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NIST submission Classic McEliece

I Security asymptotics unchanged by 40 years of cryptanalysis.

I Efficient and straightforward conversion
OW-CPA PKE → IND-CCA2 KEM.

I Open-source (public domain) implementations.
I Constant-time software implementations.
I FPGA implementation of full cryptosystem.

I No patents.

Metric mceliece6960119 mceliece8192128
Public-key size 1047319 bytes 1357824 bytes

Secret-key size 13908 bytes 14080 bytes

Ciphertext size 226 bytes 240 bytes

Key-generation time 1108833108 cycles 1173074192 cycles

Encapsulation time 153940 cycles 188520 cycles

Decapsulation time 318088 cycles 343756 cycles

See https://classic.mceliece.org for more details.
More parameters in round 2.

https://classic.mceliece.org


Key issues for McEliece

I Very conservative system, expected to last; has strongest
security track record.

I Ciphertexts are among the shortest.

I Secret keys can be compressed.

I But public keys are really, really big!

I Sending 1MB takes time and bandwidth.

I Google–Cloudlare experiment:

in some cases the public-key + ciphertext size was
too large to be viable in the context of TLS

and even 10KB messages dropped.

I If server accepts 1MB of public key from any client,
an attacker can easily flood memory.
This invites DoS attacks.
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Goodness, what big keys you have!

I Public keys look like this:

K =


1 0 . . . 0 1 . . . 1 0 1
0 1 . . . 0 0 . . . 0 1 1
...

...
. . .

... 1 . . . 1 1 0
0 0 . . . 1 0 . . . 1 1 1


Left part is (n− k)× (n− k) identity matrix (no need to send)
right part is random-looking (n − k)× k matrix.
E.g. n = 6960, k = 5413, so n − k = 1547.

I Encryption xors secretly selected columns, e.g.
0
1
0
0

 +


1
0
1
0

 +


0
1
1
1

 +


1
1
0
1

 =


0
1
0
0


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Can servers avoid storing big keys?

K =


1 0 . . . 0 1 . . . 1 0 1
0 1 . . . 0 0 . . . 0 1 1
...

...
. . .

... 1 . . . 1 1 0
0 0 . . . 1 0 . . . 1 1 1

 = (In−k |K ′)

I Encryption xors secretly selected columns.

I With some storage and trusted environment:
Receive columns of K ′ one at a time, store and update partial
sum.

I On the real Internet, without per-client state:
Don’t reveal intermediate results!
Which columns are picked is the secret message!
Intermediate results show whether a column was used or not.
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McTiny (Bernstein/Lange)
Partition key

K ′ =


K1,1 K1,2 K1,3 . . . K1,`

K2,1 K2,2 K2,3 . . . K2,`
...

...
...

. . .
...

Kr ,1 Kr ,2 Kr ,3 . . . Kr ,`


I Each submatrix Ki ,j small enough to fit + cookie into network

packet.
I Server does computation on Ki ,j , puts partial result into

cookie.
I Cookies are encrypted by server to itself using some temporary

symmetric key (same key for all server connections).
No per-client memory allocation.

I Client feeds the Ki ,j to server & handles storage for the server.
I Cookies also encrypted & authenticated to client.
I More stuff to avoid replay & similar attacks.

I Several round trips, but no per-client state on the server.
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Parallel-to-NIST-Post-Quantum-“Competition”
Post-Quantum Cryptography
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Stateful hash-based signatures

I Only one prerequisite: a good hash function, e.g. SHA3-512.
Hash functions map long strings to fixed-length strings.
Signature schemes use hash functions in handling plaintext.

I Old idea: 1979 Lamport one-time signatures.

I 1979 Merkle extends to more signatures.

Pros:

I Post quantum

I Only need secure hash
function

I Security well understood

I Fast

I We can count: OS update,
code signing, . . . naturally
keep state.

Cons:

I Biggish signature
though some tradeoffs
possible

I Stateful, i.e., ever reusing a
subkey breaks security.
Adam Langley “for most
environments it’s a huge
foot-cannon.”
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Standardization progress
I CFRG has published 2 RFCs: RFC 8391 and RFC 8554

I NIST has gone through two rounds of requests for public
input, most are positive and recommend standardizing XMSS
and LMS. Only concern is about statefulness in general.

I ISO SC27 JTC1 WG2 has started a study period on stateful
hash-based signatures.
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Post-NIST-Post-Quantum-“Competition”
Post-Quantum Cryptography
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CSIDH: An Efficient Post-Quantum Commutative Group
Action
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CSIDH: An Efficient Post-Quantum Commutative Group
Action

Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny,
Joost Renes 2018

I Closest thing we have in PQC to normal DH key exchange:
Keys can be reused, blinded; no difference between initiator
&responder.

I Public keys are represented by some A ∈ Fp; p fixed prime.

I Alice computes and distributes her public key A.
Bob computes and distributes his public key B.

I Alice and Bob do computations on each other’s public keys
to obtain shared secret.

I Fancy math: computations start on some elliptic curve
EA : y2 = x3 + Ax2 + x , use isogenies to move to a different
curve.

I Computations need arithmetic (add, mult, div) modulo p and
elliptic-curve computations.
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Square-and-multiply

Reiminder: DH in group with #G = 23. Alice computes g13.
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Pretty pictures by Chloe Martindale and Lorenz Panny.
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Union of cycles: rapid mixing
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CSIDH: Nodes are now elliptic curves and edges are isogenies.
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Graphs of elliptic curves
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Nodes: Supersingular elliptic curves EA : y2 = x3 + Ax2 + x over F419.
Edges: 3-, 5-, and 7-isogenies.

Pretty pictures by Chloe Martindale and Lorenz Panny.
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Edges: 3-, 5-, and 7-isogenies.

Pretty pictures by Chloe Martindale and Lorenz Panny.
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Security

Size of key space:

I About
√
p of all A ∈ Fp are valid keys.

Without quantum computer:

I Meet-in-the-middle variants: Time O( 4
√
p).

With quantum computer:
I Hidden-shift algorithms apply: Subexponential complexity.

I Literature contains mostly asymptotics.
I Recent work analyzing cost: see

https://quantum.isogeny.org.

CSIDH security:

I Public-key validation:
Quickly check that EA : y2 = x3 + Ax2 + x has p + 1 points.
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CSIDH-512
Sizes:

I Private keys: 32 bytes. (37 in current software for simplicity.)

I Public keys: 64 bytes (just one Fp element).

Performance on typical Intel Skylake laptop core:

I Wall-clock time: 27ms per operation.

I Clock cycles: about 7 · 107 per operation.

I Somewhat more for constant-time implementations.

Security:

I Pre-quantum: at least 128 bits.

I Post-quantum: complicated. AFAWK similar to AES-128.

Website:

I https://csidh.isogeny.org/
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SIDH vs. CSIDH

Nodes: Supersingular elliptic curves defined over k up to ∼=k .
Edges: 3-, 5-, and 7-isogenies defined over k up to ∼=k .

k = F4192 (same as F419)

SIDH case
k = F419

CSIDH case
Pretty pictures by Chloe Martindale and Lorenz Panny.

Tanja Lange Progress in Post-Quantum Cryptography 19



SIDH vs. CSIDH

Nodes: Supersingular elliptic curves defined over k up to ∼=k .
Edges: 3-, 5-, and 7-isogenies defined over k up to ∼=k .

k = F4192 (same as F419)

SIDH case

k = F419

CSIDH case
Pretty pictures by Chloe Martindale and Lorenz Panny.

Tanja Lange Progress in Post-Quantum Cryptography 19



SIDH vs. CSIDH

Nodes: Supersingular elliptic curves defined over k up to ∼=k .
Edges: 3-, 5-, and 7-isogenies defined over k up to ∼=k .

k = F4192 (same as F419)

SIDH case
k = F419

CSIDH case
Pretty pictures by Chloe Martindale and Lorenz Panny.

Tanja Lange Progress in Post-Quantum Cryptography 19



Questions?


