Factorization: state of the art

1. Batch NFS
2. Factoring into coprimes
3. ECM

D. J. Bernstein
University of lllinois at Chicago

Tanja Lange
Technische Universiteit Eindhoven

Sieving small integers 2 > 0
using primes 2, 3,5, 7:

1

22

3 3
41272

5 5
6|2 3

I I
3222

9 33
1012 5
11

12122 3

13

14|2 I
15 3 5
16|2222

17

182 33
19

20(22 5

etc.

Sieving 4+ and 611 + ¢ for small 2

using primes 2, 3,5, 7:

22

222

22

2222

N N e N e N el el el
QOO ~NOOOITPLPWNRFRPROOOONOOTA~WDNE

22

3

33

5

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631

2 2 33
2

3
222
2 3
2 2

333
2
22223
2

3
2 2
2 33

etc.

Have complete factorization of
the “congruences” (611 + 7)
for some 7's.

14 - 625 = 21305471

64 - 675 = 20335270

75 - 686 = 21315273

14 - 64 -75-625 - 675 - 686

_ 28345874 (24325472)
gcd{611,14 - 64 - 75 — 24325472}
— 47.

611 =47 -13.

Why did this find a factor of 6117
Was it just blind luck:
gcd{611, random} = 477

No.

By construction 611 divides s2—t?
where s =14 -64 - 75

and ¢t = 24325472,
So each prime > 7 dividing 611
divides either s — t or s + ¢.

Not terribly surprising

(

t

out not guaranteed

nat one prime divid

in advance!)
ed s —¢

and the other divided s + t.

Why did the first three
completely factored congruences

have square product?
Was it just blind luck?

Yes. The exponent vectors
(1,0,4,1),(6,3,2,0),(1,1, 2, 3)
happened to have sum 0 mod 2.

But we didn't need this luck!
Given long sequence of vectors,
easily find nonempty subsequence
with sum 0 mod 2.

This is linear algebra over F».
Guaranteed to find subsequence
if number of vectors

exceeds length of each vector.

e.g. forn =671:

1(n + 1) =2°315071;
4(n 4+ 4) = 22335270;
15(n + 15) = 21315173,
49(n + 49) = 24325172;
64(n + 64) = 20315172,

F>-kernel of exponent matrix is
gen by (01011)and (10110);

e.g., I(n+1)15(n+15)49(n + 49)
IS a square.

Plausible conjecture: Q sieve can
separate the odd prime divisors
of any m, not just 611.

Given n and parameter y:

Try to completely factor #(n + 1)
forie {1,2,3,...,y°}
into products of primes < y.

Look for nonempty set of 2's
with 2(n + 2) completely factored

and with | |z(n + %) square.

4

Compute gcd{n, s — t} where

s:|:\z'andt:\/|]z'(n+z').

How large does y have to be
for this to find a square?

Uniform random integer in [1, n|

nas nl/u—smoothness chance
U

roughly ™",

Plausible conjecture:

Q sieve succeeds

with y = [n1/¥]

for all n > w(1+o(1)u’
here o(1) is as u — 00.

More generally, if y €

exp \/(2% + o(1))log n log log n,
conjectured y-smoothness chance
i 1/yc—|-0(1)_

Find enough smooth congruences

by changing the range of 1's:
c+1+o(1)

replace y? with vy
2
exp \/((c+1)20+0(1)) log n log log n.

Increasing ¢ past 1

increases number of 2's but
reduces linear-algebra cost.
So linear algebra never dominates

when vy 1s chosen properly.

Improving smoothness chances

Smoothness chance of #2(n + 2)
degrades as 7 grows.
Smaller for 4 & y2 than for i ~ y.

Crude analysis: #(n + 2) grows.
~ yn if 1 & y;
~ yln if 1 &y,

More careful analysis:

n + 1 doesn’'t degrade, but

2 Is always smooth for 1 < y,

only 30% chance for i ~ y?.

Can we select congruences
to avoid this degradation?

Choose g, square of large prime.

Choose a “g-sublattice” of 7's:
arithmetic progression of 2's
where ¢ divides each i(n + 1).
e.g. progression ¢ — (n mod q),
2¢ — (n mod g), 3¢ — (n mod q),
etc.

Check smoothness of
generalized congruence #(n +%)/q
for 2's in this sublattice.

e.g. check whether 2, (n+1)/q are
smooth for 2 = ¢ — (n mod gq) etc.

Try many large g's.
Rare for 2's to overlap.

e.g. n = 314159265358979323:

Original Q sieve:

T n+1

1 314159265358979324
2 314159265358979325
3 314159265358979326

Use 9972-sublattice,
1 € 802458 + 994009Z.

i (n+41)/997°
802458 316052737309
1796467 316052737310
2790476 316052737311

Crude analysis: Sublattices
eliminate the growth problem.
Have practically unlimited supply

of generalized congruences
n+qg—(n mod q)

q

(g—(n mod q))

between 0 and n.

More careful analysis: Sublattices
are even better than that!

For g ~ nl/? have
1R (nt+1i)/grn
so smoothness chance Is roughly
(w/2) %2 (u/2) " ¥/% = 24 [u®,

2% times larger than before.

1/2 py 4y/2

Even larger improvements
from changing polynomial 2(n—+1).

“Quadratic sieve” (QS) uses

% —n with 4 & \/n;

have 32 — n ~ pl/2+o(l)

much smaller than n.

"MPQS" improves o(1)
using sublattices: (i* —n)/q.
But still ~ nl/2.

“Number-field sieve” (NFS)
achieves n°1).

Generalizing beyond Q

The Q sieve is a special case of
the number-field sieve.

Recall how the Q sieve
factors 611:

Form a square

as product of #(z + 6117)
for several pairs (2, 7):
14(625) - 64(675) - 75(686)
= 44100007,

gcd{611,14 - 64 - 75 — 4410000}
— 47

The Q(v/14) sieve

factors 611 as follows:

Form a square

as product of (¢ + 257)(z + v/147)
for several pairs (2, 7):

(=114 3-25)(—11 + 3/14)

(3 +25)(3 + /14)
= (112 — 16+/14)?.
Compute

s=(—11+3-25)-(3+ 25),
t =112 — 16 - 25,
gcd{611,s —t} = 13.

Why does this work?

Answer: Have ring morphism

Z[/14] — Z/611, /14 > 25,
since 25° = 14 in Z/611.

Apply ring morphism to square:
(=11 +3-25)(—11+ 3-25)
(3 4+ 25)(3 + 25)
= (112 — 16 - 25)? in Z/611.

i.e. s> =1t%in Z/611.

Unsurprising to find factor.

Generalize from (z° — 14, 25)
to (f, m) with irred f € Z|z],
m e Z, f(m) e nZ

Write d = deg f,
f=fax*+-- + fiz! + foz°.
Can take fy; = 1 for simplicity,

but larger f; allows
better parameter selection.

Pick a € C, root of f.
Then fya is a root of

monic g = £41f(a/f) € Zla]

Q(a)—O0+Z|f,a] fdaHfdm>Z/n

Build square in Q(a) from
congruences (2 — jm)(1 — ja)
with 2Z +9Z =Z and 5 > 0.

Could replace 2 — 5z by
higher-deg irred in Z|[z];
quadratics seem fairly small
for some number fields.
But let's not bother.

Say we have a square

| 15, j)es(t —gm)(1 — ja)
in Q(ca); now what?

12 = gm)(i — ja) fg
Is a square in O,
ring of integers of Q(a).

Multiply by g'(fga)?,
putting square root into Z|fal:
compute 7 with 72 = ¢/(fya)?:
[z — 3m) (& - ja)fg.

Then apply the ring morphism
¢ : Z|fqal — Z/n taking

fqa to fym. Compute gecd{n,
o(r) — g'(fam) [1(z — jm)fa}.
In Z/n have p(r)° =

9 (£am)2 (i — 5m)2f3

How to find square product
of congruences (2 — jm)(z — ja)?

Start with congruences for,
e.g., y> pairs (4, 7).

Look for y-smooth congruences:
y-smooth 2 — 7m and

y-smooth fynorm(z — ja) =
fai® + -+ foi® = 3£ (i/7)
Here "y-smooth” means

“has no prime divisor > y."

Find enough smooth congruences.
Perform linear algebra on
exponent vectors mod 2.

Sublattices

Consider a sublattice

of pairs (%, 7) where

g divides ¢ £(i/5).
Assume squarish lattice.
(4 = 5m)3*f(4/3)
expands by factor g(¢t1)/2
before division by g.

Number of sublattice elements
within any particular bound

on (i — ym)j*f(i/5)
is proportional to g~ (¢—1)/(d+1)

Compared to just using ¢ = 1,
conjecturally obtain y#/(d+1)+o(1)
times as many congruences

by using sublattices for

all y-smooth integers g < y2.

Separately consider
i —jm and 5%f(i/4)/q
for more precise analysis.

Limit congruences accordingly,
Increasing smoothness chances.

Multiple number fields

Assume that f +z — m € Z|z]
Is also Irred.

Pick B8 € C, root of f +x — m.
Two congruences for (1, 7):
(1=gm)(i—-ja); (i—gm)(1—36).
Expand exponent vectors to
handle both Q(a) and Q(8).

Merge smoothness tests
by testing 1 — 3m first,
aborting if # — 9m not smooth.

Can use many number fields:
f+2(x —m) etc.

Optimizing NFS

Finding smooth congruences
Is always a bottleneck.

"What if it's much faster
than linear algebra?”
Answer: If it is, trivially
save time by decreasing .

Optimizing NFS

Finding smooth congruences
Is always a bottleneck.

"What if it's much faster
than linear algebra?”
Answer: If it is, trivially
save time by decreasing .

Main job of NFS implementor:
speed up smoothness detection.

Optimizing NFS

Finding smooth congruences
Is always a bottleneck.

"What if it's much faster
than linear algebra?”
Answer: If it is, trivially
save time by decreasing .

Main job of NFS implementor:
speed up smoothness detection.

Other ways to speed up NFS:

optimize set of pairs (2, 7),
choice of f, etc. Fun: e.g.,

d
compute [°° ((a;—m)fa;2/(d+1) .

1977 Schroeppel “linear sieve,”

forerunner of QS and NFS:

Factor n =~ s° using congruences

(s+2)(s+7)((s+12)(s+7)—n)
Sieve these congruences.

1996 Pomerance:
“The time for doing this is

unbelievably fast compared with
trial dividing each candidate
number to see if it is Y-smooth.
If the length of the interval is NV,
the number of steps is only about
N loglog Y, or about loglogVY
steps on average per candidate.”

Asymptotic cost exponents

Number of bit operations
In number-field sieve,

with theorists’ parameters,
is 11.90-40(1) \where [=

exp((log n)1/3(loglogn)?/3).

What are theorists’ parameters?

Choose degree d with
d/(logn)/3(loglogn)~1/3
€1.40...+ o(1).

Choose integer m & nl/d.

Write n as

m%+ fg_1m* 4+ fim+ fo
with each f;. below n{1to(l))/a
Choose f with some randomness

in case there are bad f's.

Test smoothness of 1 — 7m
for all coprime pairs (2, 7)

with 1 < 4,5 < £0:95--+0o(1)
using primes < [0-95--+o(1)

L1.90...—|—0(1) pairs.

Conjecturally [1.65--+0o(1)
smooth values of 2 — 3m.

Use L0-12--F0(1) number fields.

For each (2, 7)
with smooth 72 — 9m,
test smoothness of 1 — J«

and 2 — 70 and so on,
using primes < [0-82...+0(1)

Each ‘jdf(z/j)‘ < m2-80...4+0(1)
Conjecturally £09-95--+o(1)

smooth congruences.

In the exponent vectors.

Three sizes of numbers here:

(log n)!/3(log log n)?/3 bits:
Y, 7.

(log n)%/3(log log n)/3 bits:
m, i — jm, 7*f(1/7).

log n bits: n.

Unavoidably 1/3 in exponent:
usual smoothness optimization
forces (logy)? ~ logm;
balancing norms with m
forces dlogy ~ logm;

and dlogm ~ logn.

Batch NFS

The number-field sieve used
[1.90..+0(1) it operations

finding smooth 2 — 9m; only
L1.77...

o(1) bit operations
finding smooth 5% f(3/7).

Many n's can share one m;
[1.90..+0(1) it operations
to find squares for all n's.

Oops, linear algebra hurts;
fix by reducing v.

But still end up factoring
batch in much less time than

factoring each n separately.

Asymptotic batch-NFS
parameters:

d/(logn)/3(loglogn)~1/3
€ 1.10... 4+ o(1).

Primes S LO.82...—|—0(1).
1 S Z,j S Ll.OO...—I—O(l).

Computation independent of n
finds [1.64...+0o(1)

smooth values 1 — 1m.

for each target n.

Batch NFS for RSA-3072
_ 2384:

Expand n in base m
n:n7m7+n6m6+---+no
with 0 < ng,n1,..., ny < m.

Assume irreducibility of
n7a:7 +n6$6 + -1+ 1Ng.

Choose height H = 20242614257
consider pairs (a, b) € Z x Z such
that —H<a < H, 0<b<H,
and gcd{a, b} = 1.

Choose smoothness bound
y = 266 + 255_

There are about
12/_/2/7‘.2 ~ 2125.51
pairs (a, b).

Find all pairs (a, b) with
y-smooth (a — bm)c where
c=mn7a" +ngalb+ -+ ngb’.

Combine these congruences
into a factorization of n,

if there are enough congruences.

Number of congruences needed
~ 2y / logy ~ 20200

Heuristic approximation:

a — bm has same y-smoothness
chance as a uniform random
integer in [1, Hm],
and this chance is u™

where u = (log(Hm))/logy.

Have u & 6.707

and % ~ 2 18.42’

so there are about
2107.09 pairs (a, b)

such that a — bm 1s smooth.

Heuristic approximation:

¢ has same y-smoothness chance
as a uniform random integer in
[1,8H"m],

and this chance is v~
where v = (log(8H"m))/ log y.

V

Have v ~ 12.395
and v~V ~ 2—45.01
so there are about
202:08 pairs (a, b) such that

a — bm and ¢ are both smooth.

Safely above 202-00,

Biggest step in computation:
Check 212°-°1 pairs (a, b)

to find the 210799 pairs
where a — bm 1s smooth.

This step is independent of NV,
reused by many integers V.

Biggest step in computation:

Check 212°-°1 pairs (a, b)
to find the 210799 pairs
where a — bm Is smooth.

This step is independent of NV,
reused by many integers V.

Biggest step depending on NV:
Check 2197-09 pairs (a, b)
to see whether ¢ 1s smooth.

This 1s much less
computation! ... oris it?

The 219799 pairs (a, b)
do not form a lattice,
SO no easy way to sieve
for prime divisors of c.

The 219799 pairs (a, b)
do not form a lattice,
SO no easy way to sieve
for prime divisors of c.

Fix:
“Factoring into coprimes’ ;
next topic today.

The 219799 pairs (a, b)
do not form a lattice,
SO no easy way to sieve
for prime divisors of c.

Fix:
“Factoring into coprimes’ ;
next topic today.

A different fix:
ECM: this afternoon.

Better smoothness estimates

Consider a uniform random
integer in [1, 2499].

What is the chance that the
integer i1s 1000000-smooth, i.e.,
factors into primes < 10000007

“Objection: The integers in NFS
are not uniform random integers!”
True; will generalize later.

Traditional answer:

Dickman’s p function is fast.

A uniform random integer in

[1, y%] has chance ~ p(u)

of being y-smooth.

If 4 is small then chance/p(u) is
1+ O(loglogy/logy) for y — 0.

Flaw #£1 in traditional answer:
Not a very good approximation.

Flaw #2 in traditional answer:
Not easy to generalize.

Another traditional answer,

trivial to generalize:

Check smoothness of many
independent uniform random
Integers.

Can accurately estimate
smoothness probability p

after inspecting 10000/p integers;
typical error ~ 1%.

But this answer Is very slow.

Here's a better answer.
(starting point: 1998 Bernstein)

Define S as the set of
1000000-smooth integers n > 1.

The Dirichlet series for S
is > [n € Slz'e™ =

(1+ £'82 4 z2'82 4 g3182 1 ...)
(1+z'83 4 283 4 3183 4 ..)
(1+'8° 4 28> 4 3185 4 ..)

(1 4+ $|g999983 + $2|g999983 4.)

Replace primes

2,3,5,7,..., 999933

with slightly larger real numbers
2=11%3=11"% 5=1.1'
..., 999983 = 1.1

Replace each 2630. .. in S with
§a§b ..., obtaining multiset S.

The Dirichlet series for S
is > [n € S]z'8" =

(1 n Gclg§ n $2Ig§ $3Ig§ L)
(1 N $Ig§ n $2Ig§ $3|g§ L)
(1 $Ig5 $2Ig5 $3|g5)

(1 4+ 218999983 + 7218999983 4.)

This I1s simply a power series
sozo+slz1+---:

(14 2% 4+ 228 4258 4 ..)
(14212 42212 4 2312 4.0)
(14 217 4 2217 4 2317 .
(14 215 g 215)

in the variable z = z'81-1.

Compute series mod (e.g.) z2°19;

l.e., compute sg, S1, ..., S82909.
S has sg + - - - + Sogpg elements
< 1.12909 « 2400 55 S has

at least sg + - - - + S2909
elements < 2400

So have guaranteed lower bound

on number of 1000000-smooth
integers in [1, 2499].

Can compute an upper bound to
check looseness of lower bound.

If looser than desired,
move 1.1 closer to 1.
Achieve any desired accuracy.

2007 Parsell-Sorenson: Replace
big primes with RH bounds,
faster to compute.

NFS smoothness is much more

complicated than smoothness of
uniform random integers.

Most obvious issue: NFS doesn’t
use all integers in [—H, H|;

it uses only values f(c, d)

of a specified polynomial f.

Traditional reaction

(1979 Schroeppel, et al.):
replace H by “typical” f value,
heuristically adjusted for

roots of f mod small primes.

Can compute smoothness chance

much more accurately.
No need for “typical” values.

We've already computed series
502:0 + 312:1 + -t 8290922909
such that there are

> S0 smoothgl.lo,

> Sso+S1 smoothgl.ll,

> 50451+52 smooth<1.12,

>80+ - - +52909 smooth§1.12909.
Approximations are very close.

Number of f(c, @) values in
—H, H] is ~ (3/m?)H?/9e8 1 Q(f).
Can quickly compute Q(f).

For each 7z < 2909,
number of smooth |f(c, d)| values

in [1.1*71, 1.1*] is approximately
3Q(f)37, 1_12’i/degf . 1_12(i—1)/degf
72 1.18 —1.1%-1 |

Add to see total number of
smooth f(c, d) values.

Approximation so far
has ignored roots of f.

Fix: Smoothness chance in Q(a)
for ¢ — ad is, conjecturally, very
close to smoothness chance for

ideals of the same size as ¢ — ad.

Dirichlet series for smooth ideals:
simply replace

1+ zlep o 22lgp ... with

1 ngP _|_3;2|8P + ..

where P is norm of prime ideal.

Same computations as before.
Should also be easy to adapt
Parsell-Sorenson to ideals.

Typically f(c, d) is product
(¢ — md) - norm of (¢ — ad).

Smoothness chance in Q x Q(a)
for (c — md, ¢ — ad) is,
conjecturally, close to smoothness
chance for ideals of the same size.

Can account in various ways for
correlations and anti-correlations
hetween ¢ — md and ¢ — ad,

but these effects seem small.

Dirichlet-series computations
easily handle early aborts
and other complications

in the notion of smoothness.

Example: Which integers are
1000000-smooth integers < 2400
times one prime in [10°, 107]7

Multiply s9z% + - - - + 8290g22999
g 1000003 ... 4 18999999937

by z

Polynomial selection

Many f's possible for n.
How to find f that
minimizes NFS time?

General strategy:

Enumerate many f's.

For each f, estimate time using
information about f arithmetic,

distribution of d9¢87 f(c/d),
distribution of smooth numbers.

Let's restrict attention to f(z) =
(z — m)(fs2> + faz® + -+ fo).

Take m near nl/6.

Expand n in base m:
n=fsm>+ fam* +--- + fo.
Can use negative coefficients.

Have f5 & nt/®

Typically all the f;'s

are on scale of nl/0.

(1993 Buhler Lenstra Pomerance)

To reduce f values by factor B:

Enumerate many possibilities
for m near B9-25p1/6

Have f5 ~ B—1.25p1/6
fa, 13, f2. f1. fo could be
as large as B0-25,1/6

Hope that they are smaller,
on scale of B~1.2591/6,

Conjecturally this happens

within roughly B’ trials.

Then (¢ — dm)(fsc® + - - - + fod°)
is on scale of B—1R072/0

for ¢, d on scale of R.

Can force f4 to be small.
Say n = fsm> + fam* +--- + fo.

Choose integer k ~ f4/5f5.
Write n In base m + k:
n = fs(m + k)’

+ (fa =5k fs)(m+k)* +---

Now degree-4 coefficient
is on same scale as fs.

Hope for small f3, f2, 1. fo.
Conjecturally this happens

within roughly BP° trials.

Improvement:
Skew the coefficients.
(1999 Murphy, without analysis)

Enumerate many possibilities

for m near Bnl/.

Have f5 & B—5nl/6

fa, f3. f2, f1. fo could be
as large as Bnl/6

Force small f4. Hope for
f3 on scale of B—2nl/6

f> on scale of B—0-5p,1/6

Conjecturally this happens

within roughly B*> trials:
(2+1)+(0.5+1)=45.

For ¢ on scale of BYR
and d on scale of 8_0'75/?, have

¢ — md on scale of B9-25Rn1/6

and fsc® + factd + - + fod?
on scale of B~ 125R5,1/6

Product B—1R6n2/6.

Similar effect of B on Q(f);

can afford to compute @
for many attractive f's.

Can we do better? Yes!

The following algorithm:
only about B3~ trials,
conjecturally.

Each trial is fairly expensive,
using four-dimensional
integer-relation finding,

but worthwhile for large B.

This is so fast that
we should start searching

(moz—m1)(csz>+caz*+- - -+cp).

Say n = fsm> + fam* + - + fo.

Choose integer k ~ f4/5f5
and integer £ &~ m/5f5.

Find all short vectors
in lattice generated by
(m/B3,0,0,10f5k* — 4fsk + f3),
(0,m/B* 0,20 f5kl — 4744),
(0,0, m/B>, 10f5£2),

(0,0,0 ,m).

Hope for j below Bl

with (10f5/.”,2 — 41k + f3)
+ (20f5kl — 4fad);

+ (105£2)5°

below m /B3 modulo m.

Write n in base m + k + 94.
Obtain degree-5 coefficient
on scale of B~5n1/6;

degree-4 coefficient

on scale of B™ n1/6

degree-3 coetficient
on scale of B—2n1/6.

Hope for good degree 2.

Bad news, part 1:

All known search methods,
including this one,

become ineffective

as degree Increases.

Bad news, part 2:

In batch-NFS context,
searching large m pool
requires scaling up # targets.

