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Threat of quantum computers

Shor’s algorithm makes polynomial time:

integer factorization

DLP in finite fields

DLP on elliptic curves

DLP in general class groups

Grover’s algorithm brings faster
simultaneous search in data

some security loss in symmetric
crypto (block and stream ciphers)

some security loss in hash
functions (if not VSH)

Compensate for Grover by doubling key size.
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Shor’s algorithm makes polynomial time:

integer factorization

DLP in finite fields

DLP on elliptic curves

DLP in general class groups

Grover’s algorithm brings faster
simultaneous search in data

some security loss in symmetric
crypto (block and stream ciphers)

some security loss in hash
functions (if not VSH)

Compensate for Grover by doubling key size.

Sorry,
no picture
available
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. . . but 15 years from now . . .

Large quantum computers might be reality. Then

• RSA is dead.

• DH key exchange is dead.

• DSA is dead.

• XTR is dead.

• ECDSA is dead.

• ECC is dead.

• HECC is dead.
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. . . but 15 years from now . . .

Large quantum computers might be reality. Then

• RSA is dead.

• DH key exchange is dead.

• DSA is dead.

• XTR is dead.

• ECDSA is dead.

• ECC is dead.

• HECC is dead.

• all public key cryptography is dead?

• Actually there are a few more public-key cryptosystems.
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The “survivors”

Public-key encryption:

Lattice-based cryptography (e.g. NTRU)

Code-based cryptography (e.g. McEliece, Niederreiter)

Public-key signatures:

Multivariate-quadratic-equations cryptography (e.g.
HFE−)

Hash based cryptography (e.g. Merkle’s hash-trees
signatures)

For these systems no efficient usage of Shor’s algorithm is
known. Grover’s algorithm has to be taken into account
when choosing key sizes.
Some more possibilities with less confidence.
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Why care about this now?

15 years might seem a long time. But

There is no guarantee that it takes at least 15 years.

Long-term confidential documents (e.g. health records,
state secrets) become readable once quantum
computers are available.

Electronic signatures on long-term commitments (e.g.
last wishes, contracts) can be forged once quantum
computers are available.

Nobody will inform you if a secret agency made a
breakthrough in constructing a quantum computer.

The systems mentioned before remain secure – but are
inefficient in time or size or both and need better
embedding into protocols.
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How about quantum cryptography?

Quantum cryptography expands a short shared key into
an effectively infinite shared stream.

Requires Alice and Bob to know some (e.g. 256)
unpredictable secret key bits.

Result of quantum cryptography is that Alice and Bob
both know a stream of some more (e.g. 1012)
unpredictable secret bits.

Length of the output stream increases linearly with the
amount of time.
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How about quantum cryptography?

Quantum cryptography expands a short shared key into
an effectively infinite shared stream.

Requires Alice and Bob to know some (e.g. 256)
unpredictable secret key bits.

Result of quantum cryptography is that Alice and Bob
both know a stream of some more (e.g. 1012)
unpredictable secret bits.

Length of the output stream increases linearly with the
amount of time.

Sounds like a stream cipher to you? Not exactly . . .

Tanja Lange Post-Quantum Cryptography – p. 7



Differences from stream ciphers
Quantum cryptography uses physical techniques
instead of mathematical function of the input key.

Quantum cryptography needs direct connection
between the quantum cryptography hardware (distance
is an issue), eavesdropping interrupts the
communication. Conventional cryptography can use
standard channels; eavesdropping fails because the
encrypted information is incomprehensible.

Security of quantum cryptography follows from quantum
mechanics instead of being merely conjectural.
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Differences from stream ciphers
Quantum cryptography uses physical techniques
instead of mathematical function of the input key.

Quantum cryptography needs direct connection
between the quantum cryptography hardware (distance
is an issue), eavesdropping interrupts the
communication. Conventional cryptography can use
standard channels; eavesdropping fails because the
encrypted information is incomprehensible.

Security of quantum cryptography follows from quantum
mechanics instead of being merely conjectural.

A stream cipher can be implemented on conventional
CPUs and generates GB of stream per second on a
$200 CPU. Quantum cryptography generates kB of
stream per second on special hardware costing $50000.
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How about quantum cryptography?
Quantum cryptography expands a short shared key into
an effectively infinite shared stream.

Requires Alice and Bob to know some (e.g. 256)
unpredictable secret key bits.

Result of quantum cryptography is that Alice and Bob
both know a stream of some more (e.g. 1012)
unpredictable secret bits.

Length of the output stream increases linearly with the
amount of time.

More serious problem: how to get the initial secret?!
Secret meeting of agents and key exchange – or
public-key cryptography.

And there was no problem in symmetric cryptography in
the first place.
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Post-quantum cryptography

Cryptographic systems that run on conventional
computers, are secure against attacks with
conventional computers, and remain secure under
attacks with quantum computers are called
post-quantum cryptosystems.

Post-quantum cryptography deals with
the design of such systems;
cryptanalysis of such systems;
the analysis of suitable parameters depending on
different threat models;
design of protocols using the secure primitives.

Could potentially develop cryptosystems for quantum
computers – but there won’t be a market too soon.
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Attacking and Defending the
McEliece Cryptosystem

joint work with
Daniel J. Bernstein and Christiane Peters

Thanks to Christiane for several slides.
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Linear codes

We only consider binary codes, i.e. codes over IF2.

A generator matrix of an [n, k] code C is a k × n matrix
G such that C = {xG : x ∈ IFk

2}.
The matrix G corresponds to a map IFk

2 → IFn
2 sending a

message of length k to an n-bit string.

A parity-check matrix of an [n, k] code C is an
(n− k)× n matrix H such that C = {c ∈ IFn

2 : H cT = 0}.
A systematic generator matrix is a generator matrix of
the form (Ik|Q) where Ik is the k × k identity matrix and
Q is a k × (n− k) matrix (redundant part).

Easy to get parity-check matrix from systematic
generator matrix, use H = (QT |In−k).
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Decoding problem

The Hamming distance between two words in IFn
2 is the

number of coordinates where they differ. The Hamming
weight of a word is the number of non-zero coordinates.

The minimum distance of a linear code C is the
smallest Hamming weight of a nonzero codeword in C.

Classical decoding problem: find the closest codeword
x ∈ C to a given y ∈ IFn

2 , assuming that there is a
unique closest codeword.

In particular: Decoding a generic binary code of length
n and without knowing anything about its structure
requires about 2(0.5+o(1))n/ log2(n) binary operations
(assuming a rate ≈ 1/2)

Coding theory deals with efficiently decodeable codes.
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The McEliece cryptosystem I

Let C be a length-n binary Goppa code Γ of dimension k
with minimum distance 2t + 1 where t ≈ (n− k)/ log2(n);
(original parameters: n = 1024, k = 524, t = 50).

The McEliece secret key consists of a generator matrix
G for Γ, an efficient t-error correcting decoding
algorithm for Γ; an n× n permutation matrix P and a
nonsingular k × k matrix S.

n, k, t are public; but Γ, P , S are randomly generated
secrets.

The McEliece public key is the k × n matrix G′ = SGP .

Tanja Lange Post-Quantum Cryptography – p. 14



The McEliece cryptosystem II
McEliece encryption: Compute mG′ and add a random
error vector e of weight t and length n.

Encryption of a message m of length k: Compute mG′
and add a random error vector e of weight t and length
n. Send y = mG′ + e.

McEliece decryption using secret key: Compute
yP−1 = mG′P−1 + eP−1 = mSG + eP−1.
Use decoding algorithm to find mS and thereby m.

Attacker is faced with decoding y to nearest codeword
mG′ in the code generated by G′. This is general
decoding if G′ does not expose any structure.

For codes other than Goppa codes often original code
could be reconstructed from G′ allowing faster
decoding.
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Attacks on the McEliece PKC

Most effective attack against the McEliece cryptosystem
(with binary Goppa code) is information-set decoding.

Many variants:
McEliece (1978), Leon (1988), Lee and Brickell (1988),
Stern (1989), van Tilburg (1990), Canteaut and
Chabanne (1994), Canteaut and Chabaud (1998), and
Canteaut and Sendrier (1998).

Note: Our complexity analysis showed that Stern’s
original attack beats Canteaut et al. when aiming for
128-bit security.

Our attack is most easily understood as a variant of
Stern’s attack.
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Search for low weight words vs. decoding
McEliece ciphertext y ∈ IFn

2 has distance t from a
unique closest codeword c = mG in a code C which has
minimum distance at least 2t + 1.

Find e of weight t such that c = y − e:
append y to the list of generators
and form a generator matrix for C + {0,y}.

Then

e = (m, 1)

(
G

mG + e

)
is a codeword in C + {0,y}; and it is the only weight-t
word.

Bottleneck in all of these attacks is finding the weight-t
codeword in C + {0,y}. This code has dimension k + 1.
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Stern’s attack

Given w ≥ 0 and an (n− k)× n parity check matrix H for
a binary [n, k] code C. Find c ∈ C of weight w.

Construct c by looking for exactly w columns of H which
add up to 0.

Stern: Choose three disjoint subsets X, Y, Z among the
columns of H.
Search for words having exactly p, p, 0 ones in those
column sets and exactly w − 2p ones in the remaining
columns.
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One iteration of Stern’s algorithm
Select n− k linearly independent
columns; apply elementary row
operations to get the identity matrix.

Form a set Z of ℓ rows.

Divide remaining k columns into
two subsets X and Y .

1

1︸ ︷︷ ︸
(n−k)×(n−k) identity matrix

X Y

Z

A

B
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One iteration of Stern’s algorithm
Select n− k linearly independent
columns; apply elementary row
operations to get the identity matrix.

Form a set Z of ℓ rows.

Divide remaining k columns into
two subsets X and Y .

For every size-p subset A of X compute the ℓ-bit vector
π(A) by adding up the columns of H ′ = (Hi,j)i∈Z,j∈A.

Similarly, compute π(B).

For each collision π(A) = π(B) compute the sum of the
2p columns in A ∪B. This sum is an (n− k)-bit vector.
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One iteration of Stern’s algorithm
Select n− k linearly independent
columns; apply elementary row
operations to get the identity matrix.

Form a set Z of ℓ rows.

Divide remaining k columns into
two subsets X and Y .

For every size-p subset A of X compute the ℓ-bit vector
π(A) by adding up the columns of H ′ = (Hi,j)i∈Z,j∈A.

Similarly, compute π(B).

For each collision π(A) = π(B) compute the sum of the
2p columns in A ∪B. This sum is an (n− k)-bit vector.

If the sum has weight w − 2p, we obtain 0 by adding the
corresponding w − 2p columns in the (n− k)× (n− k)
submatrix. Else select n− k new columns.

1

1︸ ︷︷ ︸
(n−k)×(n−k) identity matrix

X Y

Z

A

B
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Our improvements
Step 1 Starting linear algebra part by using

previous iteration’s column selection.

Forcing more existing pivots: reuse
exactly n− k − c column selections
(Canteaut et al.: c = 1).

Faster pivoting.

Multiple choices of Z: allow m disjoint sets Z1, . . . , Zm

s.t. the word we’re looking for has weight (p, p, 0) on the
set (X, Y, Zi) for at least one 1 ≤ i ≤ m.

Step 2 Reusing additions of the ℓ-bit vectors for p-element
subsets A of X.

Faster additions after collisions: consider at most w
instead of n− k columns.

1

1︸ ︷︷ ︸
(n−k)×(n−k) identity matrix

X Y

Z

A

B
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Bounding the number of iterations

Stern: iterations are independent (in each step n− k
linearly independent columns are randomly chosen).

Our attack reuses existing pivots: Number of errors in
the selected n− k columns is correlated with the
number of errors in the columns selected in the next
iteration.

Extreme case c = 1 considered by Canteaut et al.:
swapping one selected column for one deselected
column is quite likely to preserve the number of errors
in the selected columns.

We analyzed the impact of selecting c new columns on
the number of iterations with a Markov chain
computation (generalizing from Canteaut et al.).
www.win.tue.nl/∼cpeters/mceliece.html
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Complexity of attacking original McEliece

Canteaut, Chabaud, and Sendrier: an attacker can
decode 50 errors in a [1024, 524] code over IF2 in 264.1 bit
operations.

Choosing parameters p = 2, m = 2, ℓ = 20, c = 7, and
r = 7 in our new attack shows that the same
computation can be done in only 260.55 bit operations,
almost a 12× improvement over Canteaut et al.

The number of iterations drops from 9.85 · 1011 to
4.21 · 1011, and the number of bit operations per iteration
drops from 20 · 106 to 4 · 106.
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Running time in practice
Wrote attack software against original McEliece
parameters, decoding 50 errors in a [1024, 524] code.

Attack on a single computer with a 2.4GHz Intel Core 2
Quad Q6600 CPU would need, on average, 1400 days
(258 CPU cycles) to complete the attack.

Running the software on 200 such computers would
reduce the average time to one week.

Canteaut, Chabaud, and Sendrier: implementation on a
433MHz DEC Alpha CPU; one such computer would
need approximately 7400000 days (268 CPU cycles).

Note: Hardware improvements only reduce 7400000
days to 220000 days (Moore’s law).

The remaining speedup factor of 150 comes from our
improvements of the attack itself.
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First successful attack
About 200 computers involved, with about 300 cores.

Computation finished in under 90 days (starting in July,
ending at the beginning of October).

Most of the cores put in far fewer than 90 days of work;
some of which were considerably slower than a Core 2.

Computation used about 8000 core-days.

Error vector found by Walton cluster at SFI/HEA Irish
Centre of High-End Computing (ICHEC).

Tuned attack parameters after start of the computation.
Later computers started with m = 2, c = 12.

Using the new parameters the whole computation
should take only 5000 core-days on average.
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Contributed CPU cycles from
the Coding and Cryptography Computer Cluster (C4) at
TU/e;

the FACS cluster at CWI;

the Walton cluster at SFI/HEA Irish Centre for High-End
Computing (ICHEC);

the Department of Electrical Engineering at National
Taiwan University;

the CACAO cluster at LORIA;

the sandpit Cluster at TU/e;

the Argo cluster;

the Center for Research and Instruction in Technologies
for Electronic Security (RITES) at UIC;

and D. J. Bernstein and Tanja Lange.
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Improvements

Increasing n
The most obvious way to defend McEliece’s
cryptosystem is to increase the code length n.

Allowing values of n between powers of 2 allows
considerably better optimization of (e.g.) the McEliece
public-key size.

Using list decoding to increase w
2008: Bernstein introduced a list-decoding algorithm for
classical irreducible binary Goppa codes:
The receiver can efficiently decode approximately
n−√n(n− 2t− 2) ≥ t + 1 errors instead of t errors.
The sender can introduce correspondingly more errors.
Unique decoding is ensured by CCA2-secure variants.
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New proposed parameters
We recommend parameters [n, k] and t for the following
security levels

For 80-bit security against our attack we propose
[1632, 1269] Goppa codes (degree t = 33), with 34 errors
added by the sender.
Public-key size: k · (n− k) = 460647 bits.

Without list decoding, and restriction n = 2d: [2048, 1751]
Goppa codes (t = 27). Public key size: 520047 bits.

For 128-bit security: we propose [2960, 2288] Goppa
codes (t = 56), with 57 errors added by the sender.
Public-key size: 1537536 bits.

For 256-bit security: [6624, 5129] Goppa codes (t = 115),
with 117 errors added by the sender.
Public-key size: 7667855 bits.
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