in R modulo g and
modulo 3.

@ Public key h =3g/f mod gq.
@ Encryption of message m € R, coefficients in {—1,0,1}:
Pick random, sparse r € R, same sample space as f; compute:

c=r-h+ mmod q.
@ Decryption of ¢ € R;: Compute
a=f-c=f(rh+m)=f(3rg/f+ m)=3rg + fmmod q,

move all coefficients to [—q/2, q/2]. If everything is small enough
then a equals 3rg + fm in R and m = a/f mod 3.
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Decryption failures
Decryption of ¢ € R;: Compute

a=f-c=f(rh4+m)=f(3rg/f+ m)=3rg + fmmod g,

move all coefficients to [—q/2, q/2]. If everything is small enough then a
equals 3rg + fm in R and m = a/f mod 3.

Let
L(d,t) ={F € R|F has d coefficients equal to 1

and t coefficients equal to —1, all others 0}.
Let f € L(df,df — 1), r € L(d,,d,), and g € L(dg, dg) with d, < dj.
Then 3rg + fm has coefficients of size at most

3-2d, +2df — 1

which is larger than q/2 for typical parameters. Such large coefficients are
highly unlikely — but annoying for applications and guarantees.
Security decreases with large g; reduction is important.
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Maps on R,

e Evaluation at 1 attack: ¢(1) = m(1)

e Consider Ry = (Z/q)[x]/(xP —1).

@ Can possibly get more information on m from homomorphism
Y : Ry — T, for some ring T.

o Attacker applies map to h =3g/f and to c = m+ hr in R,.

@ Typical NTRU choice: g = 2048 leads to natural ring maps from
(Z/2048)[x]/(xP — 1) to

> (Z2/2)[x]/(xP = 1),
> (Z/8)[x]/(x* = 1),
» (Z/8)[x]/(xP —1), etc.

@ Unclear whether these can be exploited to get information on m.
@ 2004 Smart—Vercauteren—Silverman: Maybe. Complicated.

o Typical R-LWE case: take (Z/q)[x]/(x" 4+ 1) with n power of 2 so
that x" 4 1 splits completely modulo g.
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Do these maps damage security?

Unclear.
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Do these maps damage security?

Consider generalized setting (Z/q)[x]/P for some polynomial P.
Construct bad cases of P and g, break those systems:

@ 2014 Eisentrager—Hallgren—Lauter,
@ 2015 Elias—Lauter—-Ozman-Stange,
@ 2016 Chen—Lauter-Stange.

Recent Castryck—lliashenko—Vercauteren cryptanalysis of (Z/q)[x]/P
covers Elias—Lauter-Ozman-Stange cases without dependence on g, but
not more recent Chen—Lauter—Stange ones.

Some polynomials P are bad because they lead to very low noise in some
coordinates independent of g.

But for some pairs P, g the properties of P modulo g matter.
(Yeah, number theory!)

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461


https://eprint.iacr.org/2016/461

Do these maps damage security?

Consider generalized setting (Z/q)[x]/P for some polynomial P.
Construct bad cases of P and g, break those systems:

@ 2014 Eisentrager—Hallgren—Lauter,
@ 2015 Elias—Lauter—-Ozman-Stange,
@ 2016 Chen—Lauter-Stange.

Recent Castryck—lliashenko—Vercauteren cryptanalysis of (Z/q)[x]/P
covers Elias—Lauter-Ozman-Stange cases without dependence on g, but
not more recent Chen—Lauter—Stange ones.

Some polynomials P are bad because they lead to very low noise in some
coordinates independent of g.

But for some pairs P, g the properties of P modulo g matter.

(Yeah, number theory!)

Latest addition:

attack on multiquadratic fields (Christine's and Dan’s talk yesterday).
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NTRU Prime

Born out of paranoia, aka. risk management.
@ Talk at Oberwolfach 2013 by Dan with rough proposal.

o Feb 2014: more detailed blogpost by Dan
https://blog.cr.yp.to/20140213-ideal.html focussing on
avenues for attacks.

@ Subfield-logarithm attack strategy, sometimes much faster than
Gentry-Szydlo.
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NTRU Prime

Born out of paranoia, aka. risk management.

Talk at Oberwolfach 2013 by Dan with rough proposal.

Feb 2014: more detailed blogpost by Dan
https://blog.cr.yp.to/20140213-ideal.html focussing on
avenues for attacks.

Subfield-logarithm attack strategy, sometimes much faster than
Gentry-Szydlo.

Now fully worked out NTRU Prime and Streamlined NTRU Prime
(with parameters and implementation).
NTRU Prime

> avoids large proper subfields;

» avoids ring homomorphisms to smaller rings;

» avoids an easy to find fundamental basis of short units which is useful
in Soliloquy attack (Campbell-Groves—Shepherd) and
Cramer—Ducas—Peikert—Regev.
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NTRU Prime ring

o Differences with NTRU:
prime degree, large Galois group, inert modulus.
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NTRU Prime ring

o Differences with NTRU:
prime degree, large Galois group, inert modulus.

@ Choose monic irreducible polynomial P € Z[x].

@ Choose prime g such that P is irreducible modulo g; this means that
g is inert in R = Z[x]/P and (Z/q)[x]/P is a field.
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NTRU Prime ring

Differences with NTRU:
prime degree, large Galois group, inert modulus.

Choose monic irreducible polynomial P € Z[x].

Choose prime g such that P is irreducible modulo g; this means that
g is inert in R = Z[x]/P and (Z/q)[x]/P is a field.

@ Further choose P of prime degree p with large Galois group.

@ Specifically, set P = xP — x — 1. This has Galois group S, of size pl.
@ Streamlined NTRU Prime works over the NTRU Prime field

R/a=(Z/q)[x]/(x* —x —1).
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NTRU Prime: added defenses

Prime degree, large Galois group, inert modulus.
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NTRU Prime: added defenses

Prime degree, large Galois group, inert modulus.

=» Only subfields of Q[x]/P are itself and Q. Avoids structures used by,
e.g., multiquad attack.

=» Large Galois group means no easy to compute automorphisms. Roots
of P live in degree-p! extension. Avoids structures used by
Campbell-Groves—Shepherd attack (obtaining short unit basis). No
hopping between units, so no easy way to extend from some small
unit to a fundamental system of short units.

=» No ring homomorphism to smaller nonzero rings. Avoids structures
used by Chen—-Lauter—Stange attack.
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NTRU Prime: added defenses

Prime degree, large Galois group, inert modulus.

=» Only subfields of Q[x]/P are itself and Q. Avoids structures used by,
e.g., multiquad attack.

=» Large Galois group means no easy to compute automorphisms. Roots
of P live in degree-p! extension. Avoids structures used by
Campbell-Groves—Shepherd attack (obtaining short unit basis). No
hopping between units, so no easy way to extend from some small
unit to a fundamental system of short units.

=» No ring homomorphism to smaller nonzero rings. Avoids structures
used by Chen—-Lauter—Stange attack.

Irreducibility also avoids the evaluation-at-1 attack which simplifies
padding.
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Streamlined NTRU Prime: private and public key

@ System parameters (p, q,t), p,q prime, g > 32t + 1.
@ Pick g small in R

g =80 _'_ e —l—gp_lxpil Wlth 8i € {_150’ 1}

No weight restriction on g, only size restriction on coefficients;
g required to be invertible in R/3.

@ Pick t-small f € R
f=fo+-+fhaxP Lwith fie {-1,0,1} and Y |f| =2t

Since R/q is a field, f is invertible.
e Compute public key h = g/(3f) in R/q.
@ Private key is f and 1/g € R/3.
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Streamlined NTRU Prime: private and public key

@ System parameters (p, q,t), p,q prime, g > 32t + 1.
@ Pick g small in R

g =80 _'_ e —l—gp_lxpil Wlth 8i € {_150’ 1}

No weight restriction on g, only size restriction on coefficients;
g required to be invertible in R/3.

Pick t-small f e R

f=fo+-+fhaxP Lwith fie {-1,0,1} and Y |f| =2t

Since R/q is a field, f is invertible.
Compute public key h = g/(3f) in R/q.
Private key is f and 1/g € R/3.

Difference with NTRU: more key options, 3 in denominator.
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Streamlined NTRU Prime: KEM/DEM

e Streamlined NTRU Prime is a Key Encapsulation Mechanism (KEM).

e Combine with Data Encapsulation Mechanism (DEM) to send
messages. (Fancy name for symmetric authenticated encryption under
shared key.)
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Streamlined NTRU Prime: KEM/DEM

e Streamlined NTRU Prime is a Key Encapsulation Mechanism (KEM).

e Combine with Data Encapsulation Mechanism (DEM) to send
messages. (Fancy name for symmetric authenticated encryption under
shared key.)

KEM:

@ Alice looks up Bob's public key h.

@ Picks t-small r e R (i.e., r; € {—1,0,1},> |r;| = 21).

e Computes hr in R/q, lifts coefficients to ZN[—(q —1)/2,(q —1)/2].
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Streamlined NTRU Prime: KEM/DEM

e Streamlined NTRU Prime is a Key Encapsulation Mechanism (KEM).

e Combine with Data Encapsulation Mechanism (DEM) to send
messages. (Fancy name for symmetric authenticated encryption under
shared key.)

KEM:
@ Alice looks up Bob's public key h.
@ Picks t-small r € R (i.e., r € {—1,0,1},> |ri| = 2t).
e Computes hr in R/q, lifts coefficients to ZN[—(q —1)/2,(q —1)/2].
@ Rounds each coefficient to the nearest multiple of 3 to get c.
Computes hash(r) = (C|K).
@ Sends (C|c), uses session key K for DEM.

Rounding hr saves bandwidth and adds same entropy as adding ternary m.
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Streamlined NTRU Prime: decapsulation

Bob decrypts (C|c¢):
@ Reminder h = g/(3f) in R/q.

e Computes 3fc = 3f(hr + m) = gr + 3fm in R/q,
lifts coefficients to ZN [—(g —1)/2,(q — 1)/2].

@ Reduces the coefficients modulo 3 to get a = gr € R/3.

e Computes r' = a/g € R/3, lifts r' to R.

e Computes hash(r') = (C'|K’) and ¢’ as rounding of hr'.

@ Verifies that ¢/ = c and C' = C.
If all checks verify, K = K’ is the session key between Alice and Bob and
can be used in a data encapsulation mechanism (DEM).

Choosing g > 32t + 1 means no decryption failures, so r = r’ and
verification works unless (C|c) was incorrectly generated or tempered with.
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Streamlined NTRU Prime Security

@ Short recap:

| [NTRU| R-LWE | NTRU Prime |

Polynomial P xP -1 xP+1 xP—x—-1
Degree p prime | power of 2 prime
Modulus q 2d prime prime
# factors of P in R/q > 1 p 1
# proper subfields >1 many 1
Every m encryptable X v v
No decryption failures X X v
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Streamlined NTRU Prime Security

@ Short recap:

| [NTRU | R-LWE | NTRU Prime |

Polynomial P xP—1 xP 41 xP—x—-1
Degree p prime | power of 2 prime
Modulus q 2d prime prime
# factors of P in R/q > 1 p 1
# proper subfields >1 many 1
Every m encryptable X v v
No decryption failures X X v

@ Because of the last 2 v's the analysis is simpler than that of NTRU.
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NTRU Prime Security: parameters

@ We investigated security against the strongest known attacks;
meet-in-the-middle (mitm), hybrid attack of BKZ and mitm, and
lattice sieving.

P q t | Key size | Ciphertext Size | Security
739 | 9829 | 246 | 9.9 Kb 9.1 Kb 232
761 | 4501 | 143 | 9.2 Kb 8.1 Kb 248

@ We underestimated cost of hybrid attack, see Thomas' talk on
Thursday.

@ Security is given as classical security. Quantum computers will speed
up by less than squareroot.
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NTRU Prime Security: parameters

@ We investigated security against the strongest known attacks;
meet-in-the-middle (mitm), hybrid attack of BKZ and mitm, and
lattice sieving.

P q t | Key size | Ciphertext Size | Security
739 | 9829 | 246 | 9.9 Kb 9.1 Kb 232
761 | 4501 | 143 | 9.2 Kb 8.1 Kb 248

@ We underestimated cost of hybrid attack, see Thomas' talk on
Thursday.

@ Security is given as classical security. Quantum computers will speed
up by less than squareroot.

But, is it still fast?
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Polynomial Multiplication

Main bottleneck is polynomial multiplication
Classic choices of xP — 1 and x" 4 1 have very fast reduction.

NTRU uses xP — 1 for p prime and g = 2V,

Most R-LWE systems use x" + 1, with n = 2%; g prime.

Typical implementations use the number-theoretic transform (NTT).
This requires g to be "NTT-friendly”, i.e., x" + 1 splits into linear
factors modulo g, so g = 1 mod 2n;

e.g. n=1024 and g =6 - 2048 + 1.

@ Complete factorization of x” + 1 modulo q is also used in
search-to-decision problem reductions.

@ Obvious benefit: NTT is fast.

@ Not so obvious downside: NTT friendly combinations are rare — likely
to overshoot security targets in some direction.
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Multiplication for NTRU Prime

e How to compute efficiently in Z[x]/(x? — x — 1)?
@ Reduction is not too bad, but no special tricks for multiplication.
@ Multiplication algorithms considered:

» Toom (3-7),

» refined Karatsuba,

» arbitrary degree variant of Karatsuba (3-7 levels).
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Multiplication for NTRU Prime

e How to compute efficiently in Z[x]/(x? — x — 1)?
@ Reduction is not too bad, but no special tricks for multiplication.
@ Multiplication algorithms considered:

» Toom (3-7),

» refined Karatsuba,
> arbitrary degree variant of Karatsuba (37 levels).

@ Best operation count found so far for 768 x 768:
» 5-level refined Karatsuba up to 128 x 128, combined with
» Toom6: evaluated at 0,+1,+2,+3,+4,5, co.
Toom reconstructs a polynomial based on evaluation. We group
coefficients into 6 chunks of size 128 and use Karatsuba for
multiplying these smaller chunks.
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Vectorization

[T T T O [ [ [ [
[ [ [ |

f=
g:
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Vectorization

plEEEE —— EEEE
¢ - I | [ | -

@ Toom & Karatsuba
» cut polynomials into smaller parts; independent operations on the parts

T - (N - [T T 7 -+
NN - I - [ - —_—_"—"

Tanja Lange i https://eprint.iacr.org/2016/461


https://eprint.iacr.org/2016/461

Vectorization

plEEEE —— EEEE
¢ - I | [ | -

@ Toom & Karatsuba
» cut polynomials into smaller parts; independent operations on the parts

CTTT] + e + T T 77+
I - I - T - —_—_—
@ Vectorization
» vectorize across independent multiplications

Tanja Lange
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Performance

@ Theoretical lower bound
» 0.125 cycles per floating-point operation.
» Permutations fully interleavable. First parameter set.

mul con mult add shift ‘ total

op. 42768 9700 98548 6385 | 157401
cycles 5346 1213 12319 799 | 19677

o Current implementation
» Benchmarked performance: 51488 cycles
» possibly due to dependency, latency, scheduling issues.
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Performance

@ Theoretical lower bound
» 0.125 cycles per floating-point operation.
» Permutations fully interleavable. First parameter set.

mul con mult add shift ‘ total

op. 42768 9700 98548 6385 | 157401
cycles 5346 1213 12319 799 | 19677

o Current implementation

» Benchmarked performance: 51488 cycles

» possibly due to dependency, latency, scheduling issues.

» R-LWE with 40000 cycles using NTT in New Hope paper
by Alkim, Ducas, Péppelmann, and Schwabe.
Now even faster implementation in Microsoft Research’s Lattice
Cryptography Library.

» For NTRU Prime, further optimization in progress.

» This level of paranoia is not too expensive (compared with
unstructured LWE or Goppa-code McEliece).
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Bonus slides on attacks
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Odlyzko's meet-in-the-middle attack on NTRU

o Christine's talk gives full explanation and new memory reduction.

@ ldea: split the possibilities for f in two parts

h=(A+h)'g
fi-h=g—f-h

o If there was no g: collision search in f; - hand —f, - h
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Odlyzko's meet-in-the-middle attack on NTRU

o Christine's talk gives full explanation and new memory reduction.

@ ldea: split the possibilities for f in two parts

h=(h+6H)'g
fi-h=g—fh h

If there was no g: collision search in f; - hand —f> - h
@ Solution: look for collisions in c¢(f; - h) and c(—# - h) with

clap+arx+ - +ap, 1xP71) = (1(ap > 0),...,1(ap_1 > 0))

using that g is small and thus 4+g often does not change the sign.
If c(fi - h) = c(—f - h) check whether h(f; + £,) is in L(dg, dg).

Basically runs in squareroot of size of search space.
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Attackable rotations

e In NTRU, x'f is simply a rotation of f, so it has the same
coefficients, just at different positions. This means, x'f also gives a
solution in the mitm attack: hx'f = x'g has same sparsity etc.,
increasing the number of targets.

Decryption using x'f works the same as with f for NTRU, so each

target is valid.
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Attackable rotations

e In NTRU, x'f is simply a rotation of f, so it has the same
coefficients, just at different positions. This means, x'f also gives a
solution in the mitm attack: hx'f = x’g has same sparsity etc.,
increasing the number of targets.

Decryption using x'f works the same as with f for NTRU, so each
target is valid.

@ In NTRU Prime P = xP — x — 1, so reduction modulo P changes
density and weight, e.g.

(x*—=x*4+1)-x=(x+1)—x*+x=x3+2x+1mod (x° —x —1).

e For small j up to p — 1 — deg(f) have shifted (valid) target.

@ Very unlikely that any x'f for large i produces viable keys;
first reduction occurs on average at i = p/(2t).
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Security against Odlyzko's meet-in-the-middle attack

@ Number of choices for f is

P\ A2t
2

because f is t-small, signs of those 2t coefficients are random.
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Security against Odlyzko's meet-in-the-middle attack

@ Number of choices for f is

(p)22t
2t

because f is t-small, signs of those 2t coefficients are random.
e We (over-)estimate number of viable rotations by p — t.
@ Running time / memory mitm against Streamlined NTRU Prime

(5)2%

V2(p—t)
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Security against Odlyzko's meet-in-the-middle attack

@ Number of choices for f is

(p)22t
2t

because f is t-small, signs of those 2t coefficients are random.
e We (over-)estimate number of viable rotations by p — t.
@ Running time / memory mitm against Streamlined NTRU Prime

(5)2%

V2(p—t)

@ Memory requirement can be reduced.
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Security against lattice sieving

Lattice attack setup is same as for NTRU.
@ Recall h=g/(3f) in R/q.
@ This implies that for k ¢ R: f-3h+ k-g=g.
@ Streamlined NTRU Prime lattice

el )= n.
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Security against lattice sieving

Lattice attack setup is same as for NTRU.
@ Recall h=g/(3f) in R/q.
@ This implies that for k ¢ R: f-3h+ k-g=g.
@ Streamlined NTRU Prime lattice

el )= n.

Keypair (g, f) is a short vector in this lattice.

20.292-2p+o0(p) 20.208-2p+o0(p)

Asymptotically sieving works in
memory.

using

Crossover point between sieving and BKZ is still unclear.

Memory is more an issue than time.
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Hybrid attack

Howgrave-Graham combines lattice basis reduction and
meet-in-the-middle attack.

@ |dea: reduce submatrix of the Streamlined NTRU Prime lattice,
then perform mitm on the rest.
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Hybrid attack

Howgrave-Graham combines lattice basis reduction and
meet-in-the-middle attack.

@ |dea: reduce submatrix of the Streamlined NTRU Prime lattice,
then perform mitm on the rest.

@ Use BKZ on submatrix B to get B”:

qgl, 0 0
. gl 0\ _ 7
C <H I>_ x B0
* S

@ Guess options for last w’ coordinates of f, using collision search (as
before).

o If the Hermite factor of B’ is small enough, then a rounding algorithm
can detect collision of halfguesses.
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Security against the hybrid attack

@ Balance the costs of the BKZ and mitm phase.
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Security against the hybrid attack

@ Balance the costs of the BKZ and mitm phase.

@ Hoffstein, Pipher, Schanck, Silverman, Whyte, and Zhang
[HPSWZ15] published simplfied analyzis tool.

@ Compute BKZ costs with Chen-Nguyen simulator.

@ Estimate the mitm costs by estimating the size of
the projected space [HPSWZ15].
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Security against the hybrid attack

@ Balance the costs of the BKZ and mitm phase.

@ Hoffstein, Pipher, Schanck, Silverman, Whyte, and Zhang
[HPSWZ15] published simplfied analyzis tool.

@ Compute BKZ costs with Chen-Nguyen simulator.

@ Estimate the mitm costs by estimating the size of
the projected space [HPSWZ15].

@ For detailed formulas and justifications, see our paper
https://eprint.iacr.org/2016/461.
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Bonus slides: why automorphisms matter

Targets and history:
@ 2014.10 Campbell-Groves—Shepherd describe an ideal-lattice-based
system “Soliloquy”; claim quantum poly-time key recovery.
@ 2010 Smart—Vercauteren system is practically identical to Soliloquy.

@ 2009 Gentry system (simpler version described at STOC) has the
same key-recovery problem.

@ 2012 Garg—Gentry—Halevi multilinear maps have the same
key-recovery problem (and many other security issues).
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Smart—Vercauteren; Soliloquy

o Parameter: k > 1.
o Define R = Z[x]/®y.
@ Public key: prime g and c € Z/q.

@ Secret key: short element g € R with gR = gR + (x — ¢)R;
i.e., short generator of the ideal gR + (x — ¢)R.

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461


https://eprint.iacr.org/2016/461

Smart—Vercauteren; Soliloquy

Parameter: k > 1.
Define R = Z[x]/® .
Public key: prime g and c € Z/q.

Secret key: short element g € R with gR = qR + (x — ¢)R;
i.e., short generator of the ideal gR + (x — ¢)R.

1993 Cohen textbook “A course in computational algebraic number
theory” explains how to find generators.
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Smart—Vercauteren; Soliloquy

Parameter: k > 1.
Define R = Z[x]/® .
Public key: prime g and c € Z/q.

Secret key: short element g € R with gR = qR + (x — ¢)R;
i.e., short generator of the ideal gR + (x — ¢)R.

@ 1993 Cohen textbook “A course in computational algebraic number
theory” explains how to find generators.

@ Smart—Vercauteren comment that this would take exponential time.
@ But it actually takes subexponential time. Same basic idea as NFS.

o Campbell-Groves—Shepherd claim quantum poly time. Claim disputed
by Biasse, not defended by CGS.
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Smart—Vercauteren; Soliloquy

Parameter: k > 1.
Define R = Z[x]/® .
Public key: prime g and c € Z/q.

Secret key: short element g € R with gR = qR + (x — ¢)R;
i.e., short generator of the ideal gR + (x — ¢)R.

@ 1993 Cohen textbook “A course in computational algebraic number
theory” explains how to find generators.

@ Smart—Vercauteren comment that this would take exponential time.
@ But it actually takes subexponential time. Same basic idea as NFS.

o Campbell-Groves—Shepherd claim quantum poly time. Claim disputed
by Biasse, not defended by CGS.

@ 2016 Biasse—Song: different algorithm that takes quantum poly time,
building on 2014 Eisentrager—Hallgren—Kitaev—-Song.
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How to get a short generator?

Have ideal / of R.
Want short g with gR = /; have g’ with g’'R = I.

Know g’ = ug for some unit u € R*.

To find u move to log lattice.
Logg’ = Logu+ Logg,

where Log is Dirichlet’s log map.

Dirichlet’s unit theorem:
Log R* is a lattice of known dimension.

o Finding Log u is a closest-vector problem in this lattice.
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Quote from Campbell-Groves—Shepherd

“A simple generating set for the cyclotomic units is of course known.
The image of O* [here R*] under the logarithm map forms a lattice.
The determinant of this lattice turns out to be much bigger than the
typical loglength of a private key « [here g], so it is easy to recover the

causally short private key given any generator of aO [here /], e.g. via the
LLL lattice reduction algorithm.”
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Automorphisms

o x> x3, x x>, x+ x7, etc. are automorphisms of R = Z[x]/® .
@ Easy to see (1 — x3)/(1 — x) € R*; for inverse use expansion.
@ “Cyclotomic units" are defined as
R*N {:l:XeO H(l - Xi)ei} .
@ Weber's conjecture:

All elements of R* are cyclotomic units.

Experiments confirm that SV is quickly broken by LLL using, e.g.,
1997 Washington textbook basis for cyclotomic units.

@ Shortness of basis is critical; this was not highlighted in CGS analysis.
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