
Factorization: state of the art

1. Batch NFS

2. Factoring into coprimes

3. ECM

D. J. Bernstein

University of Illinois at Chicago

Tanja Lange

Technische Universiteit Eindhoven

Finding small factors

Find smooth congruences

by finding small factors

of many congruences:

Never ending supply
of congruences

select��
Smallest congruences

find small factors��
Partial factorizations

using primes � y

abort non-smooth��
Smooth congruences

How to find small factors?

Could use trial division:

For each congruence,

remove factors of 2,

remove factors of 3,

remove factors of 5,

etc.; use all primes p � y.

y3+o(1) bit operations:

y1+o(1) per congruence.

Want something faster!

Early aborts

Never ending supply
of congruences

select��
Smallest congruences

��
Partial factorizations
using primes � y1=2

early abort��
Smallest unfactored parts

��
Partial factorizations

using primes � y

final abort��
Smooth congruences

Find small primes by trial division.

Cost y1=2+o(1) for primes � y1=2.

Cost y1+o(1) for primes � y.

Say we choose “smallest”

so that each congruence

has chance y1=2+o(1)=y1+o(1)

of surviving early abort.

Have reduced trial-division

cost by factor y1=2+o(1).

Fact: A y-smooth congruence

has chance y�1=4+o(1)

of surviving early abort.

Have reduced identify-a-smooth

cost by factor y1=4+o(1).

Example from Andrew Shallue:

A uniform random integer in

[1; 264 � 1] has chance about

2�8:1 of being 215-smooth,

chance about 2�3:5 of having 27-

unfactored part below 244, and

chance about 2�9:8 of satisfying

both conditions.

Given congruence, find primes

� 27; abort if unfactored part

is above 244; then find primes �
215. Compared to skipping the

abort: about 23:5 times faster,

about 21:7 times less productive;

gain 21:8.

More generally, can abort at

y1=k, y2=k, etc. Balance stages

to reduce cost per congruence

from y1+o(1) to y1=k+o(1).

Fact: A y-smooth congruence

has relatively good chance

of surviving early abort.

Have reduced identify-a-smooth

cost by factor y(1�1=k)=2+o(1).

Increase k slowly with y.

Find enough smooth congruences

using y2:5+o(1) bit operations.

Want something faster!

Sieving

Textbook answer: Sieving

finds enough smooth congruences

using only y2+o(1) bit operations.

To sieve: Generate in order of p,

then sort in order of i,

all pairs (i; p) with

i in range and i(n+ i) 2 pZ.

Pairs for one p are

(p; p), (2p; p), (3p; p), etc.

and (p� (nmod p); p) etc.

e.g. y = 10, n = 611,

i 2 f1; 2; : : : ; 100g:

For p = 2 generate pairs

(2; 2); (4; 2); (6; 2); : : : ; (100; 2)

and

(1; 2); (3; 2); (5; 2); : : : ; (99; 2).

For p = 3 generate pairs

(3; 3); (6; 3); : : : ; (99; 3) and

(1; 3); (4; 3); : : : ; (100; 3).

For p = 5 generate pairs

(5; 5); (10; 5); : : : ; (100; 5) and

(4; 5); (9; 5); : : : ; (99; 5).

For p = 7 generate pairs

(7; 7); (14; 7); : : : ; (98; 7) and

(5; 7); (12; 7); : : : ; (96; 7).

Sort pairs by first coordinate:

(1; 2), (1; 3), (2; 2), (3; 2), (3; 3),

(4; 2), (4; 3), (4; 5), : : :, (98; 2),

(98; 7), (99; 2), (99; 3), (99; 5),

(100; 2), (100; 3), (100; 5).

Sorted list shows that

the small primes in i(n+ i) are

2; 3 for i = 1;

2 for i = 2;

: : :

2; 7 for i = 98;

2; 3; 5 for i = 99;

2; 3; 5 for i = 100.

In general, for i 2 �1; : : : ; y2
	
:

Prime p produces � y2=p pairs

(p; p), (2p; p), (3p; p), etc.

and produces � y2=p pairs

(p� (nmod p); p) etc.

Total number of pairs �P
p�y 2y2=p � 2y2 log log y.

Easily generate pairs, sort,

and finish checking smoothness,

in y2(lg y)O(1) bit operations.

Only (lg y)O(1) bit operations

per congruence.

Hidden costs

Is that what we do

in record-setting factorizations?

No!

Sieving has two big problems.

First problem:

Sieving needs large i range.

For speed, must use batch of

� y1+o(1) consecutive i’s.

Limits number of sublattices,

so limits smoothness chance.

Can eliminate this problem

using remainder trees.

Hidden costs, trees

Second problem with sieving,

not fixed by remainder trees:

Need y1+o(1) bits of storage.

Real machines don’t have much

fast memory: it’s expensive.

Effect is not visible for

small computations on

single serial CPUs,

but becomes critical in

huge parallel computations.

How to quickly find primes

above size of fast memory?

The rho method

Define �0 = 0, �k+1 = �2
k + 11.

Every prime � 220 divides S =

(�1 � �2)(�2 � �4)(�3 � �6)

� � � (�3575 � �7150).

Also many larger primes.

Can compute gcdfc; Sg using

� 214 multiplications mod c,

very little memory.

Compare to � 216 divisions

for trial division up to 220.

More generally: Choose z.

Compute gcdfc; Sg where S =

(�1 � �2)(�2 � �4) � � � (�z � �2z).

How big does z have to be

for all primes � y to divide S?

Plausible conjecture: y1=2+o(1);

so y1=2+o(1) mults mod c.

Early-abort rho: y1=4+o(1) mults.

Reason: Consider first collision in

�1 mod p; �2 mod p; : : :.

If �i mod p = �j mod p

then �k mod p = �2k mod p

for k 2 (j � i)Z \ [i;1] \ [j;1].

The p� 1 method

S1 = 2232792560 � 1 has prime

divisors

3, 5, 7, 11, 13, 17, 19, 23, 29, 31,

37, 41, 43, 53, 61, 67, 71, 73, 79,

89, 97, 103, 109, 113, 127, 131,

137, 151, 157, 181, 191, 199 etc.

These divisors include

70 of the 168 primes � 103;

156 of the 1229 primes � 104;

296 of the 9592 primes � 105;

470 of the 78498 primes � 106;

etc.

An odd prime p

divides 2232792560 � 1

iff order of 2 in the

multiplicative group F�p
divides s = 232792560.

Many ways for this to happen:

232792560 has 960 divisors.

Why so many?

Answer: s = 232792560

= lcmf1; 2; 3; 4; 5; : : : ; 20g
= 24 � 32 � 5 � 7 � 11 � 13 � 17 � 19.

Can compute 2232792560 � 1

using 41 ring operations.

(Side note: 41 is not minimal.)

Ring operation: 0, 1, +, �, �.
This computation: 1; 2 = 1 + 1;

22 = 2 � 2; 23 = 22 � 2; 26 = 23 � 23;

212 =26�26; 213 =212�2; 226; 227; 254;

255; 2110; 2111; 2222; 2444; 2888; 21776;

23552; 27104; 214208; 228416; 228417;

256834;2113668;2227336;2454672;2909344;

2909345; 21818690; 21818691; 23637382;

23637383; 27274766; 27274767; 214549534;

214549535; 229099070; 258198140;

2116396280; 2232792560; 2232792560�1.

Given positive integer n,

can compute 2232792560 � 1 modn

using 41 operations in Z=n.

Notation: amod b = a� b ba=bc.
e.g. n = 8597231219: : : :

227 modn = 134217728;

254 modn = 1342177282 modn

= 935663516;

255 modn = 1871327032;

2110 modn = 18713270322 modn

= 1458876811; : : : ;

2232792560�1 modn=5626089344.

Given positive integer n,

can compute 2232792560 � 1 modn

using 41 operations in Z=n.

Notation: amod b = a� b ba=bc.
e.g. n = 8597231219: : : :

227 modn = 134217728;

254 modn = 1342177282 modn

= 935663516;

255 modn = 1871327032;

2110 modn = 18713270322 modn

= 1458876811; : : : ;

2232792560�1 modn=5626089344.

Easy extra computation (Euclid):

gcdf5626089344; ng = 991.

This p� 1 method (1974 Pollard)

quickly factored n = 8597231219.

Main work: 27 squarings mod n.

Could instead have checked

n’s divisibility by 2; 3; 5; : : :.

The 167th trial division

would have found divisor 991.

Not clear which method is better.

Dividing by small p

is faster than squaring mod n.

The p� 1 method finds

only 70 of the primes � 1000;

trial division finds all 168 primes.

Scale up to larger exponent

s = lcmf1; 2; 3; 4; 5; : : : ; 100g:
using 136 squarings mod n

find 2317 of the primes � 105.

Is a squaring mod n

faster than 17 trial divisions?

Or

s = lcmf1; 2; 3; 4; 5; : : : ; 1000g:
using 1438 squarings mod n

find 180121 of the primes � 107.

Is a squaring mod n

faster than 125 trial divisions?

Extra benefit:

no need to store the primes.

Plausible conjecture: if K is

exp
q�

1
2 + o(1)

�
logH log logH

then p�1 divides lcmf1; 2; : : : ; Kg
for H=K1+o(1) primes p � H.

Same if p� 1 is replaced by

order of 2 in F�p.

So uniform random prime p � H

divides 2lcmf1;2;:::;Kg � 1

with probability 1=K1+o(1).

(1:4 : : :+ o(1))K squarings mod n

produce 2lcmf1;2;:::;Kg � 1 modn.

Similar time spent on trial division

finds far fewer primes for large H.

Safe primes

This means numbers are easy

to factor if their factors pi
have smooth pi � 1.

To construct hard instances

avoid such factors – that’s it?

ANSI does recommend

using “safe primes”, i.e.,

primes of the form 2p0 + 1

when generating RSA moduli.

This does not help against the

NFS nor against the following

algorithms.

Interlude: Addition on a clock

y

x

OO

//

neutral = (0; 1)� P1 = (x1; y1)��������
�1

P2 = (x2; y2)�iiiiiii

P3 = (x3; y3)�PPPPPPP

x2 + y2 = 1, parametrized by

x = sin�, y = cos�.

Sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2; y1y2 � x1x2).

Examples of clock addition:

2

�
3

5
;
4

5

�
=

�
24

25
;

7

25

�
.

3

�
3

5
;
4

5

�
=

�
117

125
;
�44

125

�
.

4

�
3

5
;
4

5

�
=

�
336

625
;
�527

625

�
.

Many equivalent formulations.

e.g. Clock addition represents

multiplication of norm-1 elements

of C = R[i]=(i2 + 1).

(x; y) 7! y + ix;

(4=5 + 3i=5)3

= �44=125 + 117i=125.

The p+ 1 factorization method

(1982 Williams)

Define (X; Y) 2 Q�Q as the

232792560th multiple of

(3=5; 4=5) in the group Clock(Q).

The integer S2 = 5232792560X

is divisible by

82 of the primes � 103;

223 of the primes � 104;

455 of the primes � 105;

720 of the primes � 106;

etc.

Given an integer n,

compute 5232792560X mod n

and compute gcd with n,

hoping to factor n.

Many p’s not found by F�p
are found by Clock(Fp).

If �1 is not a square mod p

and p+ 1 divides 232792560

then 5232792560X mod p = 0.

Proof: p � 3 (mod 4), so

(4=5 + 3i=5)p = 4=5� 3i=5 and

so (p+ 1)(3=5; 4=5) = (0; 1)

in the group Clock(Fp)

so 232792560(3=5; 4=5) = (0; 1).

The elliptic-curve method

Fix a 2 f6; 10; 14; 18; : : :g.
Define x1 = 2, z1 = 1,

x2i = (x2
i � z2

i)
2,

z2i = 4xizi(x
2
i + axizi + z2

i),

x2i+1 = 4(xixi+1 � zizi+1)
2,

z2i+1 = 8(xizi+1 � zixi+1)
2.

Define Sa = zlcmf1;2;3;:::;B1g
.

Have now supplemented S1; S2

with S6, S10, S14, etc.

Variability of a is important.

: : :As many curves as you want!

Point of xi; zi formulas:

If zi(a
2 � 4)(4a+ 10) =2 pZ

then ith multiple of (2; 1)

on the elliptic curve

(4a+ 10)y2 = x3 + ax2 + x

over Fp is (xi=zi; : : :).

If (a2 � 4)(4a+ 10) =2 pZ

and lcm 2 (order of (2; 1))Z

then Sa 2 pZ.

Order of elliptic-curve group

depends on a but is always

in [p+ 1� 2
p
p; p+ 1 + 2

p
p].

e.g. B1 = 20, a = 10,

p = 105239:

p divides S10.

Have 232792560(2; 1) = 1
on the elliptic curve

50y2 = x3 + 10x2 + x over Fp.

In fact, (2; 1) has order

13167 = 32 � 7 � 11 � 19

on this curve.

Number of Fp-points of curve

is 105336 = 23 � 32 � 7 � 11 � 19.

Good news (for the attacker):

All primes � H

seem to be found after a

reasonable number of curves.

Plausible conjecture: if B1 is

exp
q�

1
2 + o(1)

�
logH log logH

then, for each prime p � H,

a uniform random curve mod p

has chance � 1=B
1+o(1)
1 to find p.

If a curve fails, try another.

Find p using, on average,

� B
1+o(1)
1 curves;

i.e., � B
2+o(1)
1 squarings.

Time subexponential in H.

Overview of ECM

Stage 1: Point P on E over Z=n,

compute R = sP for

s = lcmf2; 3; : : : ; B1g.
Stage 2: Small primes

B1 < q1; : : : ; qk � B2

compute Ri = qiR.

If the order of P on the curve

modulo pi divides sqi,

Ri is the neutral element.

Let �(neutral) = 0, �(P) 6= 0.

(Example uses Z-coordinate in

Montgomery representation.)

Compute gcdfn;Q�(Ri)g.

Edwards curves

x2 + y2 = 1 + dx2y2

field k with 2 6= 0, d =2 f0; 1g.
Edwards addition law:

(x1; y1) + (x2; y2) =�
x1y2+y1x2

1+dx1x2y1y2
; y1y2�x1x2

1�dx1x2y1y2

�
.

Neutral element: (0; 1).

Negation: �(x1; y1) = (�x1; y1).

Projective point (X1 : Y1 : Z1)

represents (X1=Z1; Y1=Z1).

Addition costs 10M + 1S + 1Md.

Doubling costs 3M + 4S.

Example: x2 + y2 = 1� 30x2y2

y

x

OO

//

neutral = (0; 1)�

(0;�1) of �
order 2

order 4 �
(�1; 0) of

P1 = (x1; y1)����� P2 = (x2; y2)�fffff
P3 = (x3; y3)

�[[[[[[

Compare to standard Jacobian

V 2 = U3 � 3UW 4 + bW 6:

Addition 11M + 5S.

Edwards saves 4S + 1M� 1Md.

Doubling 3M + 5S.

Edwards saves 1S.

Example: x2 + y2 = 1� 30x2y2

Compare to standard Jacobin

V 2 = U3 � 3UW 4 + bW 6:

Addition 11M + 5S.

Edwards saves 4S + 1M� 1Md.

Doubling 3M + 5S.

Edwards saves 1S.

Twisted Edwards curves

ax2 + y2 = 1 + dx2y2 with

a 6= 0; d 6= 0; a 6= d.

(2008 B.–Birkner–Joye–L.–Peters)

Addition law: (x1; y1)+(x2; y2) =�
x1y2+y1x2

1+dx1x2y1y2
; y1y2�ax1x2

1�dx1x2y1y2

�
.

Projective addition:

10M + 1S + 1Md + 1Ma.

Projective doubling:

3M + 4S + 1Ma.

Advantages of twisted Edwards

- More flexible:

not necessarily a point of order 4.

- Covers all Montgomery curves.

- Covers even more curves

by applying a 2-isogeny.

- Saves time when d is

ratio of small integers.

2008–2010 B.–Birkner–L.–Peters

“ECM using Edwards curves”

(software: “EECM-MPFQ”)

save time in ECM by using

(twisted) Edwards curves.

Fewer mulmods per curve

Measurements of EECM-MPFQ

for B1 = 1000000:

b = 1442099 bits in

s = lcmf1; 2; 3; 4; : : : ; B1g.
P 7! sP is computed using

1442085 (= 0.99999b) DBL +

98341 (0.06819b) ADD.

These DBLs and ADDs use

5112988M (3.54552bM) +

5768340S (3.99996bS) +

9635920add (6.68187badd).

Compare to GMP-ECM 6.2.3:

P 7! sP is computed using

2001915 (1.38820b) DADD +

194155 (0.13463b) DBL.

These DADDs and DBLs use

8590140M (5.95669bM) +

4392140S (3.04566bS) +

12788124add (8.86772badd).

Compare to GMP-ECM 6.2.3:

P 7! sP is computed using

2001915 (1.38820b) DADD +

194155 (0.13463b) DBL.

These DADDs and DBLs use

8590140M (5.95669bM) +

4392140S (3.04566bS) +

12788124add (8.86772badd).

Could do better! 0:13463bM

are actually 0:13463bMd.

Md: mult by curve constant.

Small curve, small P , ladder

) 4bM + 4bS + 2bMd + 8badd.

EECM still wins.

HECM handles 2 curves using

2bM + 6bS + 8bMd + � � �
(1986 Chudnovsky–Chudnovsky,

et al.); again EECM is better.

HECM handles 2 curves using

2bM + 6bS + 8bMd + � � �
(1986 Chudnovsky–Chudnovsky,

et al.); again EECM is better.

What about NFS? B1 = 587?

Measurements of EECM-MPFQ:

b = 839 bits in s.

P 7! sP is computed using

833 (0.99285b) DBL +

131 (0.15614b) ADD.

These DBLs and ADDs use

3552M (4.23361bM) +

3332S (3.97139bS) +

6308add (7.51847badd).

Note: smaller window size

in addition chain,

so more ADDs per bit.

Compare to GMP-ECM 6.2.3:

Note: smaller window size

in addition chain,

so more ADDs per bit.

Compare to GMP-ECM 6.2.3:

P 7! sP is computed using

4785M (5.70322bM) +

2495S (2.97378bS) +

7053add (8.40644badd).

Even for this small B1,

EECM beats Montgomery ECM

in operation count.

Notes on current stage 2:

1. EECM-MPFQ jumps through

the j’s coprime to d1.

GMP-ECM: coprime to 6.

2. EECM-MPFQ computes

Dickson polynomial values using

Bos–Coster addition chains.

GMP-ECM: ad-hoc, relying on

arithmetic progression of j.

3. EECM-MPFQ doesn’t bother

converting to affine coordinates

until the end of stage 2.

4. EECM-MPFQ uses NTL

for poly arith in “big” stage 2.

Faster mulmods

ECM is bottlenecked by mulmods:

� practically all of stage 1;

� curve operations in stage 2

(pumped up by Dickson!);

� final product in stage 2,

except fast poly arith.

GMP-ECM does mulmods

with the GMP library.

: : : but GMP has slow API,

so GMP-ECM has � 20000

lines of new mulmod code.

$ wc -c<eecm-mpfq.tar.bz2

16031

Obviously EECM-MPFQ doesn’t

include new mulmod code!

$ wc -c<eecm-mpfq.tar.bz2

16031

Obviously EECM-MPFQ doesn’t

include new mulmod code!

MPFQ library (Gaudry–Thomé)

does arithmetic in Z=n

where number of n words

is known at compile time.

Better API than GMP:

most importantly, n in advance.

EECM-MPFQ uses MPFQ

for essentially all mulmods.

GMP-ECM 6.2.3/GMP 4.3.2:

Tried 1000 curves, B1 = 2000,

typical 240-bit n,

on 3.2GHz Phenom II x4.

Stage 1: 7:4 � 106 cycles/curve.

GMP-ECM 6.2.3/GMP 4.3.2:

Tried 1000 curves, B1 = 2000,

typical 240-bit n,

on 3.2GHz Phenom II x4.

Stage 1: 7:4 � 106 cycles/curve.

EECM-MPFQ,

same 240-bit n, same CPU,

1000 curves, B1 = 2000:

5:2 � 106 cycles/curve.

Some speedup from Edwards;

some speedup from MPFQ.

What about stage 2?

GMP-ECM, 1000 curves,

B1 = 587, B2 = 15366,

Dickson polynomial degree 1:

6:6 � 106 cycles/curve.

Degree 3: 9:5 � 106.

What about stage 2?

GMP-ECM, 1000 curves,

B1 = 587, B2 = 15366,

Dickson polynomial degree 1:

6:6 � 106 cycles/curve.

Degree 3: 9:5 � 106.

EECM-MPFQ, 1000 curves,

B1 = 587, d1 = 420, range 20160

for primes 420i� j:

2:6 � 106 cycles/curve.

Degree 3: 3:1 � 106.

Summary: EECM-MPFQ uses

fewer mulmods than GMP-ECM;

takes less time than GMP-ECM;

and finds more primes.

Summary: EECM-MPFQ uses

fewer mulmods than GMP-ECM;

takes less time than GMP-ECM;

and finds more primes.

Are GMP-ECM and EECM-MPFQ

fully exploiting the CPU? No!

Three recent efforts to

speed up mulmods for ECM:

Thorsten Kleinjung, for RSA-768;

Alexander Kruppa, for CADO;

and ours—see next slide.

Our latest mulmod speeds,

(working on update)

interleaving vector threads

with integer threads:

4�3GHz Phenom II 940:

202 � 106 192-bit mulmods/sec.

4�2.83GHz Core 2 Quad Q9550:

114 � 106 192-bit mulmods/sec.

6�3.2GHz Cell (Playstation 3):

102 � 106 195-bit mulmods/sec.

$500 GTX 295

is one card with two GPUs;

60 cores; 480 32-bit ALUs.

Runs at 1.242GHz.

Our latest CUDA-EECM speed:

481 � 106 210-bit mulmods/sec.

For � $2000 can build PC

with one CPU and four GPUs:

1300 � 106 192-bit mulmods/sec.

Curve details – torsion points

Curve over Q has some torsion

points: points of finite order.

All possible torsion groups

(Mazur’s theorem):

Z=m for

m 2 f1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 12g,
Z=2� Z=2m for

m 2 f1; 2; 3; 4g.
If a point has finite order on the

curve over Q then the point has

the same finite order over Z=n

and over Fp.

Don’t choose P as a torsion

point.

Minimize trouble by choosing

curve with torsion Z=1?

No: people try to use curves with

many torsion points.

1987/1992 Montgomery,

1993 Atkin–Morain

had suggested using torsion

Z=12 or Z=2� Z=8.

2008–2010 B.–Birkner–L.–Peters

construct families of Edwards

curves with torsion

Z=12 or Z=2� Z=8.

Impact of large Q-torsion

20 bit primes, stage 1 only.

Multiplications per prime found

vs. B1.

2000

3000

4000

5000

6000

7000

8000

9000

10000

15000

10 12 14 16 20 24 28 32 40 48 56 64 80 96 112 128 160 192 224 256

1612

4

Why people want big torsion

Standard series of heuristic

approximations for “random”

elliptic curve E:

Pr[prime p 2 [1; R] is found by E]

Why people want big torsion

Standard series of heuristic

approximations for “random”

elliptic curve E:

Pr[prime p 2 [1; R] is found by E]
?
� Pr[prime p 2 [1; R] has smooth

#hP in E(Fp)i]

Why people want big torsion

Standard series of heuristic

approximations for “random”

elliptic curve E:

Pr[prime p 2 [1; R] is found by E]
?
� Pr[prime p 2 [1; R] has smooth

#hP in E(Fp)i]
?
� Pr[p2[1; R] has smooth #E(Fp)]

Why people want big torsion

Standard series of heuristic

approximations for “random”

elliptic curve E:

Pr[prime p 2 [1; R] is found by E]
?
� Pr[prime p 2 [1; R] has smooth

#hP in E(Fp)i]
?
� Pr[p2[1; R] has smooth #E(Fp)]
?
� Pr[integer 2 [1; R] is smooth].

Standard series of

heuristic approximations

when ECM uses a curve E

known to have t torsion points:

Pr[prime p 2 [1; R] is found by E]

Standard series of

heuristic approximations

when ECM uses a curve E

known to have t torsion points:

Pr[prime p 2 [1; R] is found by E]
?
� Pr[integer 2 tZ \ [1; R]

is smooth]

Standard series of

heuristic approximations

when ECM uses a curve E

known to have t torsion points:

Pr[prime p 2 [1; R] is found by E]
?
� Pr[integer 2 tZ \ [1; R]

is smooth]
?
� Pr[integer 2 Z \ [1; R=t]

is smooth].

Standard series of

heuristic approximations

when ECM uses a curve E

known to have t torsion points:

Pr[prime p 2 [1; R] is found by E]
?
� Pr[integer 2 tZ \ [1; R]

is smooth]
?
� Pr[integer 2 Z \ [1; R=t]

is smooth].

Larger t) smaller R=t

) larger Pr.

More primes per curve

Probability vs. B1, 30-bit primes.

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

11%

12%

13%

14%

15%

16%

17%

18%

19%

0 1000 2000

smooth 4

smooth 8

smooth 12

smooth 16

rho 4

rho 8

rho 12

rho 16

uu

GMP-ECM

GMP-P-1

EECM 4

EECM 2x4

EECM 12

EECM 2x8

 12
 2x8

 GMP-ECM

 rho 16

 rho 12 2x4

 4

 GMP-P-1

 rho 4

 rho 8

 uu

 smooth 16

 smooth 12

 smooth 8

 smooth 4

Influence of d1

Multiplications per prime found

vs. B1; different d1’s, same E.

2000

3000

4000

5000

6000

7000

8000

9000

10000

15000

16 32 64 128 256

90
8412078666072 701029654126 1501141088050 4856 132525844684662 11064 40100 1387674 36423834 883298 82144140 13086 92

112 9428104
26

106
116

3011822 24124122
13620128
134

16
142

148146

1814

12
10

8

1

624

Faster twisted Edwards curves

Dual addition law by Hisil–Wong–

Carter–Dawson.�
x1y1 + x2y2

ax1x2 + y1y2
;
x1y1 � x2y2

x1y2 � y1x2

�

Use extended coordinates

(X : Y : Z : T) with T = XY=Z;

bouncing between projective and

extended coordinates.

Addition: 9M + 1Ma.

Only 8M for a = �1.

Doubling: 3M + 4S + 1Ma.

Note the addition speedup for

a = �1.

Faster ECM?

Let’s look closer at

�x2 + y2 = 1� 30x2y2:

Singularity at infinity blows up to

two points of order 2.

EECM paper proved:

arbitrary d with a = �1

cannot achieve highest torsion

such as Z=12 and Z=2� Z=8.

Singularity at infinity blows up to

two points of order 2.

EECM paper proved:

arbitrary d with a = �1

cannot achieve highest torsion

such as Z=12 and Z=2� Z=8.

“Starfish on strike”

Is the sacrifice in torsion

justified by the ADD speedup?

Modified EECM-MPFQ to

support new curves.

“Starfish on strike”

Is the sacrifice in torsion

justified by the ADD speedup?

Modified EECM-MPFQ to

support new curves.

Happy observation:

Gain in # modular multiplications

per curve outweighs loss in

primes found per curve.

“Starfish on strike”

Is the sacrifice in torsion

justified by the ADD speedup?

Modified EECM-MPFQ to

support new curves.

Happy observation:

Gain in # modular multiplications

per curve outweighs loss in

primes found per curve.

Surprising phenomenon: Z=6

�x2 + y2 = 1 + dx2y2 family

finds more primes than Z=12.

“Starfish on strike”

Is the sacrifice in torsion

justified by the ADD speedup?

Modified EECM-MPFQ to

support new curves.

Happy observation:

Gain in # modular multiplications

per curve outweighs loss in

primes found per curve.

Surprising phenomenon: Z=6

�x2 + y2 = 1 + dx2y2 family

finds more primes than Z=12.

Even more benefit from

precomputing best curves.

Number of b-bit primes

found by 1000 different curves

�x2 + � � � with Z=2�Z=4 torsion:

b 20 21 22

curve 12
343 ;

1404
1421

12
343 ;

1404
1421

12
343 ;

1404
1421

#1 15486 22681 46150

curve 27
11 ;

5
13

27
11 ;

5
13

27
11 ;

5
13

#2 14845 21745 43916

curve 63
20 ;

1
244

3
14 ;

1
17

3
14 ;

1
17

#3 14537 21428 43482

#500 13706 19979 40993

#1000 13379 19475 40410

Number of b-bit primes

found by 1000 different curves

x2 + � � � with Z=12 torsion:

b 20 21 22

curve : : : : : : : : :

#1 16276 23991 48076

curve : : : : : : : : :

#2 16275 23970 48028

curve : : : : : : : : :

#3 16273 23965 48020

#500 15977 23590 47521

#1000 15313 22714 45987

Number of b-bit primes

found by 1000 different curves

�x2 + � � � with Z=6 torsion:

b 20 21 22

curve [932] 825
2752 ;

1521
1504

336
527 ;

80
67

#1 16328 24160 48424

curve [94] [982] 825
2752 ;

1521
1504

#2 16289 24119 48378

curve [785] [265] [306]

#3 16287 24113 48357

#500 16037 23735 47867

#1000 15399 22790 45828

1. “ECM using Edwards curves.”

Prototype software: GMP-EECM.

New rewrite: EECM-MPFQ.

2. “ECM on graphics cards.”

Prototype CUDA-EECM.

3. “The billion-mulmod-

per-second PC.”

Current CUDA-EECM,

plus fast mulmods on

Core 2, Phenom II, and Cell.

4. “Starfish on strike.”

Integrated into EECM-MPFQ.

5. Not covered in this talk:

early-abort ECM optimization.

http://cr.yp.to/papers.html#eecm
http://eecm.cr.yp.to
http://cr.yp.to/papers.html#gpuecm
https://sites.google.com/a/crypto.tw/doug/research
http://cr.yp.to/papers.html#pc109
http://cr.yp.to/papers.html#pc109
http://eecm.cr.yp.to

