
Faster Pairing Computation

Christophe Arène1, Tanja Lange2, Michael Naehrig2, and Christophe
Ritzenthaler1

1 Institut de mathématiques de Luminy
Université de la Méditerranée

163 Avenue de Luminy Case 907, 13288 Marseille, France
{arene, ritzenth}@iml.univ-mrs.fr

2 Department of Mathematics and Computer Science
Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands

tanja@hyperelliptic.org, michael@cryptojedi.org

Abstract. This paper proposes new explicit formulas for the doubling
and addition step in Miller’s algorithm to compute pairings.
For Edwards curves the formulas come from a new way of seeing the
arithmetic. We state the first geometric interpretation of the group law
on Edwards curves by presenting the functions which arise in the addition
and doubling. Computing the coefficients of the functions and the sum
or double of the points is faster than with all previously proposed for-
mulas for pairings on Edwards curves. They are even competitive with
all published formulas for pairing computation on Weierstrass curves.
We also speed up pairing computation on Weierstrass curves in Jacobian
coordinates.
Finally, we present examples of pairing-friendly twisted Edwards curves
with embedding degree k = 6.
Keywords: Pairing, Miller function, explicit formulas, Edwards curves.

1 Introduction

Since their introduction to cryptography by Bernstein and Lange [8], Edwards
curves have received a lot of attention because of their very fast group law.
The group law in affine form was introduced by Edwards in [14] along with a
description of the curve and several proofs of the group law. Remarkably none of
the proofs provided a geometric interpretation of the group law while for elliptic
curves in Weierstrass form the explanation via the chord-and-tangent method is
the standard.

Applications in discrete-logarithm-based systems such as Diffie-Hellman key
exchange or digital signatures require efficient computation of scalar multiples
and thus have benefited from the speedup in addition and doubling. The situ-
ation is significantly different in pairing-based cryptography where Miller’s al-
gorithm needs a function whose divisor is (P ) + (Q) − (P + Q) − (O), for two

* This work has been supported in part by the European Commission through the
ICT Programme under Contract ICT–2007–216646 ECRYPT II, and in part by
grant MTM2006-11391 from the Spanish MEC.



2 C. Arène, T. Lange, M. Naehrig, C. Ritzenthaler

input points P and Q and their sum P +Q. For curves in Weierstrass form these
functions are readily given by the line functions in the usual addition and dou-
bling. Edwards curves have degree 4 and thus any line passes through 4 points
instead of 3. This led many to conclude that Edwards curves provide no benefit
to pairings and are doomed to be slower than the Weierstrass counterparts.

So far two papers have attempted to compute pairings efficiently on Edwards
curves: Das and Sarkar [13] use the birational equivalence to Weierstrass curves
to map the points on the Edwards curve to a Weierstrass curve on which the
usual line functions are then evaluated. This approach comes at a huge perfor-
mance penalty as these implicit pairing formulas need many more field opera-
tions to evaluate them. Das and Sarkar then focus on supersingular curves with
embedding degree k = 2 and develop explicit formulas for that case.

Ionica and Joux [21] use a different map to a curve of degree 3 and compute
the 4-th power of the Tate pairing. The latter poses no problem in usage in
protocols as long as both sides perform the same type of pairing computation.
Their results are significantly faster than Das and Sarkar’s but they are still
much slower than pairings on Weierstrass curves.

In this paper we close several important gaps:

– We provide a geometric interpretation of the Edwards addition law for
twisted Edwards curves.

– We study additions, doublings, and all the special cases that appear as part
of the geometric addition law for twisted Edwards curves.

– We use the geometric group law to show how to compute the Tate pairing
on twisted Edwards curves.

– We give examples of pairing-friendly Edwards and twisted Edwards curves.

Beyond that, we develop explicit formulas for computing pairings on Edwards
and twisted Edwards curves that for Edwards curves

– solidly beat the results by Das–Sarkar [13] and Ionica–Joux [21];
– are as fast as the fastest published formulas for the doubling step on Weier-

strass curves, namely curves with a4 = 0 (e.g. Barreto-Naehrig curves) in
Jacobian coordinates, and faster than other Weierstrass curves;

– need the same number of field operations as the best published formulas for
mixed addition in Jacobian coordinates; but need more multiplications and
fewer squaring;

– have minimal performance penalty for non-affine base points.

In particular, for even embedding degree k the doubling step on an Edwards
curve takes (k + 6)m + 5s + 1M + 1S, where m and s denote the costs of
multiplication and squaring in the base field while M and S denote the costs of
multiplication and squaring in the extension field of degree k. A mixed addition
step takes (k + 12)m + 1M and an addition step takes (k + 14)m + 1M.

We also speed up the addition and doubling step on Weierstrass curves for all
curve shapes by trading several multiplications for squarings and additions. We
present the first efficient formulas for (non-mixed) addition steps on Weierstrass
curves.



Faster Pairing Computation 3

2 Twisted Edwards Curves

In this section and the next one, K will denote a field of characteristic different
from 2. A twisted Edwards curve over K is a curve given by an affine equation
of the form

Ea,d : ax2 + y2 = 1 + dx2y2

for a, d ∈ K∗ and a 6= d. They were introduced by Bernstein et al. in [6] as
a generalization of Edwards curves [8] which are included as E1,d. There is an
addition law on points of the curve Ea,d which is given by

(x1, y1) + (x2, y2) =

(

x1y2 + y1x2

1 + dx1x2y1y2
,

y1y2 − ax1x2

1− dx1x2y1y2

)

.

The neutral element is O = (0, 1), and the negative of (x1, y1) is (−x1, y1). The
point O′ = (0,−1) has order 2. The points at infinity Ω1 = (1 : 0 : 0) and
Ω2 = (0 : 1 : 0) are singular and blow up to two points each.

The name twisted Edwards curves comes from the fact that the set of twisted
Edwards curves is invariant under quadratic twists while a quadratic twist of an
Edwards curve is not necessarily an Edwards curve. In particular, let δ ∈ K \K2

and let α2 = δ for some α in a quadratic extension K2 of K. The map ǫ :
(x, y) 7→ (αx, y) defines a K2-isomorphism between the twisted Edwards curves
Ea,d and Ea/δ,d/δ. Hence, the map ǫ is the prototype of a quadratic twist. Note
that twists change the x-coordinate unlike on Weierstrass curves where they
affect the y-coordinate.

3 Geometric Interpretation of the Group Law

In this section, we study the intersection of E,a,d with certain plane curves and
explain the Edwards addition law in terms of the divisor class arithmetic. We
remind the reader that the divisor class group is defined as the group of degree-0
divisors modulo the group of principal divisors in the function field of the curve,
i.e. two divisors are equivalent if they differ by a principal divisor. For back-
ground reading on curves and Jacobians, we refer to [15] and [31].

We first consider projective lines in P
2. A general line is of the form

L : cXX + cY Y + cZZ = 0, (1)

where (cX : cY : cZ) ∈ P
2. A line is uniquely determined by two of its points

when they are distinct. We first consider lines which pass through one of the
points at infinity and an affine point P . Note that the line through Ω1 and Ω2

is the line at infinity L∞ : Z = 0.

Lemma 1. Let P = (X0 : Y0 : Z0) ∈ P
2(K) be an affine point, i. e. Z0 6= 0, and

L1,P be the projective line passing through P and Ω1. Then L1,P is given by

L1,P : Z0Y − Y0Z = 0.



4 C. Arène, T. Lange, M. Naehrig, C. Ritzenthaler

Let L2,P be the line through P and Ω2. Then L2,P is given by

L2,P : Z0X −X0Z = 0.

Proof. The points at infinity force cX = 0 and cY = 0, respectively. The equation
then follows from P being a point on the line. ⊓⊔

In the following we describe a special conic which passes through both points
at infinity, Ω1 and Ω2, the point O′, and two arbitrary affine points P1 and P2 on
Ea,d. Let φ(X, Y, Z) = cX2X2 + cY 2Y 2 + cZ2Z2 + cXY XY + cXZXZ + cY ZY Z ∈
K[X, Y, Z] be a homogeneous polynomial of degree 2 and C : φ(X, Y, Z) = 0,
the associated plane (possibly degenerate) conic.

Remark 2. Since the points Ω1, Ω2,O
′ are not on a line, the conic C cannot be

a double line and φ represents C uniquely up to multiplication by a scalar.

Lemma 3. If a conic C passes through the points Ω1, Ω2, and O′, then it has
an equation of the form

C : cZ2(Z2 + Y Z) + cXY XY + cXZXZ = 0, (2)

where (cZ2 : cXY : cXZ) ∈ P
2(K).

Proof. We evaluate φ at the three points Ω1, Ω2, and O′. The fact that Ω1 lies
on the conic, means that cX2 = 0. Similarly, cY 2 = 0 since Ω2 lies on C. Further,
the condition O′ ∈ C shows cY Z = cZ2 . ⊓⊔

Theorem 4. Let Ea,d be a twisted Edwards curve over K, and let P1 = (X1 :
Y1 : Z1) and P2 = (X2 : Y2 : Z2) be two affine, not necessarily distinct, points
on Ea,d(K). Let C be the conic passing through Ω1, Ω2, O

′, P1, and P2, i. e. C
is given by an equation of the form (2). If some of the above points are equal,
we consider C and Ea,d to intersect with at least that multiplicity at the corre-
sponding point. Then the coefficients in (2) of the equation φ of the conic C are
uniquely (up to scalars) determined as follows:

(a) If P1 6= P2, P1 6= O
′ and P2 6= O

′, then

cZ2 = X1X2(Y1Z2 − Y2Z1),

cXY = Z1Z2(X1Z2 −X2Z1 + X1Y2 −X2Y1),

cXZ = X2Y2Z
2
1 −X1Y1Z

2
2 + Y1Y2(X2Z1 −X1Z2).

(b) If P1 6= P2 = O′, then

cZ2 = −X1, cXY = Z1, cXZ = Z1.

(c) If P1 = P2, then

cZ2 = X1Z1(Z1 − Y1),

cXY = dX2
1Y1 − Z3

1 ,

cXZ = Z1(Z1Y1 − aX2
1 ).



Faster Pairing Computation 5

Proof. As for Lemma 3, if the points are distinct, the coefficients are obtained
by evaluating the previous equation at the points P1 and P2. We obtain two
linear equations in cZ2 , cXY , and cXZ

cZ2(Z2
1 + Y1Z1) + cXY X1Y1 + cXZX1Z1 = 0,

cZ2(Z2
2 + Y2Z2) + cXY X2Y2 + cXZX2Z2 = 0.

The formulas in (a) follow from the (projective) solutions

cZ2 =

∣

∣

∣

∣

X1Y1 X1Z1

X2Y2 X2Z2

∣

∣

∣

∣

, cXY =

∣

∣

∣

∣

X1Z1 Z2
1 + Y1Z1

X2Z2 Z2
2 + Y2Z2

∣

∣

∣

∣

, cXZ =

∣

∣

∣

∣

Z2
1 + Y1Z1 X1Y1

Z2
2 + Y2Z2 X2Y2

∣

∣

∣

∣

.

If P1 = P2 6= O
′, we start by letting Z1 = 1, Z = 1 in the equations. The

tangent vectors at the non singular point P1 = (X1 : Y1 : 1) of Ea,d and of C are

(

dX2
1Y1 − Y1

aX1 − dX1Y
2
1

)

,

(

−cZ2 − cXY X1

cXY Y1 + cXZ

)

.

They are collinear if the determinant of their coordinates is zero which gives
us a linear condition in the coefficients of φ. We get a second condition by
φ(X1, Y1, 1) = 0. Solving the linear system, we get the projective solution

cZ2 = X3
1 (−dY 2

1 + a) = X1(1− Y 2
1 ) = X1(Y1 + 1)(1− Y1),

cXY = 2dX2
1Y 2

1 − Y1 − Y 2
1 + dX2

1Y1 − aX2
1

= −1− Y1 + dX2
1Y 2

1 + dX2
1Y1 = (Y1 + 1)(dX2

1Y1 − 1),

cXZ = −dX2
1Y 3

1 − aX2
1 + Y 2

1 + Y 3
1 = (Y1 + 1)(Y1 − aX2

1 )

using the curve equation aX2
1 + Y 2

1 = 1 + dX2
1Y 2

1 to simplify. Finally, since
P1 6= O

′, we can divide by 1+Y1 and homogenize to get the result which provides
the formulas as stated. The same formulas hold if P1 = O′ since intersection
multiplicity greater than or equal to 3 at O′ is achieved by setting φ = X(Y +
Z) = XY + XZ.

Assume now that P1 6= P2 = O′. Note that the conic C is tangent to Ea,d at
O′ if and only if (∂φ/∂x)(0,−1, 1) = (cXY y + cXZz)(0,−1, 1) = 0, i.e. cXY =
cXZ . Then φ = (Y + Z)(cZ2Z + cXY X). Since P1 6= O

′, it is not on the line
Y + Z = 0. Then we get cZ2Z1 + cXY X1 = 0 which gives the coefficients as in
(b). ⊓⊔

Let P1 and P2 be two affine K-rational points on a twisted Edwards curve
Ea,d, and let P3 = (X3 : Y3 : Z3) = P1 + P2 be their sum. Let

l1 = Z3Y − Y3Z, l2 = X

be the polynomials of the horizontal line L1,P3
and the vertical line L2,O respec-

tively, (cf. Lemma 1) and let

φ = cZ2(Z2 + Y Z) + cXY XY + cXZXZ



6 C. Arène, T. Lange, M. Naehrig, C. Ritzenthaler

be the unique polynomial (up to multiplication by a scalar) defined by Theo-
rem 4.
The following theorem shows that the twisted Edwards group law indeed has a
geometric interpretation involving the above equations. It gives us an important
ingredient to compute Miller functions.

Theorem 5. Let a, d ∈ K∗, a 6= d and Ea,d be a twisted Edwards curve over K.
Let P1, P2 ∈ Ea,d(K). Define P3 = P1 + P2. Then we have

div

(

φ

l1l2

)

∼ (P1) + (P2)− (P3)− (O). (3)

Proof. Let us consider the intersection divisor (C · Ea,d) of the conic C : φ = 0
and the singular quartic Ea,d. Bezout’s Theorem [16, p. 112] tells us that the
intersection of C and Ea,d should have 2 · 4 = 8 points counting multiplicities
over K. We note that the two points at infinity Ω1 and Ω2 are singular points
of multiplicity 2. Moreover, by definition of the conic C, (P1) + (P2) + (O′) +
2(Ω1) + 2(Ω2) ≤ (C · Ea,d). Hence there is an 8th point Q in the intersection.
Let L1,Q : lQ = 0 be the horizontal line going through Q. Since the inverse
for addition on twisted Edwards curves is given by (x, y) 7→ (−x, y), we see
that (L1,Q · Ea,d) = (Q) + (−Q) + 2(Ω2). On the other hand (L2,O · Ea,d) =
(O) + (O′) + 2(Ω1). Hence by combining the above divisors we get

div

(

φ

lQl2

)

∼ (P1) + (P2)− (−Q)− (O).

By unicity of the group law with neutral element O on the elliptic curve Ea,d

[31, Prop.3.4], the last equality means that P3 = −Q. Hence (L1,P3
· Ea,d) =

(P3) + (−P3) + 2(Ω2) = (−Q) + (Q) + 2(Ω2) and l1 = lQ. So

div

(

φ

l1l2

)

∼ (P1) + (P2)− (P3)− (O).

⊓⊔

Remark 6. From the proof, we see that P1 + P2 is obtained as the mirror image
with respect to the y-axis of the eighth intersection point of Ea,d and the conic
C passing through Ω1, Ω2,O

′, P1 and P2.

Example 7. As an example we consider the Edwards curve E1,−30 : Z2(X2 +
Y 2) = Z4 − 30X2Y 2 over the set of real numbers R. Of course, the pictures
show the affine part of the curve, dehomogenized by setting Z = 1. We choose
the point P1 with x-coordinate x1 = −0.6 and P2 with x-coordinate x2 = 0.1.
Figure 1(a) shows addition of different points P1 and P2, and Figure 1(b) shows
doubling of the point P1.



Faster Pairing Computation 7

b

b

b

b

b b

P1

P2

P3 −P3L1,P3

C

E1,−30

O

O′

(a) P1 6= P2, P1, P2 6= O′, P3 = P1 + P2

b

b

b

b b

P1

P3
−P3L1,P3

C

E1,−30

O

O′

(b) P1 = P2 6= O′, P3 = 2P1

Fig. 1. Geometric interpretation of the Edwards group law on E1,−30 : x2 + y2 =
1 − 30x2y2 over R.

4 Background on Pairings

Let p be a prime different from 2 and let E/Fp be an elliptic curve over Fp with
neutral element denoted by O. Let n | #E(Fp) be a prime divisor of the group
order and let E have embedding degree k with respect to n. For simplicity and
speed we assume that k > 1.

Let P ∈ E(Fp)[n] and let fP ∈ Fp(E) be such that div(fP ) = n(P )− n(O)
and let µn ⊂ F∗

pk denote the group of n-th roots of unity. The reduced Tate
pairing is given by

Tn : E(Fp)[n]× E(Fpk)/nE(Fpk)→ µn; (P, Q) 7→ fP (Q)(p
k
−1)/n.

Miller [24] suggested to compute pairings in an iterative manner. Let n =
(nl−1, . . . , n1, n0)2 be the binary representation of n and let gR,P ∈ Fp(E) be the
function arising in addition on E such that div(gR,P ) = (R)+(P )−(R+P )−O,
where O denotes the neutral element in the group of points and R + P denotes
the sum of R and P on E while additions of the form (R) + (P ) denote formal
additions in the divisor group. Miller’s algorithm starts with R = P, f = 1 and
computes

1. for i = l− 2 to 0 do
(a) f ← f2 · gR,R(Q), R← 2R //doubling step
(b) if ni = 1 then f ← f · gR,P (Q), R← R + P //addition step

2. f ← f (pk
−1)/n

For Weierstrass curves and even k, several improvements and speedups are
presented in [3] and [4]. In particular it is common to eliminate all denominators
by choosing the second point Q such that its x-coordinate is in a subfield of Fpk .
The functions gR,P are defined over Fp and their denominators are functions in
x only. Writing gR,P (Q) = hR,P (xQ, yQ)/sR,P (xQ) with polynomial functions



8 C. Arène, T. Lange, M. Naehrig, C. Ritzenthaler

hR,P and sR,P , one sees that the complete contribution of all sR,P (xQ)’s will be
mapped to 1 by the final exponentiation if xQ is in a proper subfield of Fpk . The
latter is usually enforced by choosing a point Q′ on a quadratic twist of E over
Fpk/2 and defining Q as the image of Q′ under the twist.

5 Miller Functions on Edwards Curves

In this section we show how to use the geometric interpretation of the group
law derived in Section 3 to compute pairings. We assume that k is even and
that the second input point Q is chosen by using the tricks in [3] and [4]. Note
that, as explained in Section 2, on twisted Edwards curves Ea,d, twists affect the
x-coordinate. Let Fpk have basis {1, α} over Fpk/2 with α2 = δ ∈ Fpk/2 and let
Q′ = (X0 : Y0 : Z0) ∈ Eaδ,dδ(Fpk/2). Twisting Q′ with α ensures that the second
argument of the pairing is on Ea,d(Fpk) (and no smaller field) and is of the form
Q = (X0α : Y0 : Z0), where X0, Y0, Z0 ∈ Fpk/2 .

By Theorem 5 we have gR,P = φ
l1l2

. So the update in the Miller loop com-
putes gR,P , evaluates it at Q = (X0α : Y0 : Z0) and updates f as f ← f ·gR,P (Q)
(addition) or as f ← f2 ·gR,R(Q) (doubling). Given the shape of φ and the point
Q = (X0α : Y0 : Z0), we see that we need to compute

φ

l1l2
(X0α : Y0 : Z0) =

cZ2(Z2
0 + Y0Z0) + cXY X0αY0 + cXZX0Z0α

(Z3Y0 − Y3Z0)X0α

=
cZ2

Z0+Y0

X0δ α + cXY y0 + cXZ

Z3y0 − Y3
,

where (X3 : Y3 : Z3) are coordinates of the point R+P or R+R and y0 = Y0/Z0.
Define η = Z0+Y0

X0δ . Note that η ∈ Fpk/2 and that it is fixed for the whole com-
putation, so it can be precomputed. The denominator Z3y0 − Y3 is defined over
Fpk/2 ; since it enters the function multiplicatively, the final exponentiation will
remove all contributions from it. We can thus avoid its computation completely,
and only have to evaluate

cZ2ηα + cXY y0 + cXZ .

The coefficients cZ2 , cXY , and cXZ are defined over Fp, so the evaluation at Q
given the coefficients of the conic can be computed in km (the multiplication by
η and y0 each need k

2m).
In the next sections we give explicit formulas to efficiently compute cZ2 , cXY ,

and cXZ for addition and doubling. For applications in cryptography we restrict
our considerations to points in a group of prime order. Let the number of points
on the curve factor as #Ea,d(Fp) = 4hn, with n prime, and let the basepoint P
have order n. This implies in particular that none of the additions or doublings
involves Ω1, Ω2, or O′. The neutral element O is a multiple of P , namely nP ,
but none of the operations in the Miller loop will have it as its input. This means
that without loss of generality we can assume that none of the coordinates of



Faster Pairing Computation 9

the input points is 0. In fact, for this assumption to hold we only need that P
has odd order, so that the points of order 2 or 4 are not multiples of it.

5.1 Addition

Hisil et al. presented new addition formulas for twisted Edwards curves at Asi-
acrypt 2008 [20]. To save 1m they extended the representation by a further
coordinate T1 = X1Y1/Z1 for points P = (X1 : Y1 : Z1) with Z1 6= 0. In the
following section we show how to compute this value as part of the doubling
step. As suggested in [20] it is only computed for the last doubling in a sequence
of doublings and is not computed after an addition. Note that no addition is
ever followed by another addition in the scalar multiplication. Furthermore, we
assume that the base point P has odd order so in particular Z1, Z2 6= 0. The
sum P3 = (X3 : Y3 : Z3) of two different points P1 = (X1 : Y1 : Z1 : T1) and
P2 = (X2 : Y2 : Z2 : T2) in extended representation is given by

X3 = (X1Y2 − Y1X2)(T1Z2 + Z1T2),

Y3 = (aX1X2 + Y1Y2)(T1Z2 − Z1T2),

Z3 = (aX1X2 + Y1Y2)(X1Y2 − Y1X2).

Theorem 4 (a) in Section 3 states the coefficients of the conic section for addition.
We use T1, T2 to shorten the formulas.

cZ2 = X1X2(Y1Z2 − Y2Z1) = Z1Z2(T1X2 −X1T2),

cXY = Z1Z2(X1Z2 − Z1X2 + X1Y2 − Y1X2),

cXZ = X2Y2Z
2
1 −X1Y1Z

2
2 + Y1Y2(X2Z1 −X1Z2)

= Z1Z2(Z1T2 − T1Z2 + Y1T2 − T1Y2).

Note that all coefficients are divisible by Z1Z2 6= 0 and so we scale the coef-
ficients. The explicit formulas for computing P3 = P1 + P2 and (cZ2 , cXY , cXZ)
are given as follows:

A = X1 ·X2; B = Y1 · Y2; C = Z1 · T2; D = T1 · Z2; E = D + C;

F = (X1 − Y1) · (X2 + Y2) + B −A; G = B + aA; H = D − C; I = T1 · T2;

cZ2 = (T1 −X1) · (T2 + X2)− I + A; cXY = X1 · Z2 −X2 · Z1 + F ;

cXZ = (Y1 − T1) · (Y2 + T2)−B + I −H ;

X3 = E · F ; Y3 = G ·H ; Z3 = F ·G.

With these formulas P3 and (cZ2 , cXY , cXZ) can be computed in 13m + 1ma,
where ma denotes the costs of a multiplication by the constant a. If T3 is desired
as part of the output it can be computed in 1m as T3 = E ·H . The point P2 is
not changed during pairing computation and can be given in affine coordinates,
i. e. Z2 = 1. Applying mixed addition, the above costs reduce to 11m+1ma. We
used Sage [32] to verify the explicit formulas. Note that there is no extra speed



10 C. Arène, T. Lange, M. Naehrig, C. Ritzenthaler

up from choosing a = −1 (unlike in [20]) since all subexpressions are also used
in the computation of (cZ2 , cXY , cXZ).

An addition step in Miller’s algorithm for the Tate pairing thus costs 1M +
(k + 11)m + 1ma.

5.2 Doubling

Theorem 4 (c) in Section 3 states the coefficients of the conic section in the
case of doubling. To speed up the computation we multiply each coefficient by
−2Y1/Z1; remember that φ was unique up to scaling. Note also that Y1, Z1 6= 0
because we assume that all points have odd order. The multiplication by Y1/Z1

reduces the overall degree of the equations since we can use the curve equation to
simplify the formula for cXY ; the factor 2 is useful in obtaining an s/m tradeoff
in the explicit formulas below. We obtain:

cZ2 = X1(2Y 2
1 − 2Y1Z1),

cXY = 2(Y1Z
3
1 − dX2

1Y 2
1 )/Z1 = 2(Y1Z

3
1 − Z2

1 (aX2
1 + Y 2

1 ) + Z4
1 )/Z1

= Z1(2(Z2
1 − aX2

1 − Y 2
1 ) + 2Y1Z1),

cXZ = Y1(2aX2
1 − 2Y1Z1).

Of course we also need to compute P3 = [2]P1. We use the explicit formulas
from [6] for the doubling and reuse subexpressions in computing the coefficients
of the conic. The formulas were checked for correctness with Sage [32].

A = X2
1 ; B = Y 2

1 ; C = Z2
1 ; D = (X1 + Y1)

2; E = (Y1 + Z1)
2;

F = D − (A + B); G = E − (B + C); H = aA; I = H + B;

J = C − I; K = J + C; cXZ = Y1 · (2H −G); cXY = Z1 · (2J + G);

cZ2 = F · (Y1 − Z1); X3 = F ·K; Y3 = I · (B −H); Z3 = I ·K.

These formulas compute P3 and (cZ2 , cXY , cXZ) in 6m + 5s + 1ma. If the
doubling is followed by an addition the additional coordinate T3 = X3Y3/Z3

needs to be computed. This is done by additionally computing T3 = F · (B−H)
in 1m.

If the input is given in extended form as P1 = (X1 : Y1 : Z1 : T1) we can use
T1 in the computation of the conic as

cZ2 = X1(2Y 2
1 − 2Y1Z1) = 2Z1Y1(T1 −X1),

cXY = Z1(2(Z2
1 − aX2

1 − Y 2
1 ) + 2Y1Z1),

cXZ = Y1(2aX2
1 − 2Y1Z1) = 2Z1(aX1T1 − Y 2

1 ),



Faster Pairing Computation 11

and then scale the coefficients by 1/Z1. The computation of P3 = (X3 : Y3 : Z3 :
T3) and (cZ2 , cXY , cXZ) is then done in 6m + 5s + 2ma as

A = X2
1 ; B = Y 2

1 ; C = Z2
1 ; D = (X1 + Y1)

2; E = (Y1 + Z1)
2;

F = D − (A + B); G = E − (B + C); H = aA; I = H + B; J = C − I;

K = J + C; cZ2 = 2Y1 · (T1 −X1); cXY = 2J + G; cXZ = 2(aX1 · T1 −B);

X3 = F ·K; Y3 = I · (B −H); Z3 = I ·K; T3 = F · (B −H).

For computing the Tate pairing this means that a doubling step costs 1M+
1S + (k + 6)m + 5s + 1ma in twisted Edwards coordinates and 1M + 1S + (k +
6)m + 5s + 2ma in extended coordinates.

5.3 Miller loop

Miller’s algorithm loops over the bits in the representation of n. We follow Hisil
et al. [20] and denote the system of projective Edwards coordinates (X1 : Y1 : Z1)
by E and the extended system (X1 : Y1 : Z1 : T1) by Ee.

If the whole computation is carried out in Ee each addition step in the Tate
pairing needs 1M + (k + 14)m + 1ma if both points are projective and 1M +
(k + 12)m + 1ma if the addition is mixed. A doubling costs 1M + 1S + (k +
6)m + 5s + 2ma.

We can save 1ma per doubling by using the following idea which is already
mentioned by Cohen et al [12]. If we are faced with s consecutive doublings
between additions we execute the first s − 1 doublings as 2E → E , do the last
one as 2E → Ee and then perform the addition as Ee + Ee → E . We account for
the extra m needed in 2E → Ee when stating the cost for addition. This way
each addition step needs 1M + (k + 14)m + 1ma if both points are projective
and 1M + (k + 12)m + 1ma if the addition is mixed. A doubling costs 1M +
1S + (k + 6)m + 5s + 1ma.

6 Operation counts

We give an overview of the best formulas in the literature for pairing computation
on Edwards curves and for the different forms of Weierstrass curves in Jacobian
coordinates. In the Appendix (Section 9) we present new, faster formulas for
pairings on Weierstrass curves. We compare the results with the pairing formulas
for Edwards curves from the previous section.

Throughout this section we assume that k is even, that the second input
point Q is given in affine coordinates, and that quadratic twists are used to have
multiplications with xQ and yQ take only (k/2)m each.

6.1 Overview

Chatterjee, Sarkar, and Barua [9] study pairings on Weierstrass curves in Jaco-
bian coordinates. Their paper does not distinguish between multiplications in Fp



12 C. Arène, T. Lange, M. Naehrig, C. Ritzenthaler

and in Fpk but their results are easily translated. For mixed addition their for-
mulas need 1M+(k+9)m+3s. For doublings they need 1M+(k+7)m+1S+4s
if a4 = −3. For doubling on general Weierstrass curves (no condition on a4) the
formulas by Ionica and Joux [21] are fastest with 1M + (k + 1)m + 1S + 11s.

Actually, any mixed addition (mADD) or addition (ADD) needs 1M + km
for the evaluation at Q and the update of f ; each doubling (DBL) needs 1M +
km+1S for the evaluation at Q and the update of f . In the following we do not
comment on these costs since they do not depend on the chosen representation
and are a fixed offset. We also do not report these expenses in the overview table.

Hankerson, Menezes, and Scott [19] study pairing computation on Barreto-
Naehrig [5] curves. All BN curves have the form y2 = x3 + b and are thus
more special than curves with a4 = −3 or Edwards curves. In their presentation
they combine the pairing computation with the extension-field arithmetic and
thus the operation for the pure pairing computation is not stated explicitly but
the formulas match those in [10]. They need 6m + 5s for a doubling step and
9m+3s for a mixed addition step when computing the update functions for the
Tate pairing.

We present new formulas for Weierstrass curves in the appendix (Section 9).
The results are stated in the table as “this paper”.

Das and Sarkar [13] were the first to publish pairing formulas for Edwards
curves. We do not include them in our overview since their study is specific to
supersingular curves with k = 2.

Ionica and Joux [21] proposed the thus far fastest pairing formulas for Ed-
wards curves. Note that they actually compute the 4th power Tn(P, Q)4 of the
Tate pairing. This has almost no negative effect for usage in protocols. So we
include their result as pairings on Edwards curves.

We denote Edwards coordinates by E and Jacobian coordinates by J . The
row “E , this paper” reports the results of the previous section using 2E → E for
the main doublings, 2E → Ee for the final doubling, and Ee + Ee → E for the
addition. Using only Ee for all operations requires 1ma more per doubling.

DBL mADD ADD

J , [21], [9] 1m + 11s + 1ma4
9m + 3s —

J , [21], this paper 1m + 11s + 1ma4
6m + 6s 15m + 6s

J , a4 = −3, [9] 7m + 4s 9m + 3s —
J , a4 = −3, this paper 6m + 5s 6m + 6s 15m + 6s
J , a4 = 0, [10], [9] 6m + 5s 9m + 3s —
J , a4 = 0, this paper 3m + 8s 6m + 6s 15m + 6s
E , [21] 8m + 4s + 1md 14m + 4s + 1md —
E , this paper 6m + 5s + 1ma 12m + 1ma 14m + 1ma



Faster Pairing Computation 13

6.2 Comparison

We point out that all the example curves presented in Section 8 are Edwards
curves so that the multiplication costs ma vanish. More generally, since both a4

and a can be chosen within some range and are usually small, multiplications
by them are negligible, i.e. we assume 1ma4

= 1ma = 0 in this comparison.

The overview shows that our new formulas for Edwards curves solidly beat
any formulas published for pairing computation on Edwards curves. Our new
formulas for Edwards curves need fewer field operations and have a larger per-
centage of squarings among them.

We first compare our new formulas for Edwards curves with formulas in the
literature for Weierstrass curves. For doubling, our formulas are as efficient as
the so far most efficient ones (a4 = 0) and faster than the 7m + 4s for a4 = −3
if s ≤ m. The comparison with the case of general curves depends on the s/m
ratio. For cheap s the general formulas are faster while otherwise our Edwards
doubling step is faster. Note that the general formulas can be used to double in
the special cases of a4.

For addition, Edwards curves need the same number of field operations as
Weierstrass curves, but the formulas have no squarings. So they are slower if
s ≤ m. Overall, the new formulas are competitive with the formulas in the lit-
erature.

Our own improvements to the doubling and addition formulas for Weier-
strass curves keep the same number of field operations as previously published
formulas for the same Weierstrass curves but we manage to trade off several
multiplications for squarings. Compared to these new formulas given in the ap-
pendix the doubling step on Edwards curves is slower or at best as fast as on
Weierstrass curves unless the curve has a general a4 and m− s is small. For the
mixed addition the gap has widened so that fast squarings make the Edwards
mixed addition look worse in comparison.

It is important to note that the s−m tradeoffs come at the expense of extra
field additions and intermediate variables. If squarings are not particularly cheap
or if storage is restricted the tradeoffs might not be worthwhile.

The penalty for computing full additions instead of mixed additions is only
2m for Edwards curves. The gap between mADD and ADD is significantly worse
for Jacobian coordinates where an optimized addition step costs 15m + 6s, i.e.
9m more than the best formulas. This is significantly more than the computation
in Edwards coordinates. Therefore, Edwards curves are the clear winner if the
input point P is not in affine coordinates; e.g. in protocols that compute the first
input point using scalar multiplication. This is also the most likely use case for
pairings on Edwards curves because the implementation can use the fast scalar
multiplication on Edwards curves.



14 C. Arène, T. Lange, M. Naehrig, C. Ritzenthaler

7 Construction of Pairing-Friendly Edwards Curves

We describe a way to generate Edwards curves over finite fields with embedding
degree k = 6 and cryptographic bitsize. They are constructed as pairing-friendly
elliptic curves in Weierstrass form with a group order divisible by 4 [6, Thm. 3.3].
Since all parameterized families of pairing-friendly curves with ρ-value 1 yield
curves with odd group order, we use the construction of generalized MNT curves
with cofactor 4 given by Galbraith, McKee, and Valença [17]. The following
polynomial parameterizations lead to curves over Fq(ℓ) with embedding degree
k = 6, trace t(ℓ) and group order 4n(ℓ):

Case q(ℓ) t(ℓ) n(ℓ)

1 16ℓ2 + 10ℓ + 5 2ℓ + 2 4ℓ2 + 2ℓ + 1
2 112ℓ2 + 54ℓ + 7 14ℓ + 4 28ℓ2 + 10ℓ + 1
3 112ℓ2 + 86ℓ + 17 14ℓ + 6 28ℓ2 + 18ℓ + 3
4 208ℓ2 + 30ℓ + 1 −26ℓ− 2 52ℓ2 + 14ℓ + 1
5 208ℓ2 + 126ℓ + 19 −26ℓ− 8 52ℓ2 + 38ℓ + 7

Constructing a curve with parameters given by the above polynomials re-
quires the CM norm equation

t(ℓ)2 − 4q(ℓ) = −Dy2

to be fulfilled with a small positive discriminant D. Since choosing ℓ such that
q(ℓ) and n(ℓ) are prime results in too large values for D, the construction has to
be done as for MNT curves [25] by first solving the corresponding Pell equation.
For instance, in Case 1, we get

t(ℓ)2 − 4 q(ℓ) = −D y2 ⇐⇒ x2 − 15 D y2 = −44,

where x = 15ℓ + 4.

Remark 8. The method to construct pairing-friendly Edwards curves described
in this section focuses on the case k = 6. For efficient implementation, we aim
at balancing the difficulty of the DLPs on the curve and in the finite field Fp6 .
Following the ECRYPT recommendations [30], the “optimal” bitsizes for curves
E/Fp with #E(Fp) = 4hn and n prime are shown in Table 1 for the most
common security levels. For these parameters, the DLP in the subgroup of E(Fp)
of order n is considered equally hard as the DLP in F∗

p6 . Using curves with a
cofactor of the given size ensures that the prime n is as small as possible for the
corresponding size of p. The bit length of n is equal to the length of the Miller
loop. Hence it can be minimized for the given security level by choosing a curve
with parameter sizes as indicated in Table 1.



Faster Pairing Computation 15

n p p6 h

160 208 1248 46

192 296 1776 102

224 405 2432 179

256 541 3248 283

512 2570 15424 2056

Table 1. “Optimal” bitsizes for the primes n, p and the cofactor h.

8 Examples of Edwards curves with embedding degree 6

We present examples of Edwards curves with embedding degree k = 6. They
were constructed using the method described in the previous section. Together
with David Kohel [1] we have shown that any elliptic curve in Weierstrass form
for which 4 divides the number of rational points can be transformed into a
plain Edwards curve by applying a sequence of 2-isogenies. Thus it is possible to
always find a curve with a = 1 and we use this idea to construct the following
examples. Note that choosing a 6= 1 offers some flexibility in choosing a small
basepoint.

In the following we present four examples of pairing-friendly Edwards curves
with embedding degree 6. The first one comes from the particularly easy to
handle discriminant D = 1. The other three have well-balanced parameters and
are interesting for cryptographic applications. Notation is as before, where the
number of Fp-rational points on the curve is 4hn.

– D = 1, ⌈log(n)⌉ = 363, ⌈log(h)⌉ = 7, ⌈log(p)⌉ = 371

p = 32428903728427434871960638456028409162281939582432575945

30632153559402628010019946681624958973937239637420169141,

n = 11105788948091587284918026868502879850096554651518005460

623832064312035897815509951488907964532000965993787241,

h = 73,

d = 16214451864213717435980319228014204581140969791216287972

65316076779701314005009973340812479486968619818710084571.

– D = 7230, ⌈log(n)⌉ = 165, ⌈log(h)⌉ = 34, ⌈log(p)⌉ = 201

p = 2051613663768129606093583432875887398415301962227490187508801,

n = 44812545413308579913957438201331385434743442366277,

h = 7 · 733 · 2230663,

d = 889556570662354157210639662153375862261205379822879716332449.



16 C. Arène, T. Lange, M. Naehrig, C. Ritzenthaler

– D = 4630, ⌈log(n)⌉ = 191, ⌈log(h)⌉ = 90, ⌈log(p)⌉ = 283

p = 1207642247325762099962277292422023053565510428560082635785

6070179619031510615886361601,

n = 2498886235887409414948289020220476887707263210939845485839,

h = 11161 · 19068349 · 5676957216676051,

d = 4597008687866412934970378498245465932931615077893178705320

744592305527135300502778190.

– D = 314, ⌈log(n)⌉ = 220, ⌈log(h)⌉ = 98, ⌈log(p)⌉ = 319

p = 9452707311247707513330618188853923205411626343551115070653265144510

04408844212168675659778272001,

n = 1336495861025991472146331033760710418580743090769112585053164534599,

h = 3 · 58939622055090151702905271933,

d = 6987035440681854303189570169230960965572653735366548738901481656990

62950896708357057310497167360.

References

1. Christophe Arène, David Kohel, Tanja Lange, Michael Naehrig, and Christophe
Ritzenthaler. Work in progress, 2009.

2. Roberto M. Avanzi, Henri Cohen, Christophe Doche, Gerhard Frey, Tanja Lange,
Kim Nguyen, and Frederik Vercauteren. The Handbook of Elliptic and Hyperelliptic
Curve Cryptography. CRC, 2005.

3. Paulo S. L. M. Barreto, Hae Yong Kim, Ben Lynn, and Michael Scott. Efficient
algorithms for pairing-based cryptosystems. In CRYPTO 2002 [34], pages 354–368,
2002.

4. Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. Efficient implementation of
pairing-based cryptosystems. J. Cryptology, 17:321–334, 2004.

5. Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic curves of
prime order. In SAC 2005 [29], pages 319–331, 2006.

6. Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and Christiane
Peters. Twisted Edwards curves. In Africacrypt [33], pages 389–405, 2008.
http://cr.yp.to/papers.html#twisted.

7. Daniel J. Bernstein and Tanja Lange. Explicit-formulas database.
http://www.hyperelliptic.org/EFD.

8. Daniel J. Bernstein and Tanja Lange. Faster addition and doubling on elliptic
curves. In ASIACRYPT 2007 [23], pages 29–50, 2007. http://cr.yp.to/newelliptic/.

9. Sanjit Chatterjee, Palash Sarkar, and Rana Barua. Efficient computation of
Tate pairing in projective coordinate over general characteristic fields. In ICISC
2004 [27], pages 168–181, 2005.



Faster Pairing Computation 17

10. Zhaohui Cheng and Manos Nistazakis. Implementing pairing-based cryptosystems.
In 3rd International Workshop on Wireless Security Technologies IWWST-2005,
2005.

11. Dipanwita Roy Chowdhury, Vincent Rijmen, and Abhijit Das, editors. Progress
in Cryptology - INDOCRYPT 2008, 9th International Conference on Cryptology
in India, Kharagpur, India, December 14-17, 2008, proceedings, volume 5365 of
Lecture Notes in Computer Science, Berlin, 2008. Springer.

12. Henry Cohen, Atsuko Miyaji, and Takatoshi Ono. Efficient elliptic curve exponen-
tiation using mixed coordinates. In ASIACRYPT 1998 [26], pages 51–65, 1998.
http://www.math.u-bordeaux.fr/∼ cohen/asiacrypt98.dvi.

13. M. Prem Laxman Das and Palash Sarkar. Pairing computation on twisted Edwards
form elliptic curves. In Pairing 2008 [18], pages 192–210, 2008.

14. Harold M. Edwards. A normal form for elliptic curves. Bulletin of the Ameri-
can Mathematical Society, 44:393–422, 2007. http://www.ams.org/bull/2007-44-
03/S0273-0979-07-01153-6/home.html.

15. Gerhard Frey and Tanja Lange. Background on Curves and Jacobians, chapter 13
in [2], pages 45–85. 2005.

16. William Fulton. Algebraic Curves. W. A. Benjamin, Inc., 1969.
17. Steven D. Galbraith, James F. McKee, and Paula C. Valença. Ordinary abelian

varieties having small embedding degree. Finite Fields and their Applications,
13:800–814, 2007.

18. Steven D. Galbraith and Kenneth G. Paterson, editors. Pairing-Based Cryptog-
raphy - Pairing 2008, Second International Conference, Egham, UK, September
1-3, 2008, Proceedings, volume 5209 of Lecture Notes in Computer Science, Berlin,
2008. Spriger.

19. Darrel Hankerson, Alfred J. Menezes, and Michael Scott. Software implementation
of pairings. In Identity-Based Cryptography [22], pages 188–206, 2009.

20. Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, and Ed Dawson. Twisted
Edwards curves revisited. In ASIACRYPT 2008 [28], pages 326–343, 2008.

21. Sorina Ionica and Antoine Joux. Another approach to pairing computation
in Edwards coordinates. In INDOCRYPT 2008 [11], pages 400–413, 2008.
http://eprint.iacr.org/2008/292.

22. Marc Joye and Gregory Neven, editors. Identity-Based Cryptography, volume 2 of
Cryptology and Information Security Series. IOS Press, 2009.

23. Kaoru Kurosawa, editor. Advances in Cryptology —ASIACRYPT 2007, volume
4833 of Lecture Notes in Computer Science, Berlin Heidelberg, 2007. Springer.

24. Victor S. Miller. The Weil pairing, and its efficient calculation. Journal of Cryp-
tology, 17:235–261, 2004.

25. Atsuko Miyaji, Masaki Nakabayashi, and Shunzou Takano. New explicit conditions
of elliptic curve traces for FR-reduction. IEICE Transactions on Fundamentals,
E84-A(5):1234–1243, 2001.

26. Kazuo Ohta and Dingyi Pei, editors. Advances in cryptology —ASIACRYPT’98,
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Beijing, China, October 18–22, 1998, Proceedings, volume 1514
of Lecture Notes in Computer Science, Berlin, 1998. Springer.

27. Choonsik Park and Seongtaek Chee, editors. Information Security and Cryptology -
ICISC 2004, 7th International Conference, Seoul, Korea, December 2-3, 2004, Re-
vised Selected Papers, volume 3506 of Lecture Notes in Computer Science. Springer,
2005.



18 C. Arène, T. Lange, M. Naehrig, C. Ritzenthaler

28. Josef Pieprzyk, editor. Advances in Cryptology - ASIACRYPT 2008, 14th Inter-
national Conference on the Theory and Application of Cryptology and Information
Security, Melbourne, Australia, December 7-11, 2008. Proceedings, volume 5350 of
Lecture Notes in Computer Science, Berlin, 2008. Springer.

29. Bart Preneel and Stafford E. Tavares, editors. Selected Areas in Cryptography,
12th International Workshop, SAC 2005, Kingston, ON, Canada, August 11-12,
2005, Revised Selected Papers, volume 3897 of Lecture Notes in Computer Science.
Springer, 2006.

30. Christian Rechberger and Vincent Rijmen. ECRYPT yearly report on algorithms
and keysizes (2007-2008). Technical report, 2008. D.SPA.28, IST-2002-507932.

31. Joseph H. Silverman. The Arithmetic of Elliptic Curves. Number 106 in Graduate
texts in mathematics. Springer-Verlag, 1986.

32. William Stein. Sage mathematics software (version 2.8.12), 2008. The Sage Group,
http://www.sagemath.org.

33. Serge Vaudenay, editor. Progress in Cryptology - AFRICACRYPT 2008, First
International Conference on Cryptology in Africa, Casablanca, Morocco, June 11-
14, 2008, proceedings., Lecture Notes in Computer Science, Berlin, 2008. Springer.

34. Moti Yung, editor. Advances in Cryptology - CRYPTO 2002, 22nd Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 18-22,
2002, Proceedings, volume 2442 of Lecture Notes in Computer Science. Springer,
2002.

9 Appendix: Formulas for Weierstrass curves

To obtain the full speed of pairings on Weierstrass curves it is useful to represent
a point by (X1 : Y1 : Z1 : T1) with T1 = Z2

1 . This allows one s −m tradeoff
in the doubling step and one in the addition step compared with the usual
representation (X1 : Y1 : Z1).

The line function for Weierstrass curves is given by

gR,P (X : Y : Z) =
lR,P

lR+P
=

(Y Z3
0 − Y0Z

3)− λ(XZ2
0 −X0Z

2)ZZ0

(X − cZ)Z2
,

where λ is the slope, (X0 : Y0 : Z0) is a point on the line, and c is some
constant. When one computes the Tate pairing, the point (X0 : Y0 : Z0) and the
constants λ and c are defined over the base field Fp. The function is evaluated
at a point Q = (XQ : YQ : ZQ) defined over Fpk ; if k is even then the field
extension Fpk is usually constructed via a quadratic subfield as Fpk = Fpk/2(α),
with α2 = δ and Q is chosen to be of the form Q = (xQ : yQα : 1) with
xQ, yQ ∈ Fpk/2 . Like in the case of Edwards curves only the numerator needs to
be considered and all multiplicative contributions from subfields of Fpk can be
discarded. In particular λ = L1/Z3 for curves in Jacobian coordinates and thus
the computation simplifies to computing

Z3(yQZ3
0α− Y0)− L1(xQZ2

0 −X0)Z0.

Multiplications with xQ and yQ cost (k/2)m each; for k > 2 it is thus useful
to rewrite this equation as

l = ((Z3 · Z0) · Z
2
0) · yQα− Y0 · Z3 − (L1 · Z0) · Z

2
0 · xQ + X0 · (L1 · Z0)



Faster Pairing Computation 19

needing at worst (k+6)m+1s; in most cases some computations can be reused.
In particular, if T0 = Z2

0 and T3 = Z2
3 are known at worst (k + 5)m + 1s are

needed. Additionally 1M or 1M + 1S are needed to update the function f in
Miller’s algorithm.

9.1 Addition

For addition we use Bernstein and Lange’s formulas (“add-2007-bl”) from the
EFD [7], enhanced with caching T = Z2. The point (X0 : Y0 : Z0) on the line can
be chosen to be (X2 : Y2 : Z2); the numerator of λ is r. Then T2 = Z2

0 = Z2
2 = B

is already computed and L1 · Z0 = (r + Z2)
2 − r2 −B, where r2 is computed in

computing X3.

A = X1 · T2; B = X2 · T1; C = Y1 · Z2 · T2; D = Y2 · Z1 · T1; H = B − A;

I = (2H)2; J = H · I ; r = 2(D − C); R = r
2; V = A · I ; W = (r + Z2)

2 − R − T2;

X3 = R − J − 2V ; Y3 = r · (V − X3) − 2C · J ; Z3 = ((Z1 + Z2)
2 − T1 − T2) · H ;

T3 = Z
2

3 ; c1 = ((Z3 + Z2)
2 − T2 − T3) · T2; c2 = 2Y2 · Z3; c3 = W · T2; c4 = W · X2;

l = c1 · yQα − c2 − c3 · xQ + c4.

The formulas need 1M + (k + 15)m + 6s to compute the addition step. To our
knowledge this is the first set of formulas for full (non-mixed) addition. Note that
the usage of these formulas in pairings required some different optimizations; a
naive application would need (11m+5s)+1M+(k+6)m+1s without the extra
coordinates Ti and without the additional tricks.

If (X2 : Y2 : Z2) is fixed throughout the computation and m > s then it
is worthwhile computing and storing S2 = Y 2

2 . This allows to compute 2D =
((Y2 + Z1)

2−S2
2 −T1) ·T1 and c2 = (Y2 + Z3)

2−S2−T2. Note that using 2D in
place of D requires scaling everything by 2. The complete computation can be
done in 1M+(k +13)m+8s; we do not report these numbers in the table since
projective base points are most likely to happen if the base point is changing
and/or the device is constrained.

9.2 Mixed addition

Mixed addition means that the second input point is in affine representation, i.e.
Z2 = 1 and thus also T2 = 1. Choosing the point (X0 : Y0 : Z0) on the line as
this point (x2 : y2 : 1) saves several operations in the addition as well as in the
computation of the line function:

l = Z3 · yQα− y2 · Z3 − L1 · (xQ − x2)

which simplifies to only (k + 1)m. Note that this is better than computing the
first part as Z3 · (yQα− y2) since a multiplication by yQα− y2 costs km instead
of (k/2)m. This base point is usually fixed throughout the computation and,
given that it is provided in affine coordinates, it is likely a long-term input; thus
it is worthwhile storing it as (x2, y2, y

2
2).



20 C. Arène, T. Lange, M. Naehrig, C. Ritzenthaler

We now state the mixed addition formulas based on Bernstein and Lange’s
formulas (“add-2007-bl”) from the EFD [7]. Mixed additions are the usual case
studied for pairings and the evaluation in (k + 1)m is standard. However, most
implementations miss the s −m tradeoff in the main mixed addition formulas
and do not compute the T -coordinate.

B = x2 · T1; D = ((y2 + Z1)
2 − y2

2 − T1) · T1; H = B −X1;

I = H2; E = 4I; J = H · E; r = 2(D − Y1); V = X1 ·E;

X3 = r2 − J − 2V ; Y3 = r · (V −X3)− 2Y1 · J ; Z3 = (Z1 + H)2 − T1 − I;

T3 = Z2
3 ; l = Z3 · yQα− (y2 + Z3)

2 + y2
2 + T3 − r · (xQ − x2).

The formulas need 1M + (k + 6)m + 6s to compute the mixed addition step.

9.3 Doubling

The main differences between the addition and the doubling formulas are that
the doubling formulas depend on the curve shape and that the line function must
be computed with (X0 : Y0 : Z0) = (X1 : Y1 : Z1), where generically Z0 6= 1.

They have in common the general equation of the slope

λ = (3X2
1 − a4Z

2
1)/(2Y1Z1) = (3X2

1 − a4Z
2
1 )/Z3.

Thus Z3 is divisible by Z1 and we can replace l by l′ = l/Z1 which will give the
same result for the pairing computation. The value of

l′ = (Z3 · Z
2
1 ) · yQα− 2Y 2

1 − L1 · Z
2
1 · xQ + X1 · L1

can be computed in at worst (k + 3)m + 1s.
The formulas by Ionica and Joux take into account the doubling formulas

from the EFD for general Weierstrass curves in Jacobian coordinates. We thus
present new formulas for the more special curves with a4 = −3 and for a4 = 0.

Doubling on curves with a4 = −3 The fastest doubling formulas are due
to Bernstein (see [7] “dbl-2001-b”) and need 3m + 5s for the doubling.

A = Y 2
1 ; B = X1 ·A; C = 3(X1 − T1) · (X1 + T1);

X3 = C2 − 8B; Z3 = (Y1 + Z1)
2 −A− T1; Y3 = C · (4B −X3)− 8A2; T3 = Z2

3 ;

l = (Z3 · T1) · yQα− 2A− L1 · T1 · xQ + X1 · L1

The complete doubling step thus takes 1M + 1S + (k + 6)m + 5s.

Doubling on curves with a4 = 0 The following formulas compute a doubling
in 1m + 7s. Note that without T1 and computing Z3 = 2Y1 · Z1 a doubling can
be computed in 2m + 5s which is always faster (see [7]) but the line functions
make use of Z2

1 . Note that here L1 = E = 3X2
1 is particularly simple.



Faster Pairing Computation 21

A = X2
1 ; B = Y 2

1 ; C = B2; D = 2((X1 + B)2 −A− C); E = 3A; G = E2;

X3 = G− 2D; Y3 = E · (D −X3)− 8C; Z3 = (Y1 + Z1)
2 −B − T1; T3 = Z2

3 ;

l = 2(Z3 · T1) · yQα− 4B − 2E · T1 · xQ + (X1 + E)2 −A−G

The complete doubling step thus takes 1M + 1S + (k + 3)m + 8s.


