
Commercial Break

Summer school on post-quantum crypto
Eindhoven, 19–23 June 2017

https://2017.pqcrypto.org/school/index.html

Executive school on post-quantum crypto
Eindhoven, 22–23 June 2017

https://2017.pqcrypto.org/exec/index.html

PQCrypto 2017
Utrecht, 26–28 June 2017

https://2017.pqcrypto.org/conference/index.html

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 1

https://2017.pqcrypto.org/school/index.html
https://2017.pqcrypto.org/exec/index.html
https://2017.pqcrypto.org/conference/index.html
https://eprint.iacr.org/2016/461

NTRU Prime

Daniel J. Bernstein, Chitchanok Chuengsatiansup,
Tanja Lange, and Christine van Vredendaal

Technische Universiteit Eindhoven

20 January 2017

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 2

https://eprint.iacr.org/2016/461

NTRU

Introduced by Hoffstein–Pipher–Silverman in 1998.

Security related to lattice problems; pre-version cryptanalyzed with
LLL by Coppersmith and Shamir.

System parameters (p, q, t), p prime, integers t, q, gcd(p, q) = 1.

All computations done in ring R = Z[x]/(xp − 1).

Private key: f , g ∈ R sparse with coefficients in {−1, 0, 1}.
Additional requirement: f must be invertible in R modulo q.

Public key h = 3g/f mod q.

Can see this as lattice with basis matrix

B =

(
q Ip 0
H Ip

)
,

where H corresponds to multiplication by h/3 modulo xp − 1.

(g , f) is a short vector in the lattice as result of

(k , f)B = (kq + f · h/3, f) = (g , f)

for some polynomial k (from fh/3 = g − kq).

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 3

https://eprint.iacr.org/2016/461

NTRU

Introduced by Hoffstein–Pipher–Silverman in 1998.

Security related to lattice problems; pre-version cryptanalyzed with
LLL by Coppersmith and Shamir.

System parameters (p, q, t), p prime, integers t, q, gcd(p, q) = 1.

All computations done in ring R = Z[x]/(xp − 1).

Private key: f , g ∈ R sparse with coefficients in {−1, 0, 1}.
Additional requirement: f must be invertible in R modulo q.

Public key h = 3g/f mod q.

Can see this as lattice with basis matrix

B =

(
q Ip 0
H Ip

)
,

where H corresponds to multiplication by h/3 modulo xp − 1.

(g , f) is a short vector in the lattice as result of

(k , f)B = (kq + f · h/3, f) = (g , f)

for some polynomial k (from fh/3 = g − kq).

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 3

https://eprint.iacr.org/2016/461

Classic NTRU
System parameters (p, q, t), p prime, integers t, q, gcd(p, q) = 1.

All computations done in ring R = Z[x]/(xp − 1), some use additional
reduction modulo q, ring denoted by Rq.

Private key: f , g ∈ R with coefficients in {−1, 0, 1}, almost all
coefficients are zero (small fixed number are nonzero).
Additional requirement: f must be invertible in R modulo q and
modulo 3.

Public key h = 3g/f mod q.

Encryption of message m ∈ R, coefficients in {−1, 0, 1}:
Pick random, sparse r ∈ R, same sample space as f ; compute:

c = r · h + m mod q.

Decryption of c ∈ Rq: Compute

a = f · c = f (rh + m) ≡ f (3rg/f + m) ≡ 3rg + fm mod q,

move all coefficients to [−q/2, q/2]. If everything is small enough
then a equals 3rg + fm in R and m = a/f mod 3.

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 4

https://eprint.iacr.org/2016/461

Classic NTRU
System parameters (p, q, t), p prime, integers t, q, gcd(p, q) = 1.

All computations done in ring R = Z[x]/(xp − 1), some use additional
reduction modulo q, ring denoted by Rq.

Private key: f , g ∈ R with coefficients in {−1, 0, 1}, almost all
coefficients are zero (small fixed number are nonzero).
Additional requirement: f must be invertible in R modulo q and
modulo 3.

Public key h = 3g/f mod q.

Encryption of message m ∈ R, coefficients in {−1, 0, 1}:
Pick random, sparse r ∈ R, same sample space as f ; compute:

c = r · h + m mod q.

Decryption of c ∈ Rq: Compute

a = f · c = f (rh + m) ≡ f (3rg/f + m) ≡ 3rg + fm mod q,

move all coefficients to [−q/2, q/2]. If everything is small enough
then a equals 3rg + fm in R and m = a/f mod 3.

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 4

https://eprint.iacr.org/2016/461

Classic NTRU
System parameters (p, q, t), p prime, integers t, q, gcd(p, q) = 1.

All computations done in ring R = Z[x]/(xp − 1), some use additional
reduction modulo q, ring denoted by Rq.

Private key: f , g ∈ R with coefficients in {−1, 0, 1}, almost all
coefficients are zero (small fixed number are nonzero).
Additional requirement: f must be invertible in R modulo q and
modulo 3.

Public key h = 3g/f mod q.

Encryption of message m ∈ R, coefficients in {−1, 0, 1}:
Pick random, sparse r ∈ R, same sample space as f ; compute:

c = r · h + m mod q.

Decryption of c ∈ Rq: Compute

a = f · c = f (rh + m) ≡ f (3rg/f + m) ≡ 3rg + fm mod q,

move all coefficients to [−q/2, q/2]. If everything is small enough
then a equals 3rg + fm in R and m = a/f mod 3.

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 4

https://eprint.iacr.org/2016/461

Decryption failures
Decryption of c ∈ Rq: Compute

a = f · c = f (rh + m) ≡ f (3rg/f + m) ≡ 3rg + fm mod q,

move all coefficients to [−q/2, q/2]. If everything is small enough then a
equals 3rg + fm in R and m = a/f mod 3.
Let

L(d , t) ={F ∈ R|F has d coefficients equal to 1

and t coefficients equal to −1, all others 0}.

Let f ∈ L(df , df − 1), r ∈ L(dr , dr), and g ∈ L(dg , dg) with dr < dg .
Then 3rg + fm has coefficients of size at most

3 · 2dr + 2df − 1

which is larger than q/2 for typical parameters. Such large coefficients are
highly unlikely – but annoying for applications and guarantees.
Security decreases with large q; reduction is important.

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 5

https://eprint.iacr.org/2016/461

Maps on Rq

Evaluation at 1 attack: c(1) = m(1)

Consider Rq = (Z/q)[x]/(xp − 1).

Can possibly get more information on m from homomorphism
ψ : Rq → T , for some ring T .

Attacker applies map to h = 3g/f and to c = m + hr in Rq.

Typical NTRU choice: q = 2048 leads to natural ring maps from
(Z/2048)[x]/(xp − 1) to

I (Z/2)[x]/(xp − 1),
I (Z/4)[x]/(xp − 1),
I (Z/8)[x]/(xp − 1), etc.

Unclear whether these can be exploited to get information on m.

2004 Smart–Vercauteren–Silverman: Maybe. Complicated.

Typical R-LWE case: take (Z/q)[x]/(xn + 1) with n power of 2 so
that xn + 1 splits completely modulo q.

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 6

https://eprint.iacr.org/2016/461

Do these maps damage security?

Unclear.

Consider generalized setting (Z/q)[x]/P for some polynomial P.
Construct bad cases of P and q, break those systems:

2014 Eisenträger–Hallgren–Lauter,

2015 Elias–Lauter–Ozman–Stange,

2016 Chen–Lauter–Stange.

Recent Castryck–Iliashenko–Vercauteren cryptanalysis of (Z/q)[x]/P
covers Elias–Lauter–Ozman–Stange cases without dependence on q, but
not more recent Chen–Lauter–Stange ones.

Some polynomials P are bad because they lead to very low noise in some
coordinates independent of q.

But for some pairs P, q the properties of P modulo q matter.
(Yeah, number theory!)
Latest addition:
attack on multiquadratic fields (Christine’s and Dan’s talk yesterday).

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 7

https://eprint.iacr.org/2016/461

Do these maps damage security?

Consider generalized setting (Z/q)[x]/P for some polynomial P.
Construct bad cases of P and q, break those systems:

2014 Eisenträger–Hallgren–Lauter,

2015 Elias–Lauter–Ozman–Stange,

2016 Chen–Lauter–Stange.

Recent Castryck–Iliashenko–Vercauteren cryptanalysis of (Z/q)[x]/P
covers Elias–Lauter–Ozman–Stange cases without dependence on q, but
not more recent Chen–Lauter–Stange ones.

Some polynomials P are bad because they lead to very low noise in some
coordinates independent of q.

But for some pairs P, q the properties of P modulo q matter.
(Yeah, number theory!)

Latest addition:
attack on multiquadratic fields (Christine’s and Dan’s talk yesterday).

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 7

https://eprint.iacr.org/2016/461

Do these maps damage security?

Consider generalized setting (Z/q)[x]/P for some polynomial P.
Construct bad cases of P and q, break those systems:

2014 Eisenträger–Hallgren–Lauter,

2015 Elias–Lauter–Ozman–Stange,

2016 Chen–Lauter–Stange.

Recent Castryck–Iliashenko–Vercauteren cryptanalysis of (Z/q)[x]/P
covers Elias–Lauter–Ozman–Stange cases without dependence on q, but
not more recent Chen–Lauter–Stange ones.

Some polynomials P are bad because they lead to very low noise in some
coordinates independent of q.

But for some pairs P, q the properties of P modulo q matter.
(Yeah, number theory!)
Latest addition:
attack on multiquadratic fields (Christine’s and Dan’s talk yesterday).

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 7

https://eprint.iacr.org/2016/461

NTRU Prime

Born out of paranoia, aka. risk management.

Talk at Oberwolfach 2013 by Dan with rough proposal.

Feb 2014: more detailed blogpost by Dan
https://blog.cr.yp.to/20140213-ideal.html focussing on
avenues for attacks.

Subfield-logarithm attack strategy, sometimes much faster than
Gentry–Szydlo.

Now fully worked out NTRU Prime and Streamlined NTRU Prime
(with parameters and implementation).

NTRU Prime
I avoids large proper subfields;
I avoids ring homomorphisms to smaller rings;
I avoids an easy to find fundamental basis of short units which is useful

in Soliloquy attack (Campbell–Groves–Shepherd) and
Cramer–Ducas–Peikert–Regev.

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 8

https://blog.cr.yp.to/20140213-ideal.html
https://eprint.iacr.org/2016/461

NTRU Prime

Born out of paranoia, aka. risk management.

Talk at Oberwolfach 2013 by Dan with rough proposal.

Feb 2014: more detailed blogpost by Dan
https://blog.cr.yp.to/20140213-ideal.html focussing on
avenues for attacks.

Subfield-logarithm attack strategy, sometimes much faster than
Gentry–Szydlo.

Now fully worked out NTRU Prime and Streamlined NTRU Prime
(with parameters and implementation).

NTRU Prime
I avoids large proper subfields;
I avoids ring homomorphisms to smaller rings;
I avoids an easy to find fundamental basis of short units which is useful

in Soliloquy attack (Campbell–Groves–Shepherd) and
Cramer–Ducas–Peikert–Regev.

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 8

https://blog.cr.yp.to/20140213-ideal.html
https://eprint.iacr.org/2016/461

NTRU Prime ring

Differences with NTRU:
prime degree, large Galois group, inert modulus.

Choose monic irreducible polynomial P ∈ Z[x].

Choose prime q such that P is irreducible modulo q; this means that
q is inert in R = Z[x]/P and (Z/q)[x]/P is a field.

Further choose P of prime degree p with large Galois group.

Specifically, set P = xp − x − 1. This has Galois group Sp of size p!.

Streamlined NTRU Prime works over the NTRU Prime field

R/q = (Z/q)[x]/(xp − x − 1).

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 9

https://eprint.iacr.org/2016/461

NTRU Prime ring

Differences with NTRU:
prime degree, large Galois group, inert modulus.

Choose monic irreducible polynomial P ∈ Z[x].

Choose prime q such that P is irreducible modulo q; this means that
q is inert in R = Z[x]/P and (Z/q)[x]/P is a field.

Further choose P of prime degree p with large Galois group.

Specifically, set P = xp − x − 1. This has Galois group Sp of size p!.

Streamlined NTRU Prime works over the NTRU Prime field

R/q = (Z/q)[x]/(xp − x − 1).

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 9

https://eprint.iacr.org/2016/461

NTRU Prime ring

Differences with NTRU:
prime degree, large Galois group, inert modulus.

Choose monic irreducible polynomial P ∈ Z[x].

Choose prime q such that P is irreducible modulo q; this means that
q is inert in R = Z[x]/P and (Z/q)[x]/P is a field.

Further choose P of prime degree p with large Galois group.

Specifically, set P = xp − x − 1. This has Galois group Sp of size p!.

Streamlined NTRU Prime works over the NTRU Prime field

R/q = (Z/q)[x]/(xp − x − 1).

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 9

https://eprint.iacr.org/2016/461

NTRU Prime: added defenses

Prime degree, large Galois group, inert modulus.

Ü Only subfields of Q[x]/P are itself and Q. Avoids structures used by,
e.g., multiquad attack.

Ü Large Galois group means no easy to compute automorphisms. Roots
of P live in degree-p! extension. Avoids structures used by
Campbell–Groves–Shepherd attack (obtaining short unit basis). No
hopping between units, so no easy way to extend from some small
unit to a fundamental system of short units.

Ü No ring homomorphism to smaller nonzero rings. Avoids structures
used by Chen–Lauter–Stange attack.

Irreducibility also avoids the evaluation-at-1 attack which simplifies
padding.

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 10

https://eprint.iacr.org/2016/461

NTRU Prime: added defenses

Prime degree, large Galois group, inert modulus.

Ü Only subfields of Q[x]/P are itself and Q. Avoids structures used by,
e.g., multiquad attack.

Ü Large Galois group means no easy to compute automorphisms. Roots
of P live in degree-p! extension. Avoids structures used by
Campbell–Groves–Shepherd attack (obtaining short unit basis). No
hopping between units, so no easy way to extend from some small
unit to a fundamental system of short units.

Ü No ring homomorphism to smaller nonzero rings. Avoids structures
used by Chen–Lauter–Stange attack.

Irreducibility also avoids the evaluation-at-1 attack which simplifies
padding.

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 10

https://eprint.iacr.org/2016/461

NTRU Prime: added defenses

Prime degree, large Galois group, inert modulus.

Ü Only subfields of Q[x]/P are itself and Q. Avoids structures used by,
e.g., multiquad attack.

Ü Large Galois group means no easy to compute automorphisms. Roots
of P live in degree-p! extension. Avoids structures used by
Campbell–Groves–Shepherd attack (obtaining short unit basis). No
hopping between units, so no easy way to extend from some small
unit to a fundamental system of short units.

Ü No ring homomorphism to smaller nonzero rings. Avoids structures
used by Chen–Lauter–Stange attack.

Irreducibility also avoids the evaluation-at-1 attack which simplifies
padding.

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 10

https://eprint.iacr.org/2016/461

Streamlined NTRU Prime: private and public key

System parameters (p, q, t), p, q prime, q ≥ 32t + 1.

Pick g small in R

g = g0 + · · ·+ gp−1xp−1 with gi ∈ {−1, 0, 1}

No weight restriction on g , only size restriction on coefficients;
g required to be invertible in R/3.

Pick t-small f ∈ R

f = f0 + · · ·+ fp−1xp−1 with fi ∈ {−1, 0, 1} and
∑
|fi | = 2t

Since R/q is a field, f is invertible.

Compute public key h = g/(3f) in R/q.

Private key is f and 1/g ∈ R/3.

Difference with NTRU: more key options, 3 in denominator.

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 11

https://eprint.iacr.org/2016/461

Streamlined NTRU Prime: private and public key

System parameters (p, q, t), p, q prime, q ≥ 32t + 1.

Pick g small in R

g = g0 + · · ·+ gp−1xp−1 with gi ∈ {−1, 0, 1}

No weight restriction on g , only size restriction on coefficients;
g required to be invertible in R/3.

Pick t-small f ∈ R

f = f0 + · · ·+ fp−1xp−1 with fi ∈ {−1, 0, 1} and
∑
|fi | = 2t

Since R/q is a field, f is invertible.

Compute public key h = g/(3f) in R/q.

Private key is f and 1/g ∈ R/3.

Difference with NTRU: more key options, 3 in denominator.

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 11

https://eprint.iacr.org/2016/461

Streamlined NTRU Prime: KEM/DEM

Streamlined NTRU Prime is a Key Encapsulation Mechanism (KEM).

Combine with Data Encapsulation Mechanism (DEM) to send
messages. (Fancy name for symmetric authenticated encryption under
shared key.)

KEM:

Alice looks up Bob’s public key h.

Picks t-small r ∈ R (i.e., ri ∈ {−1, 0, 1},
∑
|ri | = 2t).

Computes hr in R/q, lifts coefficients to Z ∩ [−(q − 1)/2, (q − 1)/2].

Rounds each coefficient to the nearest multiple of 3 to get c .

Computes hash(r) = (C |K).

Sends (C |c), uses session key K for DEM.

Rounding hr saves bandwidth and adds same entropy as adding ternary m.

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 12

https://eprint.iacr.org/2016/461

Streamlined NTRU Prime: KEM/DEM

Streamlined NTRU Prime is a Key Encapsulation Mechanism (KEM).

Combine with Data Encapsulation Mechanism (DEM) to send
messages. (Fancy name for symmetric authenticated encryption under
shared key.)

KEM:

Alice looks up Bob’s public key h.

Picks t-small r ∈ R (i.e., ri ∈ {−1, 0, 1},
∑
|ri | = 2t).

Computes hr in R/q, lifts coefficients to Z ∩ [−(q − 1)/2, (q − 1)/2].

Rounds each coefficient to the nearest multiple of 3 to get c .

Computes hash(r) = (C |K).

Sends (C |c), uses session key K for DEM.

Rounding hr saves bandwidth and adds same entropy as adding ternary m.

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 12

https://eprint.iacr.org/2016/461

Streamlined NTRU Prime: KEM/DEM

Streamlined NTRU Prime is a Key Encapsulation Mechanism (KEM).

Combine with Data Encapsulation Mechanism (DEM) to send
messages. (Fancy name for symmetric authenticated encryption under
shared key.)

KEM:

Alice looks up Bob’s public key h.

Picks t-small r ∈ R (i.e., ri ∈ {−1, 0, 1},
∑
|ri | = 2t).

Computes hr in R/q, lifts coefficients to Z ∩ [−(q − 1)/2, (q − 1)/2].

Rounds each coefficient to the nearest multiple of 3 to get c .

Computes hash(r) = (C |K).

Sends (C |c), uses session key K for DEM.

Rounding hr saves bandwidth and adds same entropy as adding ternary m.

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 12

https://eprint.iacr.org/2016/461

Streamlined NTRU Prime: decapsulation

Bob decrypts (C |c):

Reminder h = g/(3f) in R/q.

Computes 3fc = 3f (hr + m) = gr + 3fm in R/q,
lifts coefficients to Z ∩ [−(q − 1)/2, (q − 1)/2].

Reduces the coefficients modulo 3 to get a = gr ∈ R/3.

Computes r ′ = a/g ∈ R/3, lifts r ′ to R.

Computes hash(r ′) = (C ′|K ′) and c ′ as rounding of hr ′.

Verifies that c ′ = c and C ′ = C .

If all checks verify, K = K ′ is the session key between Alice and Bob and
can be used in a data encapsulation mechanism (DEM).

Choosing q ≥ 32t + 1 means no decryption failures, so r = r ′ and
verification works unless (C |c) was incorrectly generated or tempered with.

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 13

https://eprint.iacr.org/2016/461

Streamlined NTRU Prime Security

Short recap:

NTRU R-LWE NTRU Prime

Polynomial P xp − 1 xp + 1 xp − x − 1

Degree p prime power of 2 prime

Modulus q 2d prime prime

factors of P in R/q > 1 p 1

proper subfields > 1 many 1

Every m encryptable 7 3 3

No decryption failures 7 7 3

Because of the last 2 3’s the analysis is simpler than that of NTRU.

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 14

https://eprint.iacr.org/2016/461

Streamlined NTRU Prime Security

Short recap:

NTRU R-LWE NTRU Prime

Polynomial P xp − 1 xp + 1 xp − x − 1

Degree p prime power of 2 prime

Modulus q 2d prime prime

factors of P in R/q > 1 p 1

proper subfields > 1 many 1

Every m encryptable 7 3 3

No decryption failures 7 7 3

Because of the last 2 3’s the analysis is simpler than that of NTRU.

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 14

https://eprint.iacr.org/2016/461

NTRU Prime Security: parameters

We investigated security against the strongest known attacks;
meet-in-the-middle (mitm), hybrid attack of BKZ and mitm, and
lattice sieving.

p q t Key size Ciphertext Size Security
739 9829 246 9.9 Kb 9.1 Kb 232

761 4591 143 9.2 Kb 8.1 Kb 248

We underestimated cost of hybrid attack, see Thomas’ talk on
Thursday.

Security is given as classical security. Quantum computers will speed
up by less than squareroot.

But, is it still fast?

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 15

https://eprint.iacr.org/2016/461

NTRU Prime Security: parameters

We investigated security against the strongest known attacks;
meet-in-the-middle (mitm), hybrid attack of BKZ and mitm, and
lattice sieving.

p q t Key size Ciphertext Size Security
739 9829 246 9.9 Kb 9.1 Kb 232

761 4591 143 9.2 Kb 8.1 Kb 248

We underestimated cost of hybrid attack, see Thomas’ talk on
Thursday.

Security is given as classical security. Quantum computers will speed
up by less than squareroot.

But, is it still fast?

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 15

https://eprint.iacr.org/2016/461

Polynomial Multiplication

Main bottleneck is polynomial multiplication

Classic choices of xp − 1 and xn + 1 have very fast reduction.

NTRU uses xp − 1 for p prime and q = 2N .

Most R-LWE systems use xn + 1, with n = 2t ; q prime.
Typical implementations use the number-theoretic transform (NTT).
This requires q to be “NTT-friendly”, i.e., xn + 1 splits into linear
factors modulo q, so q ≡ 1 mod 2n;
e.g. n = 1024 and q = 6 · 2048 + 1.

Complete factorization of xn + 1 modulo q is also used in
search-to-decision problem reductions.

Obvious benefit: NTT is fast.

Not so obvious downside: NTT friendly combinations are rare – likely
to overshoot security targets in some direction.

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 16

https://eprint.iacr.org/2016/461

Multiplication for NTRU Prime

How to compute efficiently in Z[x]/(xp − x − 1)?

Reduction is not too bad, but no special tricks for multiplication.

Multiplication algorithms considered:
I Toom (3–7),
I refined Karatsuba,
I arbitrary degree variant of Karatsuba (3–7 levels).

Best operation count found so far for 768 × 768:
I 5-level refined Karatsuba up to 128× 128, combined with
I Toom6: evaluated at 0,±1,±2,±3,±4, 5,∞.

Toom reconstructs a polynomial based on evaluation. We group
coefficients into 6 chunks of size 128 and use Karatsuba for
multiplying these smaller chunks.

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 17

https://eprint.iacr.org/2016/461

Multiplication for NTRU Prime

How to compute efficiently in Z[x]/(xp − x − 1)?

Reduction is not too bad, but no special tricks for multiplication.

Multiplication algorithms considered:
I Toom (3–7),
I refined Karatsuba,
I arbitrary degree variant of Karatsuba (3–7 levels).

Best operation count found so far for 768 × 768:
I 5-level refined Karatsuba up to 128× 128, combined with
I Toom6: evaluated at 0,±1,±2,±3,±4, 5,∞.

Toom reconstructs a polynomial based on evaluation. We group
coefficients into 6 chunks of size 128 and use Karatsuba for
multiplying these smaller chunks.

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 17

https://eprint.iacr.org/2016/461

Vectorization

f =

g =

Toom & Karatsuba
I cut polynomials into smaller parts; independent operations on the parts

+ + +

+ + +

Vectorization
I vectorize across independent multiplications

×

×

×

×

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 18

https://eprint.iacr.org/2016/461

Vectorization

f =

g =

Toom & Karatsuba
I cut polynomials into smaller parts; independent operations on the parts

+ + +

+ + +

Vectorization
I vectorize across independent multiplications

×

×

×

×

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 18

https://eprint.iacr.org/2016/461

Vectorization

f =

g =

Toom & Karatsuba
I cut polynomials into smaller parts; independent operations on the parts

+ + +

+ + +

Vectorization
I vectorize across independent multiplications

×

×

×

×

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 18

https://eprint.iacr.org/2016/461

Performance
Theoretical lower bound

I 0.125 cycles per floating-point operation.
I Permutations fully interleavable. First parameter set.

mul con mult add shift total

op. 42768 9700 98548 6385 157401
cycles 5346 1213 12319 799 19677

Current implementation
I Benchmarked performance: 51488 cycles
I possibly due to dependency, latency, scheduling issues.

I R-LWE with 40000 cycles using NTT in New Hope paper
by Alkim, Ducas, Pöppelmann, and Schwabe.
Now even faster implementation in Microsoft Research’s Lattice
Cryptography Library.

I For NTRU Prime, further optimization in progress.
I This level of paranoia is not too expensive (compared with

unstructured LWE or Goppa-code McEliece).

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 19

https://eprint.iacr.org/2016/461

Performance
Theoretical lower bound

I 0.125 cycles per floating-point operation.
I Permutations fully interleavable. First parameter set.

mul con mult add shift total

op. 42768 9700 98548 6385 157401
cycles 5346 1213 12319 799 19677

Current implementation
I Benchmarked performance: 51488 cycles
I possibly due to dependency, latency, scheduling issues.
I R-LWE with 40000 cycles using NTT in New Hope paper

by Alkim, Ducas, Pöppelmann, and Schwabe.
Now even faster implementation in Microsoft Research’s Lattice
Cryptography Library.

I For NTRU Prime, further optimization in progress.
I This level of paranoia is not too expensive (compared with

unstructured LWE or Goppa-code McEliece).

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 19

https://eprint.iacr.org/2016/461

Bonus slides on attacks

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 20

https://eprint.iacr.org/2016/461

Odlyzko’s meet-in-the-middle attack on NTRU

Christine’s talk gives full explanation and new memory reduction.

Idea: split the possibilities for f in two parts

h = (f1 + f2)−1g

f1 · h = g − f2 · h.

If there was no g : collision search in f1 · h and −f2 · h

Solution: look for collisions in c(f1 · h) and c(−f2 · h) with

c(a0 + a1x + · · ·+ ap−1xp−1) = (1(a0 > 0), . . . , 1(ap−1 > 0))

using that g is small and thus +g often does not change the sign.

If c(f1 · h) = c(−f2 · h) check whether h(f1 + f2) is in L(dg , dg).

Basically runs in squareroot of size of search space.

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 21

https://eprint.iacr.org/2016/461

Odlyzko’s meet-in-the-middle attack on NTRU

Christine’s talk gives full explanation and new memory reduction.

Idea: split the possibilities for f in two parts

h = (f1 + f2)−1g

f1 · h = g − f2 · h.

If there was no g : collision search in f1 · h and −f2 · h
Solution: look for collisions in c(f1 · h) and c(−f2 · h) with

c(a0 + a1x + · · ·+ ap−1xp−1) = (1(a0 > 0), . . . , 1(ap−1 > 0))

using that g is small and thus +g often does not change the sign.

If c(f1 · h) = c(−f2 · h) check whether h(f1 + f2) is in L(dg , dg).

Basically runs in squareroot of size of search space.

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 21

https://eprint.iacr.org/2016/461

Attackable rotations

In NTRU, x i f is simply a rotation of f , so it has the same
coefficients, just at different positions. This means, x i f also gives a
solution in the mitm attack: hx i f = x ig has same sparsity etc.,
increasing the number of targets.
Decryption using x i f works the same as with f for NTRU, so each
target is valid.

In NTRU Prime P = xp − x − 1, so reduction modulo P changes
density and weight, e.g.

(x4 − x2 + 1) · x ≡ (x + 1)− x3 + x = x3 + 2x + 1 mod (x5 − x − 1).

For small i up to p − 1− deg(f) have shifted (valid) target.

Very unlikely that any x i f for large i produces viable keys;
first reduction occurs on average at i = p/(2t).

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 22

https://eprint.iacr.org/2016/461

Attackable rotations

In NTRU, x i f is simply a rotation of f , so it has the same
coefficients, just at different positions. This means, x i f also gives a
solution in the mitm attack: hx i f = x ig has same sparsity etc.,
increasing the number of targets.
Decryption using x i f works the same as with f for NTRU, so each
target is valid.

In NTRU Prime P = xp − x − 1, so reduction modulo P changes
density and weight, e.g.

(x4 − x2 + 1) · x ≡ (x + 1)− x3 + x = x3 + 2x + 1 mod (x5 − x − 1).

For small i up to p − 1− deg(f) have shifted (valid) target.

Very unlikely that any x i f for large i produces viable keys;
first reduction occurs on average at i = p/(2t).

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 22

https://eprint.iacr.org/2016/461

Security against Odlyzko’s meet-in-the-middle attack

Number of choices for f is (
p

2t

)
22t

because f is t-small, signs of those 2t coefficients are random.

We (over-)estimate number of viable rotations by p − t.

Running time / memory mitm against Streamlined NTRU Prime

L =

√(p
2t

)
22t√

2(p − t)
.

Memory requirement can be reduced.

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 23

https://eprint.iacr.org/2016/461

Security against Odlyzko’s meet-in-the-middle attack

Number of choices for f is (
p

2t

)
22t

because f is t-small, signs of those 2t coefficients are random.

We (over-)estimate number of viable rotations by p − t.

Running time / memory mitm against Streamlined NTRU Prime

L =

√(p
2t

)
22t√

2(p − t)
.

Memory requirement can be reduced.

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 23

https://eprint.iacr.org/2016/461

Security against Odlyzko’s meet-in-the-middle attack

Number of choices for f is (
p

2t

)
22t

because f is t-small, signs of those 2t coefficients are random.

We (over-)estimate number of viable rotations by p − t.

Running time / memory mitm against Streamlined NTRU Prime

L =

√(p
2t

)
22t√

2(p − t)
.

Memory requirement can be reduced.

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 23

https://eprint.iacr.org/2016/461

Security against lattice sieving

Lattice attack setup is same as for NTRU.

Recall h = g/(3f) in R/q.

This implies that for k ∈ R: f · 3h + k · q = g .

Streamlined NTRU Prime lattice

(
k f

)(qI 0
H I

)
=
(
g f

)
.

Keypair (g , f) is a short vector in this lattice.

Asymptotically sieving works in 20.292·2p+o(p) using 20.208·2p+o(p)

memory.

Crossover point between sieving and BKZ is still unclear.

Memory is more an issue than time.

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 24

https://eprint.iacr.org/2016/461

Security against lattice sieving

Lattice attack setup is same as for NTRU.

Recall h = g/(3f) in R/q.

This implies that for k ∈ R: f · 3h + k · q = g .

Streamlined NTRU Prime lattice

(
k f

)(qI 0
H I

)
=
(
g f

)
.

Keypair (g , f) is a short vector in this lattice.

Asymptotically sieving works in 20.292·2p+o(p) using 20.208·2p+o(p)

memory.

Crossover point between sieving and BKZ is still unclear.

Memory is more an issue than time.

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 24

https://eprint.iacr.org/2016/461

Hybrid attack

Howgrave-Graham combines lattice basis reduction and
meet-in-the-middle attack.

Idea: reduce submatrix of the Streamlined NTRU Prime lattice,
then perform mitm on the rest.

Use BKZ on submatrix B to get B ′:

C ·
(

qI 0
H I

)
=

qIw 0 0

∗ B ′ 0

∗ ∗ Iw ′

 .

Guess options for last w ′ coordinates of f , using collision search (as
before).

If the Hermite factor of B ′ is small enough, then a rounding algorithm
can detect collision of halfguesses.

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 25

https://eprint.iacr.org/2016/461

Hybrid attack

Howgrave-Graham combines lattice basis reduction and
meet-in-the-middle attack.

Idea: reduce submatrix of the Streamlined NTRU Prime lattice,
then perform mitm on the rest.

Use BKZ on submatrix B to get B ′:

C ·
(

qI 0
H I

)
=

qIw 0 0

∗ B ′ 0

∗ ∗ Iw ′

 .

Guess options for last w ′ coordinates of f , using collision search (as
before).

If the Hermite factor of B ′ is small enough, then a rounding algorithm
can detect collision of halfguesses.

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 25

https://eprint.iacr.org/2016/461

Security against the hybrid attack

Balance the costs of the BKZ and mitm phase.

Hoffstein, Pipher, Schanck, Silverman, Whyte, and Zhang
[HPSWZ15] published simplfied analyzis tool.

Compute BKZ costs with Chen-Nguyen simulator.

Estimate the mitm costs by estimating the size of
the projected space [HPSWZ15].

For detailed formulas and justifications, see our paper
https://eprint.iacr.org/2016/461.

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 26

https://eprint.iacr.org/2016/461
https://eprint.iacr.org/2016/461

Security against the hybrid attack

Balance the costs of the BKZ and mitm phase.

Hoffstein, Pipher, Schanck, Silverman, Whyte, and Zhang
[HPSWZ15] published simplfied analyzis tool.

Compute BKZ costs with Chen-Nguyen simulator.

Estimate the mitm costs by estimating the size of
the projected space [HPSWZ15].

For detailed formulas and justifications, see our paper
https://eprint.iacr.org/2016/461.

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 26

https://eprint.iacr.org/2016/461
https://eprint.iacr.org/2016/461

Security against the hybrid attack

Balance the costs of the BKZ and mitm phase.

Hoffstein, Pipher, Schanck, Silverman, Whyte, and Zhang
[HPSWZ15] published simplfied analyzis tool.

Compute BKZ costs with Chen-Nguyen simulator.

Estimate the mitm costs by estimating the size of
the projected space [HPSWZ15].

For detailed formulas and justifications, see our paper
https://eprint.iacr.org/2016/461.

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 26

https://eprint.iacr.org/2016/461
https://eprint.iacr.org/2016/461

Bonus slides: why automorphisms matter

Targets and history:

2014.10 Campbell–Groves–Shepherd describe an ideal-lattice-based
system “Soliloquy”; claim quantum poly-time key recovery.

2010 Smart–Vercauteren system is practically identical to Soliloquy.

2009 Gentry system (simpler version described at STOC) has the
same key-recovery problem.

2012 Garg–Gentry–Halevi multilinear maps have the same
key-recovery problem (and many other security issues).

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 27

https://eprint.iacr.org/2016/461

Smart–Vercauteren; Soliloquy

Parameter: k ≥ 1.

Define R = Z[x]/Φ2k .

Public key: prime q and c ∈ Z/q.

Secret key: short element g ∈ R with gR = qR + (x − c)R;
i.e., short generator of the ideal qR + (x − c)R.

1993 Cohen textbook “A course in computational algebraic number
theory” explains how to find generators.

Smart–Vercauteren comment that this would take exponential time.

But it actually takes subexponential time. Same basic idea as NFS.

Campbell–Groves–Shepherd claim quantum poly time. Claim disputed
by Biasse, not defended by CGS.

2016 Biasse–Song: different algorithm that takes quantum poly time,
building on 2014 Eisenträger–Hallgren–Kitaev–Song.

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 28

https://eprint.iacr.org/2016/461

Smart–Vercauteren; Soliloquy

Parameter: k ≥ 1.

Define R = Z[x]/Φ2k .

Public key: prime q and c ∈ Z/q.

Secret key: short element g ∈ R with gR = qR + (x − c)R;
i.e., short generator of the ideal qR + (x − c)R.

1993 Cohen textbook “A course in computational algebraic number
theory” explains how to find generators.

Smart–Vercauteren comment that this would take exponential time.

But it actually takes subexponential time. Same basic idea as NFS.

Campbell–Groves–Shepherd claim quantum poly time. Claim disputed
by Biasse, not defended by CGS.

2016 Biasse–Song: different algorithm that takes quantum poly time,
building on 2014 Eisenträger–Hallgren–Kitaev–Song.

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 28

https://eprint.iacr.org/2016/461

Smart–Vercauteren; Soliloquy

Parameter: k ≥ 1.

Define R = Z[x]/Φ2k .

Public key: prime q and c ∈ Z/q.

Secret key: short element g ∈ R with gR = qR + (x − c)R;
i.e., short generator of the ideal qR + (x − c)R.

1993 Cohen textbook “A course in computational algebraic number
theory” explains how to find generators.

Smart–Vercauteren comment that this would take exponential time.

But it actually takes subexponential time. Same basic idea as NFS.

Campbell–Groves–Shepherd claim quantum poly time. Claim disputed
by Biasse, not defended by CGS.

2016 Biasse–Song: different algorithm that takes quantum poly time,
building on 2014 Eisenträger–Hallgren–Kitaev–Song.

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 28

https://eprint.iacr.org/2016/461

Smart–Vercauteren; Soliloquy

Parameter: k ≥ 1.

Define R = Z[x]/Φ2k .

Public key: prime q and c ∈ Z/q.

Secret key: short element g ∈ R with gR = qR + (x − c)R;
i.e., short generator of the ideal qR + (x − c)R.

1993 Cohen textbook “A course in computational algebraic number
theory” explains how to find generators.

Smart–Vercauteren comment that this would take exponential time.

But it actually takes subexponential time. Same basic idea as NFS.

Campbell–Groves–Shepherd claim quantum poly time. Claim disputed
by Biasse, not defended by CGS.

2016 Biasse–Song: different algorithm that takes quantum poly time,
building on 2014 Eisenträger–Hallgren–Kitaev–Song.

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 28

https://eprint.iacr.org/2016/461

How to get a short generator?

Have ideal I of R.

Want short g with gR = I ; have g ′ with g ′R = I .

Know g ′ = ug for some unit u ∈ R∗.

To find u move to log lattice.

Log g ′ = Log u + Log g ,

where Log is Dirichlet’s log map.

Dirichlet’s unit theorem:
LogR∗ is a lattice of known dimension.

Finding Log u is a closest-vector problem in this lattice.

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 29

https://eprint.iacr.org/2016/461

Quote from Campbell–Groves–Shepherd

“A simple generating set for the cyclotomic units is of course known.
The image of O× [here R∗] under the logarithm map forms a lattice.
The determinant of this lattice turns out to be much bigger than the
typical loglength of a private key α [here g], so it is easy to recover the
causally short private key given any generator of αO [here I], e.g. via the
LLL lattice reduction algorithm.”

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 30

https://eprint.iacr.org/2016/461

Automorphisms

x 7→ x3, x 7→ x5, x 7→ x7, etc. are automorphisms of R = Z[x]/Φ2k .

Easy to see (1− x3)/(1− x) ∈ R∗; for inverse use expansion.

“Cyclotomic units” are defined as

R∗ ∩

{
±xe0

∏
i

(1− x i)ei

}
.

Weber’s conjecture:
All elements of R∗ are cyclotomic units.

Experiments confirm that SV is quickly broken by LLL using, e.g.,
1997 Washington textbook basis for cyclotomic units.

Shortness of basis is critical; this was not highlighted in CGS analysis.

Tanja Lange NTRU Prime https://eprint.iacr.org/2016/461 31

https://eprint.iacr.org/2016/461

