Discrete-log attacks Q sieve

and factorization . . .
Sieving small integers / > 0

Part || . .
using primes 2, 3,5, 7:
: 1
Tanja Lange 515
Technische Universiteit Eindhoven 222 3
5 5
14 June 2019 ?2 3 .
8|222
0 33
102 5
11
12(22 3
13
14|92 7
15 3 5
162222
17
182 33
19
20(22 5

with some slides by

Daniel J. Bernstein ete.

-log attacks
orization

Inge
he Universiteit Eindhoven

2019

ne slides by
. Bernstein

Q sieve

Sieving small integers i > 0
using primes 2, 3,5, 7:

Q sieve
Sieving .
using pr
1
2|2
3 3
4(22
5
62 3
:
8222
9 3
10(2
11
12[22 3
13
142
15 3
16[2222
17
182 3
19
20[22

1

22

3 3
4122

5

6|2 3
2

8222

9 33
10|12

11

12122 3
13

14|2

15 3
1612222
17

18|2 33
19

20(22
etc.

etc.

S

siteit Eindhoven

Q sieve

Sieving small integers i > 0
using primes 2, 3,5, 7:

1

22

3 3
4122

5 5
62 3

I I
3222

9 33
10|2 5
11

12122 3

13

14|2 I
15 3 5
1612222

17

18|2 33
19

20(22 5

etc.

Q sieve

Sieving / and 611

using primes 2, 3, !

1

22

3 3
4122

5

62 3
2

3222

9 33
10|2

11

12122 3
13

14|2

15 3
1612222
17

18|2 33
19

20(22

etc.

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631

>
2
2

Q sieve Q sieve

Sieving small integers i > 0 Sieving 1 and 611 + / for smr

using primes 2, 3,5, 7: using primes 2, 3,5, 7:

1 1 612[22 33
2|2 2|2 613
3 3 3 3 6142

hoven 41292 4(22 615 3
5 5 6162 2 2
6|2 3 6|2 3 617
7 7 618|2 3
8|222 8|222 619
9 33 9 33 620(2 2
10(2 10(2 621 333
11 11 6222
12(22 3 12(22 3 623
13 13 624|122 223
14(2 14(2 625
15 3 15 3 626 |2
162222 162222 627 3
17 17 6282 2
182 33 182 33 629
19 19 6302 33
20(22 20(2 2 631

etc.

etc.

Q sieve Q sieve

Sieving small integers / > 0 Sieving i and 611 + / for small i
using primes 2, 3,5, 7: using primes 2, 3,5, 7:

1 1 612[22 33
2(2 2|2 613

3 3 3 3 6142

4|22 4|22 615 3 5
5 5 5 5 | [616]22 2

62 3 62 3 617

7 7 7 7| 6182 3
8222 8222 619

9 33 9 33 6202 2 5
1012 5 1012 5 | |621 333
11 11 6222

12(22 3 12122 3 623

13 13 62422223

142 7 142 7| 1625 5555
15 3 5 15 3 5 | |6262

16(2222 16(2222 627 3

17 17 6282 2

18/2 33 18/2 33 629

19 19 6302 33 5
2022 5 2022 5 | [631

etc. etc.

small integers 1 > 0
mes 2,3,5,7:

Q sieve

Sieving / and 611 + / for small /
using primes 2, 3,5, 7:

1

22

3 3
4122

5

6|2 3
2

8222

9 33
10|12

11

12122 3
13

14|2

15 3
1612222
17

18|2 33
19

20(22

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
623
629
630
631

2 2 33
2

3
222
2 3
2 2

333
2
22223
2

3
2 2
2 33

etc.

Have co
the “cor
for some

14 - 625
64 - 675
/5 - 636

14 - 64 -
— 28345

gcd{611
= 47.

611 =4

rers | > 0
), [

Q sieve

Sieving i and 611 + j for small J

using primes 2, 3,5, 7:

1

22

3 3
4122

5

62 3
2

3222

9 33
10|2

11

12122 3
13

14|2

15 3
1612222
17

18|2 33
19

20(22

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631

2 2 33
2

3
222
2 3
2 2

333
2
22223
2

3
2 2
2 33

etc.

Have complete fac
the “congruences”
for some i's.

14 - 625 = 213054
64 - 675 = 203352
75 - 686 = 213152

14 - 64 - 75 - 625 - ¢
— 28345974 — (2°

gcd{611,14 - 64 -
= 47.

611 =47 -13.

Q sieve

Sieving i and 611 + / for small

using primes 2, 3,5, 7:

1

22

3 3
4122

5

6|2 3
2

8222

9 33
10|12

11

12122 3
13

14|2

15 3
1612222
17

18|2 33
19

20(22

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
623
629
630
631

2 2 33
2

3
222
2 3
2 2

333
2
22223
2

3
2 2
2 33

Have complete factorization
the “congruences” /(611 + |
for some I's.

14 - 625 = 21305471

64 - 675 = 206335270

75 - 686 = 21315273

14 - 64 -75- 625 - 675 - 686
_ 28345874 _ (24325472)2_
gcd{611,14 - 64 - 75 — 2432
— 47,

611 =47 -13.

Q sieve

Sieving i and 611 + 7 for small i
using primes 2, 3,5, 7:

1

22

3 3
4122

5

62 3
2

3222

9 33
10|2

11

12122 3
13

14|2

15 3
1612222
17

18|2 33
19

20(22

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631

2 2 33
2

3
222
2 3
2 2

333
2
22223
2

3
2 2
2 33

etc.

Have complete factorization of
the “congruences” (611 + /)
for some i's.

14 - 625 = 21305471

64 - 675 = 20335270

75 - 686 = 21315273

14 - 64 -75- 625 - 675 - 686

_ 28345874 _ (24325472)2.
gcd{611,14 - 64 - 75 — 243254721
— 47,

611 =47 -13.

' and 611 + / for small /

mes 2,3,5,7:

612(2 2
613
6142
615
5 616(2 2 2
617
7| (618|2
619
3 620|2 2

5 621
6222
623

7| (625
5 626|2
627
6282 2
3 629
6302
5 631

624(122223

Have complete factorization of
the “congruences” /(611 + /)
for some /'s.

14 - 625 = 21305471

64 - 675 = 26335270

75 - 686 = 21315273

14 - 64 - 75 - 625 - 675 - 686

— 28345874 = (24325472)2,
gcd{611,14 - 64 - 75 — 24325472}
— 47.

611 =47 -13.

Why did
Was it |
gcd{611

No.

By cons
where s
and t =
So each
divides €

Not terr
(but not
that one
and the

+ 1 for small |

), [
) 33
3 5
22 7
3
2 5
333
.
22923
5555
3
y)
33 5 7

Have complete factorization of
the “congruences” (611 + /)
for some i's.

14 - 625 = 21305471

64 - 675 = 20335270

75 - 686 = 21315273

14 - 64 -75- 625 - 675 - 686

_ 28345874 _ (24325472)2.
gcd{611,14 - 64 - 75 — 243254721
— 47,

611 =47 -13.

Why did this find
Was it just blind |
gcd{611, random}

No.

By construction 6.
where s = 14 - 64
and t = 24325472,
So each prime > |
divides either s —

Not terribly surpri:
(but not guarante
that one prime diy
and the other divi

all 1

555

Have complete factorization of
the “congruences” /(611 + /)
for some /'s.

14 - 625 = 21305471

64 - 675 = 206335270

75 - 686 = 21315273

14 - 64 -75- 625 - 675 - 686

— 28345874 = (24325472)2,
gcd{611, 14 - 64 - 75 — 24325472}
— 47.

611 =47 -13.

Why did this find a factor o
Was it just blind luck:
gcd{611, random} = 477

No.

By construction 611 divides
where s = 14 - 64 - 75

and t = 24325472

So each prime > 7 dividing
divides either s — t or s 4 t.

Not terribly surprising

(but not guaranteed in adva
that one prime divided s — 1
and the other divided s + t.

Have complete factorization of
the “congruences” (611 + /)
for some i's.

14 - 625 = 21305471

64 - 675 = 206335270

75 - 686 = 21315273

14 - 64 -75- 625 - 675 - 686

— 28345874 = (24325472)2.
gcd{611, 14 - 64 - 75 — 24325472}
— 47,

611 =47 -13.

Why did this find a factor of 6117
Was it just blind luck:
gcd{611, random} = 477

No.

By construction 611 divides s2— 2
where s = 14 - 64 - 75

and t = 24325472,

So each prime > 7 dividing 611
divides either s — t or s 4 t.

Not terribly surprising

(but not guaranteed in advance!)
that one prime divided s — t

and the other divided s + t.

mplete factorization of
igruences” /(611 + /)
/'S,

= 21305471,

= 20335270,

= 21315273,
75-625-675 - 686

874 _ (24325472)2_

.14 -64 .75 — 24325472}

/- 13.

Why did this find a factor of 6117
Was it just blind luck:
gcd{611, random} = 477

No.

By construction 611 divides 52—t
where s =14 -64 - 75

and t = 24325472

So each prime > 7 dividing 611
divides either s — t or s 4 t.

Not terribly surprising

(but not guaranteed in advance!)
that one prime divided s — t

and the other divided s + t.

Why did
complet:
have sql
Was it |

Yes. Th
(1,0,4,:
happene

But we
Given lo

easily fir

with sun

torization of
(611 + /)

Why did this find a factor of 6117
Was it just blind luck:
gcd{611, random} = 477

No.

By construction 611 divides s%— 2
where s = 14 - 64 - 75

and t = 24325472,

So each prime > 7 dividing 611
divides either s — t or s 4 t.

Not terribly surprising

(but not guaranteed in advance!)
that one prime divided s — t

and the other divided s + t.

Why did the first -
completely factore
have square produ
Was it just blind |

Yes. The exponen
(1,0,4,1), (6, 3, 2,
happened to have

But we didn't nee
Given long sequen
easily find nonemr
with sum 0 mod 2

472}

Why did this find a factor of 6117
Was it just blind luck:
gcd{611, random} = 477

No.

By construction 611 divides 52—t
where s =14 -64 - 75

and t = 24325472

So each prime > 7 dividing 611
divides either s — t or s 4 t.

Not terribly surprising

(but not guaranteed in advance!)
that one prime divided s — t

and the other divided s + t.

Why did the first three
completely factored congrue

have square product?
Was it just blind luck?

Yes. The exponent vectors
(1,0,4,1),(6,3,2,0),(1,1,2
happened to have sum 0 mc

But we didn't need this luck
Given long sequence of vect

easily find nonempty subseq
with sum 0 mod 2.

Why did this find a factor of 6117
Was it just blind luck:
gcd{611, random} = 477

No.

By construction 611 divides s2— 2

where s =14 -64 - 75

and t = 24325472,

So each prime > 7 dividing 611
divides either s — tor s + t.

Not terribly surprising

(but not guaranteed in advance!)
that one prime divided s — t

and the other divided s + t.

Why did the first three
completely factored congruences

have square product?
Was it just blind luck?

Yes. The exponent vectors
(1,0,4,1),(6,3,2,0),(1,1,2,3)
happened to have sum 0 mod 2.

But we didn't need this luck!
Given long sequence of vectors,
easily find nonempty subsequence
with sum 0 mod 2.

' this find a factor of 6117
ust blind luck:
,random} = 477

rruction 611 divides s2 — t2
=14 -64 - 75

24325472

prime > 7 dividing 611
ither s — tor s + t.

ibly surprising
guaranteed in advance!)
prime divided s — t
other divided s + t.

Why did the first three
completely factored congruences

have square product?
Was it just blind luck?

Yes. The exponent vectors
(1,0,4,1),(6,3,2,0),(1,1,2,3)
happened to have sum 0 mod 2.

But we didn't need this luck!
Given long sequence of vectors,

easily find nonempty subsequence
with sum 0 mod 2.

This is |
Guarant:
It numb:e

exceeds

e.g. for
1(n +
4(n +

15(n +

49(n + -

64(n + |

F>-kerne
gen by (
e.g., 1(r
IS @ squé

a factor of 6117
uck:
= 477

11 divides 52— t2
. 75

7 dividing 611
tors—+t.

SINg

2d in advance!)
ided s — t

ded s + t.

Why did the first t

NIree

completely factored congruences

have square product?
Was it just blind luck?

Yes. The exponent vectors
(1,0,4,1),(6,3,2,0),(1,1,2,3)
happened to have sum 0 mod 2.

But we didn't need this luck!
Given long sequence of vectors,

easily find nonempty subsequence

with sum 0 mod 2.

This is linear algel
Guaranteed to finc
if number of vectc
exceeds length of

e.g. for n = 671:
1(n+ 1)=23

Fo>-kernel of expor
gen by (0101 1)
e.g., 1(n+1)15(n
IS a square.

F 6117

52— t2

011

nce!)

Why did the first three
completely factored congruences

have square product?
Was it just blind luck?

Yes. The exponent vectors
(1,0,4,1),(6,3,2,0),(1,1,2,3)
happened to have sum 0 mod 2.

But we didn't need this luck!
Given long sequence of vectors,

easily find nonempty subsequence
with sum 0 mod 2.

This is linear algebra over F
Guaranteed to find subseque
if number of vectors

exceeds length of each vectc

e.g. for n = 671:
1(n + 1) = 25315071,
4(n + 4) = 2233527Y;
15(n + 15) ,
49(n + 49) = 24325172;
64(n + 64) = 20315172,

Fo-kernel of exponent matri
gen by (01011)and (10
e.g., 1(n+1)15(n +15)49(r
IS a square.

Why did the first three
completely factored congruences

have square product?
Was it just blind luck?

Yes. The exponent vectors
(1,0,4,1),(6,3,2,0),(1,1,2,3)
happened to have sum 0 mod 2.

But we didn't need this luck!
Given long sequence of vectors,
easily find nonempty subsequence
with sum 0 mod 2.

This is linear algebra over F».
Guaranteed to find subsequence
if number of vectors

exceeds length of each vector.

e.g. for n = 671:

1(n + 1) = 25315071,
4(n + 4) = 22335270,
15(n + 15) = 21315173
49(n + 49) = 24325172;
64(n + 64) = 20315172

F>-kernel of exponent matrix is
gen by (01011)and (10110);
e.g., 1(n+1)15(n +15)49(n +49)
IS a square.

the first three

|y factored congruences

lare product?
ust blind luck?

e exponent vectors
1),(6,3,2,0),(1,1,2,3)
d to have sum 0 mod 2.

didn’t need this luck!
ng sequence of vectors,

\d nonempty subsequence
n 0 mod 2.

This is linear algebra over F».
Guaranteed to find subsequence
if number of vectors

exceeds length of each vector.

e.g. for n = 671:
1(n + 1) = 25315071,
4(n + 4) = 22335270,
15(n + 15) ,
49(n + 49) = 24325172;
)

Fo>-kernel of exponent matrix is

gen by (01011)and (10110);
e.g., 1(n+1)15(n+15)49(n +49)
IS a square.

Plausible

separate
of any n

Given n

Try to c
for | € {
Into pro

Look for

with i(n

and with

[hree

d congruences
ct?
uck?

t vectors
0),(1,1,2,3)
sum 0 mod 2.

d this luck!
ce of vectors,
ity subsequence

This is linear algebra over F».
Guaranteed to find subsequence
if number of vectors

exceeds length of each vector.

e.g. for n = 671:

1(n + 1) = 25315071
n+ 4)=22335270,
n + 15) ,
n + 49) = 24325172.

)

N

O
e N

1
4
04

Ol

F>-kernel of exponent matrix is
gen by (01011)and (10110);

e.g., 1(n+1)15(n +15)49(n +49)
IS a square.

Plausible conjectu
separate the odd |
of any n, not just

Given n and parar

Try to completely
for | € {1,2,3,...
into products of p

Look for nonempt
with i(n + /) com

and with || i(n +
rel

Compute gcd{n, s

s=|]iand t=
el

NCES

, 3)
d 2.

OrS,
Uence

This is linear algebra over F».
Guaranteed to find subsequence
if number of vectors

exceeds length of each vector.

e.g. for n = 671:
1(n + 1) = 25315071,
4(n + 4) = 22335279,
15(n + 15) = 21315173
)
)

49(n + 49

F>-kernel of exponent matrix is
gen by (01011)and (10110);

e.g., 1(n+1)15(n +15)49(n +49)
IS a square.

Plausible conjecture: Q siev
separate the odd prime divis
of any n, not just 611.

Given n and parameter y:

Try to completely factor i(n
fori€{1,2,3,...,y%}
into products of primes < y

Look for nonempty set I of
with i(n + i) completely fac

and with || i(n -+ /) square
el

Compute gcd{n,s — t} whe

s=|]iandt= []]i(n-

el el

This is linear algebra over F».
Guaranteed to find subsequence
if number of vectors

exceeds length of each vector.

e.g. for n = 671:
1(n + 1) = 25315071,

4(n + 4) =2°335%7Y,
15(n + 15) = 21315173
49(n + 49) = 2#32517°

()

04

F>-kernel of exponent matrix is
gen by (01011)and (10110);

e.g., 1(n+1)15(n +15)49(n +49)
IS a square.

Plausible conjecture: Q sieve can
separate the odd prime divisors
of any n, not just 611.

Given n and parameter y:

Try to completely factor i(n + i)
fori € {1,2,3,...,y°}
into products of primes < y.

Look for nonempty set I of /'s
with i(n + i) completely factored

and with] i(n + i) square.
el

Compute gcd{n,s — t} where

s=|]liand t= [|]i(n+1).

el el

inear algebra over F». Plausible conjecture: Q sieve can How larg

ced to find subsequence separate the odd prime divisors for this
alr of \}:ec]’iors h of any n, not just 611. Uniform
ength of each vector. Given n and parameter y: has nl/t
= 67? | 01 Try to completely factor i(n + i) roughly
1) = 2°3*5°77; . 5 .
A 52335270 for | € {1,2,3 y } Plausible
N into products of primes < y. Q sieve
15) = 21315173, " s = L
19) = 24325172. Look for nonempty set I of i's -
' L . for all n
54) = 20315172, with i(n + i) completely factored
. . . here o1
o and with || i(n + i) square.
| of exponent matrix is icl

01011)and(10110); Compute gcd{n, s — t} where
+1)15(n +15)49(n +49) o _ Tiandt= [TTi(n+1).
re. i€l i€l

ra over Fo.
] subsequence
IS

each vector.

15071;
35270;
15173;
25172;
15172_
lent matrix Is

and (10110);
+15)49(n + 49)

Plausible conjecture: Q sieve can
separate the odd prime divisors
of any n, not just 611.

Given n and parameter y:

Try to completely factor i(n + i)
fori e {1,2,3,...,y°}
into products of primes < y.

Look for nonempty set I of /'s
with i(n + i) completely factored

and with] i(n + i) square.
el

Compute gcd{n,s — t} where

s=]]liand t= [|]i(n+1i).

el el

How large does y
for this to find a s

Uniform random i

1/u

has n*/“-smoothn

u

roughly u™".

Plausible conjectu
Q) sieve succeeds
with y = [n1/t]
for all n > y(1+ol

here o(1) is as u -

NCE

r.

X IS
1 10);
1 +49)

Plausible conjecture: Q sieve can
separate the odd prime divisors
of any n, not just 611.

Given n and parameter y:

Try to completely factor i(n + i)
fori € {1,2,3,...,y°}
into products of primes < y.

Look for nonempty set I of /'s
with i(n + i) completely factored

and with || i(n + i) square.
el

Compute gcd{n,s — t} where

s=|]iand t= [|]i(n+1i).

el el

How large does y have to b
for this to find a square?

Uniform random integer in |

1/u

has n*/“-smoothness chanc

u

roughly u™".

Plausible conjecture:

Q sieve succeeds
with y = |n1/Y]
for all n > y(1+o(1))u?.

here o(1) is as u — 0.

Plausible conjecture: Q sieve can
separate the odd prime divisors
of any n, not just 611.

Given n and parameter y:

Try to completely factor i(n + i)
fori e {1,2,3,...,y°}
into products of primes < y.

Look for nonempty set I of /'s
with i(n + i) completely factored

and with] i(n + i) square.
el

Compute gcd{n,s — t} where

s=]]liand t= [|]i(n+1i).

el el

How large does y have to be
for this to find a square?

Uniform random integer in [1, n]

1/u

has n-/“-smoothness chance

u

roughly u™".

Plausible conjecture:
Q sieve succeeds

with y = [n1/t]

for all n > u(1+°(1))”2;

here o(1) is as u — 0.

> conjecture: Q sieve can
the odd prime divisors
, not just 611.

and parameter y:

ompletely factor i(n + i)
1,2,3,...,y%}
ducts of primes < y.

nonempty set I of /'s
+ i) completely factored

v || i(n + i) square.
el
e gcd{n,s — t} where

and t= [T i(n+i).
el

How large does y have to be
for this to find a square?

Uniform random integer in [1, n]

1/u

has n*/“-smoothness chance

u

roughly u™".

Plausible conjecture:

Q sieve succeeds
with y = [n1/t]
for all n > y(1+o(1))u?.

here o(1) is as u — ©o.

conjectu
is 1/yct

Find enc
by chan;
replace

oo /(

Increasir
Increase:
reduces
So lineal
when y

re: Q sieve can

yrime divisors
611.

neter y:

factor i(n + i)
v}
rimes < y.

y set I of /'s
pletely factored
- [) square.

— t} where

Mi(n +).

el

How large does y have to be
for this to find a square?

Uniform random integer in [1, n]

1/u

has n-/“-smoothness chance

u

roughly u™".

Plausible conjecture:
Q sieve succeeds

with y = [n1/t]

for all n > u(1+°(1))”2;

here o(1) is as u — 0.

More generally, if

exp \/(2—1(: + o(1))

conjectured y-smc
i 1/yc+o(1)_

Find enough smoc
by changing the r:
replace y? with y°

c+1)2+0(1
exp\/((+)2c+(/

Increasing ¢ past |

Increases number
reduces linear-alge
So linear algebra r
when y Is chosen

€ Can
orS

How large does y have to be
for this to find a square?

Uniform random integer in [1, n]

1/u

has n*/“-smoothness chance

u

roughly u™".

Plausible conjecture:

Q sieve succeeds
with y = |n1/Y]
for all n > y(1+o(1))u?.

here o(1) is as u — 0.

More generally, if y €

exp \/(2—1(: + o(l))log n log lc
conjectured y-smoothness c|

i 1/yc+o(1)_

Find enough smooth congru
by changing the range of /'s
replace y? with yct1to(l) =

exp \/((Cﬂ)jjo(l))log n log

Increasing ¢ past 1

increases number of /'s but
reduces linear-algebra cost.
So linear algebra never dom

when y Is chosen properly.

How large does y have to be
for this to find a square?

Uniform random integer in [1, n]

1/u

has n-/“-smoothness chance

u

roughly u™".

Plausible conjecture:
Q sieve succeeds

with y = [n1/t]

for all n > u(1+°(1))”2;

here o(1) is as u — ©o.

More generally, if y €

exp \/(2—1(: + o(l))log n loglogn,
conjectured y-smoothness chance

ic 1/yc+o(1)_

Find enough smooth congruences
by changing the range of /'s:
replace y? with yct1toll) —

exp \/((CH)QZSLO(D) log n log log n.

Increasing ¢ past 1

increases number of /'s but
reduces linear-algebra cost.

So linear algebra never dominates

when y Is chosen properly.

re does y have to be
o find a square?

random integer in [1, n]
'_smoothness chance

u_ Y.

> conjecture:
succeeds

- [t/
> o (1+o(1))u?.

) is as u — 0.

More generally, if y €

exp \/(2—1(: + o(l))log n loglog n,
conjectured y-smoothness chance

i 1/yc+o(1)_

Find enough smooth congruences
by changing the range of i's:
replace y? with yCJFHO(l) —

Improvir

exp \/((CH);;LO(D) log n log log n.

Increasing ¢ past 1

increases number of /'s but
reduces linear-algebra cost.

So linear algebra never dominates

when y Is chosen properly.

Smoothi
degrade:
Smaller

Crude al
~ yn if
~ y2n 1
More ca
n + 1 dc

I 1s alwa
only 309

Can we
to avoid

have to be
quare’

1teger in [1, n]
ess chance

re.

More generally, if y €

exp \/(21(: 0(1)) log n log log n,
conjectured y-smoothness chance

ic 1/yc+o(1)_

Find enough smooth congruences
by changing the range of i's:
replace y? with yct1toll) —

Improving smooth

exp \/((CH)QZSLO(D) log n log log n.

Increasing ¢ past 1

increases number of /'s but
reduces linear-algebra cost.

So linear algebra never dominates

when y Is chosen properly.

Smoothness chanc
degrades as / grov

Smaller for i ~ y?

Crude analysis: i(
~yn it i = y;
~ y2n if i ~ y2.
More careful analy
n + 1 doesn't deg
I I1s always smootl

only 30% chance 1

Can we select con
to avoid this degr:

(v

1,n]

(v

More generally, if y €

exp \/(2—1(: + o(l))log n loglog n,
conjectured y-smoothness chance

i 1/yc+o(1)_

Find enough smooth congruences
by changing the range of i's:
replace y? with yCJFHO(l) —

Improving smoothness chana

exp \/((CH);;LO(D) log n log log n.

Increasing ¢ past 1

increases number of /'s but
reduces linear-algebra cost.

So linear algebra never dominates

when y Is chosen properly.

Smoothness chance of i(n A
degrades as / grows.
Smaller for i ~ y? than for

Crude analysis: i(n 4 i) grc
~yn it i = y;
~ yv2n if i ~ y?.

More careful analysis:

n + 1 doesn't degrade, but
I i1s always smooth for 1 <y

only 30% chance for i =~ y?.

Can we select congruences
to avoid this degradation?

More generally, if y €

exp \/(2—1(: + o(l))log n loglogn,
conjectured y-smoothness chance

i 1/yc+o(1)_

Find enough smooth congruences
by changing the range of i's:
replace y? with yct1toll) —

Improving smoothness chances

exp \/((CH)QZSLO(D) log n log log n.

Increasing ¢ past 1

increases number of /'s but
reduces linear-algebra cost.

So linear algebra never dominates

when y Is chosen properly.

Smoothness chance of i(n + i)
degrades as / grows.
Smaller for i &~ y? than for i ~ y.

Crude analysis: i(n 4+ i) grows.
~yn it i = y;
~ y2n if i ~ y?.

More careful analysis:

n + 1 doesn't degrade, but

I i1s always smooth for 1 < y,

only 30% chance for i = y?.

Can we select congruences
to avoid this degradation?

nerally, if y €

217: + 0o(1))log n loglog n,

red y-smoothness chance

o(1)

ugh smooth congruences

ying the range of /'s:

Improving smoothness chances

(c+1)2+0(1)

E—)Iognloglogn.

1g ¢ past 1

s number of /'s but
linear-algebra cost.

- algebra never dominates

Is chosen properly.

Smoothness chance of i(n + i)
degrades as / grows.

Smaller for i &~ y? than for i ~ y.

Crude analysis: i(n 4+ i) grows.
~yn it i = y;
~ yv2n if i ~ y?.

More careful analysis:

n + 1 doesn't degrade, but

I I1s always smooth for 1 <y,

only 30% chance for i =~ y?.

Can we select congruences
to avoid this degradation?

Choose

Choose
arithmet
where g
e.g. pro
2g — (n
etc.

Check si
generall:

for 1's Ir
e.g. che
smooth

Try man
Rare for

y €
log n log log n,

othness chance

th congruences

inge of /'s:
+140(1) _

Improving smoothness chances

’-) log n log log n.

!

of I's but

bra cost.

lever dominates

properly.

Smoothness chance of i(n + i)
degrades as / grows.

Smaller for i &~ y? than for i ~ y.

Crude analysis: i(n 4+ i) grows.
~yn it i = y;
~ y2n if i ~ y?.

More careful analysis:

n + 1 doesn't degrade, but

I I1s always smooth for 1 <y,

only 30% chance for i = y?.

Can we select congruences
to avoid this degradation?

Choose g, square

Choose a “g-subla
arithmetic progres
where g divides ea
e.g. progression g
2g — (n mod q), 3
etc.

Check smoothness
generalized congrt
for i's in this subl:
e.g. check whethe
smooth for 1 = g -

Try many large g’
Rare for i's to ove

e n,
hance

€NCES

Improving smoothness chances

log n.

nates

Smoothness chance of i(n + i)
degrades as / grows.

Smaller for i &~ y? than for i ~ y.

Crude analysis: i(n 4+ i) grows.
~yn it i = y;
~ yv2n if i ~ y?.

More careful analysis:

n + 1 doesn't degrade, but

I I1s always smooth for 1 <y,

only 30% chance for i = y?.

Can we select congruences
to avoid this degradation?

Choose g, square of large pr

Choose a “g-sublattice” of i
arithmetic progression of /'s
where q divides each i(n +
e.g. progression g — (n mod
2g — (n mod q), 3g — (n mo
etc.

Check smoothness of
generalized congruence i(n -
for i's in this sublattice.

e.g. check whether i, (n+i
smooth for i = g — (n mod «

Try many large g's.
Rare for i's to overlap.

Improving smoothness chances

Smoothness chance of i(n + i)
degrades as / grows.

Smaller for i &~ y? than for i ~ y.

Crude analysis: i(n 4+ i) grows.
~yn it i = y;
~ yv2n if i ~ y?.

More careful analysis:

n + 1 doesn't degrade, but

I I1s always smooth for 1 < y,

only 30% chance for i = y?.

Can we select congruences
to avoid this degradation?

Choose g, square of large prime.

Choose a “g-sublattice” of i's:
arithmetic progression of /'s
where g divides each i(n + /).
e.g. progression g — (n mod q),
2g — (n mod g), 3g— (n mod g),
etc.

Check smoothness of

generalized congruence i(n +1i)/q
for i's in this sublattice.

e.g. check whether i, (n+1i)/q are
smooth for i = g — (n mod g) etc.

Try many large g's.
Rare for i's to overlap.

1ig smoothness chances

1ess chance of i(n + i)
5 aS | grows.

for i ~ y? than for j =~ y.

ralysis: i(n -+ i) grows.
| R Y;

&yl

reful analysis:
esn't degrade, but
ys smooth for 1 <y,

% chance for i ~ y?.

select congruences
this degradation?

Choose g, square of large prime.

Choose a “g-sublattice” of i's:
arithmetic progression of /'s
where g divides each i(n + /).
e.g. progression g — (n mod q),
2g — (n mod qg), 3g— (n mod q),
etc.

Check smoothness of

generalized congruence i(n +1i)/q
for i's in this sublattice.

e.g. check whether i, (n+1i)/q are
smooth for i = g — (n mod q) etc.

Try many large g's.
Rare for i's to overlap.

e.g. n =

Original

W N =~
D W WD

Use 997
| € 8024

8024
17964
27904

ness chances

e of i(n + 1)
/s.

than for 1 =~ y.

n + i) grows.

SIS:

-ade, but
 for 1 <y,
or [& y°.

oruences
ydation?

Choose g, square of large prime.

Choose a “g-sublattice” of i's:
arithmetic progression of /'s
where g divides each i(n + /).
e.g. progression g — (n mod q),
2g — (n mod g), 3g— (n mod g),
etc.

Check smoothness of

generalized congruence i(n +1i)/q
for i's in this sublattice.

e.g. check whether i, (n+1i)/q are
smooth for i = g — (n mod g) etc.

Try many large g's.
Rare for i's to overlap.

e.g. n = 3141592

Original Q sieve:

n -1

314159265
314159265
314159265

wW N =~

Use 9972-sublattic
I € 802458 + 994(
i (n -

802458 316

1796467 316
2790476 316

_ES

Choose g, square of large prime.

Choose a “g-sublattice” of i's:
arithmetic progression of /'s
where g divides each i(n + /).
e.g. progression g — (n mod q),
2g — (n mod qg), 3g— (n mod q),
etc.

Check smoothness of

generalized congruence i(n +1i)/q
for i's in this sublattice.

e.g. check whether i, (n+1i)/q are
smooth for i = g — (n mod q) etc.

Try many large g's.
Rare for i's to overlap.

e.g. n = 314159265358979:

Original Q sieve:

I n—+1

1 31415926535897932¢
2 31415926535897932!
3 31415926535897932¢

Use 9972-sublattice,
I € 802458 + 994009Z:
i (n+1i)/997°
802458 31605273730

1796467 31605273731(
2790476 31605273731

Choose g, square of large prime.

Choose a “g-sublattice” of /'s:
arithmetic progression of /'s
where g divides each i(n + /).
e.g. progression g — (n mod q),
2g — (n mod g), 3g— (n mod g),
etc.

Check smoothness of

generalized congruence i(n +1i)/q
for i's in this sublattice.

e.g. check whether i, (n+1i)/q are
smooth for i = g — (n mod g) etc.

Try many large g's.
Rare for i's to overlap.

e.g. n = 314159265358979323:

Original Q sieve:

I n—+1

1 314159265358979324
2 314159265358979325
3 314159265358979326

Use 9972-sublattice,
I € 802458 + 994009Z:

i (n+1i)/997°
802458 316052737309
1796467 316052737310
2790476 316052737311

g, square of large prime.
a2 “g-sublattice” of i's:
Ic progression of /'s
divides each i(n + /).
gression g — (n mod q),
mod q), 3g — (n mod g),

moothness of

ed congruence i(n +1i)/q
 this sublattice.

ck whether i, (n+1i)/q are
for i = g— (n mod q) etc.

y large ¢g's.
I's to overlap.

e.g. n = 314159265358979323:

Original Q sieve:

I n—+1

1 314159265358979324
2 314159265358979325
3 314159265358979326

Use 9972-sublattice,
I € 802458 + 994009Z:

i (n+1i)/997°

802458 316052737309
1796467 316052737310
2790476 316052737311

Crude al
eliminat
Have pr:
of gener

(g—(nm

between

More ca
are even
For g =
i~ (n A
SO SMOO

(u/2)~"

2Y times

of large prime.
ttice” of i's:
sion of /'s

ch i(n +1i).
— (n mod g),
71— (n mod q),

 of

ience i(n +1i)/q
attice.
ri,(n+1)/q are
- (n mod q) etc.

>.

erlap.

e.g. n = 314159265358979323:

Original Q sieve:

n—+i

314159265358979324
314159265358979325
314159265358979326

wW N =~

Use 9972-sublattice,
I € 802458 + 994009Z:
i (n+1i)/997°
802458 316052737309

1796467 316052737310
2790476 316052737311

Crude analysis: St
eliminate the grow
Have practically u

of generalized con

(q—Ovmonij:

between O and n.

More careful analy

are even better th.
For g = nl/2 have
i~ (n+i)/g=n
so smoothness ch:

(u/2)7"/2(u/2)~

2Y times larger th.

e.g. n = 314159265358979323:

Original Q sieve:

n—+i

314159265358979324
314159265358979325
314159265358979326

w N = .

Use 9972-sublattice,
I € 802458 + 994009Z:

i (n+1i)/997°
802458 316052737309
1796467 316052737310
2790476 316052737311

Crude analysis: Sublattices
eliminate the growth probler
Have practically unlimited si

of generalized congruences
n—+q—(n moc

q

(g—(n mod q))

between 0 and n.

More careful analysis: Subla

are even better than that!
For g = nl/2 have

i~ (n+i)/qgrnt/?~ yu/
so smoothness chance is rou
(u/2)" /2 (uj2) 12 =24

2Y times larger than before.

e.g. n = 314159265358979323:

Original Q sieve:

I n—+1

1 314159265358979324
2 314159265358979325
3 314159265358979326

Use 9972-sublattice,
I € 802458 + 994009Z:

i (n+1i)/997°
802458 316052737309

1796467 316052737310
2790476 316052737311

Crude analysis: Sublattices
eliminate the growth problem.
Have practically unlimited supply

of generalized congruences
n+qg—(n mod q)

q

(g—(n mod q))

between O and n.

More careful analysis: Sublattices

are even better than that!

For g = nl/2 have

i~ (n+10)/qmnt/? x y/2

so smoothness chance Is roughly
(u/2)""/2(u/2) 1% =2 [u,

2Y times larger than before.

- 314159265358979323:

Q sieve:

4/

14159265358979324
14159265358979325
14159265358979326

2_su blattice,
158 + 9940097 :

i (n+1i)/997°
58 316052737309
67 316052737310
76 316052737311

Crude analysis: Sublattices
eliminate the growth problem.
Have practically unlimited supply

of generalized congruences
n+qg—(n mod g)

q

(g—(n mod q))

between 0 and n.

More careful analysis: Sublattices

are even better than that!

For g = nl/2 have

i~ (n+10)/qa nt/? ~ yU/2

so smoothness chance Is roughly
(u/2)"/2(u/2) 1% =2 [u,

2Y times larger than before.

Even lar
from ch:

“Quadrz

I2—I7V‘

have 2 -

much sn

"MPQS'
using su
But still

“Numbe
achieves

05358979323:

353979324
353979325
353979326

e,

)09Z:

- i) /9972
052737309

052737310
052737311

Crude analysis: Sublattices
eliminate the growth problem.
Have practically unlimited supply

of generalized congruences
n+qg—(n mod q)

q

(g—(n mod q))

between O and n.

More careful analysis: Sublattices

are even better than that!

For g = nl/2 have

i~ (n+10)/qn'/? ~ y/2

so smoothness chance Is roughly
(u/2)""/2(u/2) 1% =2 [u,

2Y times larger than before.

Even larger improy
from changing pol

“Quadratic sieve”

2 —n with i & y

2 1,

have 1 — n &= n

much smaller thar

"MPQS" improve:
using sublattices:
But still ~ nl/2.

“Number-tield sie\
achieves n°l).

323:

Crude analysis: Sublattices
eliminate the growth problem.
Have practically unlimited supply

of generalized congruences
n+qg—(n mod g)

q

(g—(n mod q))

between 0 and n.

More careful analysis: Sublattices

are even better than that!

For g = nl/2 have

i~ (n+10)/qa nt/? ~ yU/2

so smoothness chance Is roughly
(u/2)"/2(u/2) 1% =2 [u,

2Y times larger than before.

Even larger improvements
from changing polynomial /{

“Quadratic sieve” (QS) use:
i —n with i =~ /n;
have i2 — n ~ pl/2tol)

much smaller than n.
"MPQS" improves o(1)

using sublattices: (i* —n)/
But still ~ nl/2.

“Number-field sieve” (NFS)
achieves n°(l).

Crude analysis: Sublattices
eliminate the growth problem.
Have practically unlimited supply

of generalized congruences
n+qg—(n mod q)

q

(g—(n mod q))

between O and n.

More careful analysis: Sublattices

are even better than that!

For g = nl/2 have

i~ (n+i)/gr nt/2a yl/?

so smoothness chance Is roughly
(u/2)""/2(u/2) 1% =2 [u,

2Y times larger than before.

Even larger improvements
from changing polynomial i(n+1).

“Quadratic sieve” (QS) uses

much smaller than n.

"MPQS" improves o(1)
using sublattices: (i —n)/q.
But still ~ nl/2

“Number-field sieve” (NFS)
achieves n°1).

1alysis: Sublattices
e the growth problem.
actically unlimited supply

alized congruences
— d
o q))n+q (n mod g)

q
0 and n.

reful analysis: Sublattices
better than that!

nl/2 have

-i)/qm /2~ yh/
thness chance Is roughly
'/2(u/2)—u/2 — QU /yY,

> larger than before.

Even larger improvements

from changing polynomial i(n+1).

“Quadratic sieve” (QS) uses
i —n with i =~ /n;
have (2 — n ~ nl/2+o(1)

much smaller than n.
"MPQS" improves o(1)

using sublattices: (i —n)/q.
But still ~ nl/2,

“Number-field sieve” (NFS)
achieves n°(l).

Generali

The Q s
the num

Recall h
factors ¢

Form a
as prodt
for sevelt
14(625)
— 4410C

gcd{611
= 47.

iblattices
th problem.
nlimited supply
gruences
g—(n mod q)

q

sis: Sublattices
an that!

1/2 /2
ince Is roughly
1/2 _ 2U/uu
an before.

Even larger improvements

from changing polynomial i(n+1).

“Quadratic sieve” (QS) uses

much smaller than n.

"MPQS" improves o(1)
using sublattices: (i —n)/q.
But still ~ n1/2.

“Number-field sieve” (NFS)
achieves n°1).

Generalizing beyor

The Q sieve is a s
the number-field s

Recall how the Q
factors 611:

Form a square

as product of i(/ -
for several pairs (i
14(625) - 64(675)
= 44100007,

gcd{611,14 - 64 -
— 4.

ttices

ghly

Even larger improvements

from changing polynomial i(n+1).

“Quadratic sieve” (QS) uses
i —n with i =~ /n;
have (2 — n ~ nl/2+o(1)

much smaller than n.
"MPQS" improves o(1)

using sublattices: (i —n)/q.
But still ~ nl/2,

“Number-field sieve” (NFS)
achieves n°(l).

Generalizing beyond Q

The Q sieve is a special cas
the number-field sieve.

Recall how the Q sieve
factors 611:

Form a square

as product of /(i +611j)
for several pairs (i,):
14(625) - 64(675) - 75(686)
= 44100007,

gcd{611,14 - 64 - 75 — 4410\
= 47,

Even larger improvements

from changing polynomial i(n+1).

“Quadratic sieve” (QS) uses

much smaller than n.

"MPQS" improves o(1)
using sublattices: (i —n)/q.
But still ~ n1/2.

“Number-field sieve” (NFS)
achieves n°1).

Generalizing beyond Q

The Q sieve is a special case of
the number-field sieve.

Recall how the Q sieve
factors 611:

Form a square

as product of i(i + 611j)
for several pairs (i,):
14(625) - 64(675) - 75(686)
= 44100007,

gcd{611, 14 - 64 - 75 — 4410000}
— 47

ger Improvements

ainging polynomial i(n—+i).

tic sieve” (QS) uses
vith i =~ \/n;
_n ~ pl/2tel)

haller than n.

" improves o(1)

blattices: (i —n)/q.
~ nl/?

r-field sieve” (NFS)
notl)

Generalizing beyond Q

The Q sieve is a special case of
the number-field sieve.

Recall how the Q sieve
factors 611:

Form a square

as product of /(i +611j)
for several pairs (i,):
14(625) - 64(675) - 75(686)
= 44100007,

gcd{611, 14 - 64 - 75 — 4410000}
— 47.

The Q(+
factors ¢

Form a
as prodt
for sevet

(—11 +

.(E
= (112-

Comput:
s = (—1
t =112
gcd{611

/ements

ynomial i(n+1).

(QS) uses

'n:

2+0o(1)

Generalizing beyond Q

The Q sieve is a special case of
the number-field sieve.

Recall how the Q sieve
factors 611:

Form a square

as product of i(i + 611j)
for several pairs (i,):
14(625) - 64(675) - 75(686)
= 44100007,

gcd{611, 14 - 64 - 75 — 4410000}
— 47

The Q(+/14) sieve
factors 611 as foll

Form a square
as product of (i +
for several pairs (i

(—11 + 3 - 25)(—1

Compute

s=(—11+3-25
t=112 — 16 - 25,
gcd{611,s — t} =

Generalizing beyond Q

The Q sieve is a special case of
the number-field sieve.

Recall how the Q sieve
factors 611:

Form a square

as product of /(i +611j)
for several pairs (i,):
14(625) - 64(675) - 75(686)
= 44100007,

gcd{611, 14 - 64 - 75 — 4410000}
— 47.

The Q(1/14) sieve

factors 611 as follows:

Form a square

as product of (i +255)(/ +
for several pairs (/,J):
(—11+3-25)(—11 4+ 3/14

(3 +25)(3 4 V14)
= (112 — 164/14)?.
Compute

s=(—11+3-25) - (3+25
t=112 — 16 - 25,
gcd{611,s — t} = 13.

Generalizing beyond Q

The Q sieve is a special case of
the number-field sieve.

Recall how the Q sieve
factors 611:

Form a square

as product of i(i + 611j)
for several pairs (i,):
14(625) - 64(675) - 75(686)
= 44100007,

gcd{611, 14 - 64 - 75 — 4410000}
— 47

The Q(1/14) sieve

factors 611 as follows:

Form a square

as product of (i + 25/)(i + v/14j)
for several pairs (/,J):

(=11 + 3-25)(—11 + 3/14)

(3 +25)(3 4+ V14)
= (112 — 164/14)?.
Compute

s=(—11+4+3-25)-(3+ 25),
t=112 — 16 - 25,
gcd{611,s — t} = 13.

zing beyond Q

leve Is a special case of
ber-field sieve.

ow the @ sieve
)11:

square

ct of /(i +611j)
al pairs (7,):
64(675) - 75(636)
002,

14 - 64 - 75 — 4410000}

The Q(1/14) sieve

factors 611 as follows:

Form a square

as product of (i + 25/)(i + v/14j)
for several pairs (/,J):

(=11 + 3-25)(—11 + 31/14)

(3 +25)(3 4 V14)
= (112 — 164/14)?.
Compute

s = (—11+43-25)- (3 + 25),
t=112 — 16 - 25,
gcd{611,s — t} = 13.

2(v14)

since 25

Apply ri
(—11 +

(3
= (112 -

e s2 =

Unsurpri

d Q

pecial case of
leve.

sleve

- 6115)
J):
. 75(686)

75 — 4410000}

The Q(1/14) sieve

factors 611 as follows:

Form a square

as product of (i + 25/)(i + v/14j)
for several pairs (/,J):

(=11 + 3-25)(—11 + 3/14)

(34 25)(3 + /14)
= (112 — 164/14)?.
Compute

s = (—11+43-25)- (3 +25),
t=112 — 16 - 25,
gcd{611,s — t} = 13.

Why does this wol

Answer: Have ring
Z|\14] — Z/611,
since 252 = 14 in

Apply ring morphi
(—11+3-25)(—1

(3 +25)(3-
— (112 — 16 - 25)"
i.e. s2=1tinZ/t

Unsurprising to fir

> of

)00}

The Q(1/14) sieve

factors 611 as follows:

Form a square

as product of (i + 25/)(i + v/14j)
for several pairs (/,J):

(=11 + 3-25)(—11 + 31/14)

(34 25)(3 + /14)
= (112 — 164/14)?.
Compute

s = (—1143-25)- (3 + 25),
t=112 — 16 - 25,
gcd{611,s — t} = 13.

Why does this work?

Answer: Have ring morphisr

Z[\V14] — Z/611, V14 — 2
since 25° = 14 in Z/611.

Apply ring morphism to squ
(—11+4+3-25)(—-11+3-25
(3 + 25)(3 + 25)

— (112 — 16 - 25)? in Z/611

i.e. s°=1t>in Z/611.

Unsurprising to find factor.

The Q(1/14) sieve

factors 611 as follows:

Form a square

as product of (i + 25/)(i + v/14j)
for several pairs (/,J):

(=11 + 3-25)(—11 + 31/14)

(34 25)(3 + /14)
= (112 — 164/14)?.
Compute

s = (—11+43-25)- (3 +25),
t=112 — 16 - 25,
gcd{611,s — t} = 13.

Why does this work?

Answer: Have ring morphism

Z[\/14] — Z/611, \/14 s 25,
since 25° = 14 in Z/611.

Apply ring morphism to square:
(—11+4+3-25)(—11+ 3 - 25)
(34 25)(3 + 25)

— (112 — 16 - 25)? in Z/611.

i.e. s°=1t>in Z/611.

Unsurprising to find factor.

/14) sieve

)11 as follows:

square

ct of (i +25/)(i + v/14))
al pairs (i,):

3.25)(—11 + 3v/14)

)+ 25)(3 + /14)
- 161/14)°.

1+3-25)-(3+25),
— 16 - 25,
s —t} = 13.

Why does this work?

Answer: Have ring morphism

Z[\/14] — Z/611, \/14 s 25,
since 25° = 14 in Z/611.

Apply ring morphism to square:

(=114 3-25)(—11 + 3 - 25)
(34 25)(3 + 25)
= (112 — 16 - 25)% in Z/611.

i.e. s°=1t2in Z/611.

Unsurprising to find factor.

Generali
to (f, m
m e Z,

Write d
f — de

Can tak
out larg

petter p

Pick r €
Then fd

monic g

Q(r)«(

OWS.

25j)(i +v/14/)
J):

1+ 31/14)
FV/14)

) - (3 + 25),

13.

Why does this work?

Answer: Have ring morphism

Z[\/14] — Z/611, \/14 s 25,
since 25° = 14 in Z/611.

Apply ring morphism to square:

(—11 +3-25)(—11 + 3 - 25)
(34 25)(3 + 25)
= (112 — 16 - 25)? in Z/611.

i.e. s°=1t>in Z/611.

Unsurprising to find factor.

Generalize from (>
to (f, m) with irre
meZ, f(m)En

Write d = deg f,
f=Ffx94. - +

Cantake fy=1+
out larger f 4 allow

petter parameter ¢

Pick r € C, root ¢
Then f4r is a roo
monic g = ff]_lf(

Q(r)«O«Z|f 4r]

Why does this work?

Answer: Have ring morphism

Z[\/14] — Z/611, \/14 s 25,

since 25° = 14 in Z/611.

Apply ring morphism to square:

(=114 3-25)(—11 + 3 - 25)
(34 25)(3 + 25)
= (112 — 16 - 25)% in Z/611.

i.e. s°=1t>in Z/611.

Unsurprising to find factor.

Generalize from (x? — 14, 2°
to (f, m) with irred f € Z|>
meZ, f(m)enZ

Write d = deg f,
f=fgx9+-+ fixt + fo

Can take f; =1 for simplici
out larger f, allows

better parameter selection.

Pick r € C, root of f.
Then f4r is a root of
monic g = fg_lf(x/fd) C

Q(r) O« 2Z[f yr]Ld 2

Why does this work?

Answer: Have ring morphism

Z[\/14] — Z/611, \/14 s 25,
since 25° = 14 in Z/611.

Apply ring morphism to square:

(=11 +3-25)(—11 + 3 - 25)
(34 25)(3 + 25)
= (112 — 16 - 25)% in Z/611.

i.e. s°=1t>in Z/611.

Unsurprising to find factor.

Generalize from (x? — 14, 25)
to (f, m) with irred f € Z|x],
meZ, f(m)enZ

Write d = deg f,
f = fax94 -+ f1xt + fox".

Can take fy =1 for simplicity,
out larger f 4 allows

better parameter selection.

Pick r € C, root of f.
Then f4r is a root of

monic g = f§ 1 f (x/fg) € Z[x].

fderdm

Q(r)«OZ|[f yr] »Z/n

os this work?

Have ring morphism
— Z/611, v/14 — 25,
> =14 in Z/611.

ng morphism to square:

3-25)(—11+ 3 - 25)
)+ 25)(3 + 25)
- 16 - 25)? in Z/611.

- t2 in Z/611.

sing to find factor.

Generalize from (x? — 14, 25)
to (f, m) with irred f € Z|x],
meZ f(m)enZ

Write d = deg f,
f=fax94 -+ fixt + foxO.

Can take f4 =1 for simplicity,
out larger f 4 allows

etter parameter selection.

Pick r € C, root of f.

Then f4r is a root of
monic g = f§ 1 f (x/fg) € Z[x]

fderdm

Q(r)«O«Z|f yr] »Z/n

Build sq
congruel
with 1Z
Could re
higher-d
quadrati

for some
But let's

Say we |

H(i,j)es
in Q(r);

k?

r morphism

v 14 — 25,

sm to square:

1+3-25)
£ 25)

in Z/611.
11,

d factor.

Generalize from (x? — 14, 25)
to (f, m) with irred f € Z|x],
meZ, f(m)enZ

Write d = deg f,
f=fax94 -+ fixt + foxO.

Can take f4y =1 for simplicity,
out larger f 4 allows

better parameter selection.

Pick r € C, root of f.

Then f4r is a root of
monic g = f§ 1 f (x/fg) € Z[x].

fderdm

Q(r)«O«+Z|f4r] »Z/n

Build square in Q|

congruences (I —
with 1Z 4 jZ = Z

Could replace i —
higher-deg irred In
quadratics seem f:
for some number 1
But let's not both

Say we have a squ

[T yes(i —im)l

in Q(r); now wha

Generalize from (x? — 14, 25)
to (f, m) with irred f € Z|x],
meZ f(m)enZ

Write d = deg f,
f=fax94 -+ fixt + foxO.

Can take f4y =1 for simplicity,
out larger f 4 allows

better parameter selection.

Pick r € C, root of f.
Then f4r is a root of

monic g = f§ 1 f (x/fg) € Z[x]

fderdm

Q(r)«O«Z|f yr] »Z/n

Build square in Q(r) from
congruences (i —jm)(i —j
with iZ+jZ =2Z and j > |

Could replace i — jx by
higher-deg irred in Z|x];
quadratics seem fairly small

for some number fields.
But let's not bother.

Say we have a square

[T jyesCi—jm)(i—jr)

in Q(r); now what?

Generalize from (x? — 14, 25)
to (f, m) with irred f € Z|x],
meZ, f(m)enZ

Write d = deg f,
f=fax94 -+ fixt + fox0.

Can take 5 =1 for simplicity,
out larger f 4 allows

better parameter selection.

Pick r € C, root of f.
Then f4r is a root of

monic g = f§ 1 f (x/fg) € Z[x].

fderdm

Q(r)«O«Z|f yr] »Z/n

Build square in Q(r) from
congruences (i —jm)(i —jr)
with iZ+4+jZ =Z and j > 0.

Could replace i — j x by
higher-deg irred in Z|x];
quadratics seem fairly small

for some number fields.
But let's not bother.

Say we have a square

[T jyesG—im)(i —jr)
in Q(r); now what?

ze from (x? — 14, 25)
) with irred f € Z|x],
f(m)enZ

— deg f,
d—l—---—l—f1X1—|—f()XO.

> f4 = 1 for simplicity,
er 4 allows
arameter selection.

- C, root of f.

r iIs a root of
— 3V (x/fq) € ZIx]

fderdm

DZ|f 4r] »Z/n

Build square in Q(r) from
congruences (i — jm)(i —jr)
with iZ+4+jZ =2Z and j > 0.

Could replace i — jx by
higher-deg irred in Z|x];
quadratics seem fairly small

for some number fields.
But let's not bother.

Say we have a square

[T jyesCi—jm)(i—jr)

in Q(r); now what?

[0 —J
IS @ Squ:
ring of 1
Multiply
butting

compute

[0 =

2 — 14, 25)
d f € Z]x],
Z

f1X1 -+ foXO.

or simplicity,
/S
election.

f f.
- of
x/fq) € Z|x].

fderdm

»Z/n

Build square in Q(r) from

congruences (i — jm)(i —jr)
with iZ+jZ =2Z and j > 0.

Could replace i — jx by

higher-deg irred in Z|x];

quadratics seem fair
for some number fie

But let's not bother.

y small
ds.

Say we have a square

[T jyesG—im)(i —jr)

in Q(r); now what?

[T = m)(i —jr
Is a square in O,
ring of integers of

Multiply by g'(f4r
butting square roc

compute r with r
[0 — jm)(i — jr
Then apply the rir
o :Z|fgr]l — Z/n
fqr to fym. Com
o(r) — & (Fam)T]
In Z/n have ¢(r)
g(fam) 10 —J

Build square in Q(r) from
congruences (i — jm)(i —jr)
with iZ+4+jZ =Z and j > 0.

Could replace i — jx by
higher-deg irred in Z|x];
quadratics seem fairly small

for some number fields.
But let's not bother.

Say we have a square

[T jyesC—jm)(i —jr)

in Q(r); now what?

TG —jm)(i —jr)f3
Is a square in O,
ring of integers of Q(r).

Multiply by g’ (f4r)?,
outting square root into Z|[f

compute r with r* = g'(f4r
TG —jm)(i —jr)f3.
Then apply the ring morphis
o : Z[fyr] — Z/n taking

fqr to fym. Compute gcd{
o(r) — g (fgm) [1(i —jm)i
In Z/n have ¢(r)? =

g (fgm)*TT(i —jm)2f3.

Build square in Q(r) from
congruences (i —jm)(i —jr)
with iZ+4+jZ =Z and j > 0.

Could replace i — j x by
higher-deg irred in Z|x];
quadratics seem fairly small

for some number fields.
But let's not bother.

Say we have a square

[T jyesG—im)(i —jr)

in Q(r); now what?

MG —jm)(i —jr)f3
Is a square in O,

ring of integers of Q(r).

Multiply by g'(f4r)?,
outting square root into Z[f 4r]:

compute r with r* = g'(fgr)?
TG —jm)(i —jr)f3.

Then app

o Z[fyr

y the ring morphism
— Z/n taking

fqr to fym. Compute gcd{n,
p(r) —g(fgm) 10 —jm)fq}.
In Z/n have ¢(r)? =

g (fam)*TT(i —jm)f3.

uare in Q(r) from
wces (i —jm)(i —jr)
+jZ=2Zand j > 0.

place i — jx by
eg irred in Z|x];
cs seem fairly small

» number fields.
> not bother.

1ave a square
(i —gm)(i—jr)
now what?

TG —jm)(i —jr)f;
Is a square in O,
ring of integers of Q(r).

Multiply by g'(f4r)?,

compute r with r* = g'(fyr)?
TG —jm)(i —jr)f3.

Then apply the ring morphism
o : Z[fyr] — Z/n taking

fqr to fym. Compute gcd{n,

p(r) —g(fgm) 10 —jm)fq}.

In Z/n have ¢(r)? =

g(fgm)*TI(i —jm)*f3.

outting square root into Z[f 4r]:

How to
of congr

Start wi'
e.g., y2

Look for

y-smoot
y-smoot
fgi9+ -
Norm cc
Here "y
“has no

Find enc
Perform

exponen

r) from
m)(i —jr)
and j > 0.
Jx by

Z[x|;

1irly small

1elds.
er.

are
i=jr)

TG —jm)(i —jr)f
Is a square in O,

ring of integers of Q(r).

Multiply by g’(fqr)?,
outting square root into Z[f 4r]:

compute r with r2 = g/(f4r)?:
TG —jm)(i —jr)f3.

Then app

o Z[fyr

y the ring morphism
— Z/n taking

fqr to fym. Compute gcd{n,

p(r) —g(fgm) 10 —jm)fq}.

In Z/n have ¢(r)? =

g (fgm)*TT(i —jm)*f3.

How to find squar
of congruences (i

Start with congrue
e.g., y> pairs (i,j

Look for y-smootl
y-smooth 1 — jm

y-smooth f yjnorm|
fdlld—|— R fojd
Norm covers all d

Here “y-smooth
“has no prime divi

Find enough smoc
Perform linear alge

exponent vectors |

TG —jm)(i —jr)f;
Is a square in O,
ring of integers of Q(r).

Multiply by g'(f4r)?,

compute r with r* = g'(fyr)?
TG —jm)(i —jr)f3.

Then apply the ring morphism
o : Z[fqr] — Z/n taking

fqr to fym. Compute gcd{n,

p(r) —g(fgm) 10 —jm)fq}.

In Z/n have ¢(r)? =

g (fgm)*TT(i —jm)2f3.

outting square root into Z[f 4r]:

How to find square product
of congruences (i —jm)(/ -

Start with congruences for,
e.g., y> pairs (i,)).

Look for y-smooth congruer
y-smooth / — ym and

y-smooth fynorm(i — jr) =
fai®+ -+ foj 9= joF (i/]
Norm covers all d roots r.

Here “y-smooth”™ means
“has no prime divisor > y."

Find enough smooth congru
Perform linear algebra on
exponent vectors mod 2.

TG —jm)(i —jr)f
Is a square in O,

ring of integers of Q(r).

Multiply by g’(fqr)?,
outting square root into Z[f 4r]:

compute r with r2 = g/(f4r)?:
TG —jm)(i —jr)f3.

Then app

o Z[fyr

y the ring morphism
— Z/n taking

fqr to fym. Compute gcd{n,

p(r) —g(fgm) 10 —jm)fq}.

In Z/n have ¢(r)? =

g (fgm)*TT(i —jm)*f3.

How to find square product
of congruences (i —jm)(i —jr)?

Start with congruences for,
e.g., y> pairs (i,]).

Look for y-smooth congruences:
y-smooth 1 — ym and

y-smooth f norm(i — jr) =
Fai+ -+ foj = jOF (i)
Norm covers all d roots r.

Here “y-smooth” means
“has no prime divisor > y."

Find enough smooth congruences.
Perform linear algebra on
exponent vectors mod 2.

m)(i —jr)fczi
re in O,
ntegers of Q(r).

by &' (far)?,

square root into Z[f 4r]:

' rowith r? = g/(fgr)?
m)(i —jr)f3.

ply the ring morphism

r| — Z/n taking
4m. Compute gcd{n,

' (fagm) [1(i —jm)fq}.

have @(r)? =
“TTG — jm)*f3.

How to find square product
of congruences (i — jm)(i —jr)?

Start with congruences for,
e.g., y> pairs (i,)).

Look for y-smooth congruences:
y-smooth 1 — ym and

y-smooth f norm(i — jr) =
fai®+ -+ foj 7 = jor (i /).
Norm covers all d roots r.

Here “y-smooth”™ means
“has no prime divisor > y."

Find enough smooth congruences.

Perform linear algebra on
exponent vectors mod 2.

Polynom

Many f
How to
minimize
General
Enumer:
For eacl

iInformat
distribut

distribut

t into Z[f4r]:

=g/ (far)*
)3

g morphism
taking

pute gcd{n,

(i —jm)fg}.

)

m)zfg.

How to find square product

of congruences (i —jm)(i —jr)?

Start with congruences for,
e.g., y> pairs (i, }).

Look for y-smooth congruences:

y-smooth 1 — ym and

y-smooth f norm(i — jr) =
Fai® -+ o] = J9F (i)

Norm covers al
Here “y-smoot

n”

d roots r.
means

“has no prime divisor > y."

Find enough smooth congruences.

Perform linear algebra on

exponent vectors mod 2.

Polynomial selecti

Many f's possible
How to find f tha
minimizes NFS tin

General strategy:

Enumerate many .
For each f, estim:
information about

distribution of ;9!

distribution of smc

>

Fdt-

How to find square product

of congruences (i — jm)(i —jr)?

Start with congruences for,
e.g., y> pairs (i,)).

Look for y-smooth congruences:

y-smooth / — ym and

y-smooth f norm(i — jr) =
fai®+ -+ foj 7 = jof (i /).

Norm covers al
Here “y-smoot

f]”

d roots r.
means

“has no prime divisor > y."

Find enough smooth congruences.

Perform linear algebra on

exponent vectors mod 2.

Polynomial selection

Many f's possible for n.
How to find f that
minimizes NFS time?

General strategy:
Enumerate many f's.

For each f, estimate time u:
information about f arithme
distribution of j9¢87 (i /}),
distribution of smooth numt

How to find square product

of congruences (i —jm)(i —jr)?

Start with congruences for,
e.g., y> pairs (i,]).

Look for y-smooth congruences:

y-smooth /1 — ym and

y-smooth f norm(i — jr) =
Fai® -+ o] = J9F (i)

Norm covers al
Here “y-smoot

n”

d roots r.
means

“has no prime divisor > y."

Find enough smooth congruences.

Perform linear algebra on

exponent vectors mod 2.

Polynomial selection

Many f's possible for n.
How to find f that
minimizes NFS time?

General strategy:

Enumerate many f's.

For each f, estimate time using
information about f arithmetic,
distribution of j9¢87 (i /}),
distribution of smooth numbers.

find square product
uences (i — jm)(i —jr)?

th congruences for,
pairs (i, /).

y-smooth congruences:

N/ —/m and

n fgnorm(i — jr) =

4 foj 9 =9 (i/)).
wers all d roots r.

-smooth’ means
prime divisor > y."

ugh smooth congruences.

linear algebra on
t vectors mod 2.

Polynomial selection

Many f's possible for n.
How to find f that
minimizes NFS time?

General strategy:

Enumerate many f's.

For each f, estimate time using
information about f arithmetic,
distribution of j9¢87 (i /}),

distribution of smooth numbers.

L et's res

(x —m)

Take m
Expand
n = fgn
Can use

Have fr5
Typically
are on s

(1993 B

e product
—jm)(i —jr)?

nces for,
).

1 congruences:
and
i—jr)=
=jf(i/i).
roots r.
means

sor > y."

th congruences.

sbra on
mod 2.

Polynomial selection

Many f's possible for n.
How to find f that
minimizes NFS time?

General strategy:

Enumerate many f's.

For each f, estimate time using
information about f arithmetic,
distribution of j9¢87 (i /}),

distribution of smooth numbers.

Let's restrict atter
(x — m)(f5x5 + f

Take m near nl/6

Expand n in base
n = fsm>+ fam’
Can use negative «

Have f5 & nl/o

Typically all the f
are on scale of ni

(1993 Buhler Lens

1CES.

€NCeSs.

Polynomial selection

Many f's possible for n.
How to find f that
minimizes NFS time?

General strategy:

Enumerate many f's.

For each f, estimate time using
information about f arithmetic,
distribution of j9¢87 (i /}),

distribution of smooth numbers.

Let's restrict attention to f (
(x — m)(fsx + fax* 4+ -+

Take m near nl/®

Expand n In base m:
n=fem>+fam*+ - +1
Can use negative coefficient

Have f5 & nl/e

Typically all the f;'s

are on scale of nl/6.

(1993 Buhler Lenstra Pomel

Polynomial selection

Many f's possible for n.
How to find f that
minimizes NFS time?

General strategy:

Enumerate many f's.

For each f, estimate time using
information about f arithmetic,
distribution of j9¢87 (i /}),

distribution of smooth numbers.

Let's restrict attention to f(x) =
(x — m)(fsx® + fax* + - + fo).

Take m near nl/®

Expand n in base m:
n=fsm>+fom*+ ..+ 1.
Can use negative coefficients.

Have f5 & nl/o

Typically all the f;'s

are on scale of nl/6.

(1993 Buhler Lenstra Pomerance)

1al selection

s possible for n.
find f that

s NFS time?

strategy:

ite many f's.

 f, estimate time using
1on about f arithmetic,

ion of j9&7 £ (i /),

ion of smooth numbers.

Let's restrict attention to f(x) =

(x — m)(fsx® + f4x* + - + o).

Take m near nl/®

Expand n in base m:
n=fsm>+ fam*+-- +fo.
Can use negative coefficients.

Have f5 & nl/e

Typically all the f;'s

are on scale of nl/6.

(1993 Buhler Lenstra Pomerance)

To reduc

Enumer:
for m ne

Have fr5
fa,13,1;
as large
Hope th
on scale

Conjectt
within re
Then (i
IS ON SC:&
for 1, c
Several |

f's.
ite time using
f arithmetic,

(i f)).

yoth numbers.

Let's restrict attention to f(x) =

(x — m)(fsx® + fax* + - + fo).

Take m near nl/®

Expand n in base m:
n=fsm>+fom*+ ..+ 1.
Can use negative coefficients.

Have f5 & nl/6

Typically all the f;'s

are on scale of nl/6.

(1993 Buhler Lenstra Pomerance)

To reduce f value

Enumerate many |
for m near BY%2p

Have fr5 ~ B—1.25

fa,f3,f2,f1,f0 CC
as large as B%2°p
Hope that they ar

on scale of B~ 12

Conjecturally this

within roughly B
Then (i — jm)(fs
is on scale of B~1
for 1, on scale of
Several more ways

SINg
tic,

)EFS.

Let's restrict attention to f(x) =

(x — m)(fsx® + f4x* + - + o).

Take m near nl/®

Expand n in base m:
n=fsm>+ fam*+-- +fo.
Can use negative coefficients.

Have f5 & nl/e

Typically all the f;'s

are on scale of nl/6.

(1993 Buhler Lenstra Pomerance)

To reduce f values by factol

Enumerate many possibilitie
for m near B0-25,1/6

Have f5 & B—125,1/6
f4,f3,f2,f1,f0 could be
as large as B0-25,1/6

Hope that they are smaller,
on scale of B—12541/6

Conjecturally this happens

within roughly B’ trials.
Then (i —jm)(f5i®> + - +
is on scale of B~1R%n2/6
for 1, on scale of R.
Several more ways; depends

Let's restrict attention to f(x) =

(x — m)(fsx® + fax* + - + fo).

Take m near nl/®

Expand n in base m:
n=fsm>+fom*+ ..+ 1.
Can use negative coefficients.

Have f5 & nl/o

Typically all the f;'s

are on scale of nl/6.

(1993 Buhler Lenstra Pomerance)

To reduce f values by factor B:

Enumerate many possibilities
for m near B0-25,1/6

Have f5 & B—125,1/6
f4,f3,f2,f1,f0 could be
as large as B0-25,1/6

Hope that they are smaller,
on scale of B—12541/6

Conjecturally this happens

within roughly B’ trials.

Then (i —jm)(fg5i> + -~ + fo °)
is on scale of B~1R%n2/6

for 1, on scale of R.

Several more ways; depends on n.

trict attention to f(x) =

(F5x° + fax* + -+ fo).

near n1/6.

n in base m:
1° + fam* + - + fo.
negative coefficients.

~ nl/6
/ all the f;'s
~ale of nl/6

uhler Lenstra Pomerance)

To reduce f values by factor B:

Enumerate many possibilities
for m near B0-25,1/6

Have f5 & B—125,1/6
f4,f3,f2,f1,f0 could be
as large as B0-25,1/6

Hope that they are smaller,
on scale of B—1251/6

Conjecturally this happens

within roughly B’ trials.

Then (i —jm)(f5i> + -+ fq)°)
is on scale of B~1R%n2/6

for 1,/ on scale of R.

Several more ways; depends on n.

Asymptc

Number
In numb

with the
ic L1.90..

exp((log
What ar

Choose

d/(log n
c 1.40.

tion to f(x) =

4X4—|-"'—|-f0).
m:

| + ...+ fO-
~oefficients.

,"S

/6_

tra Pomerance)

To reduce f values by factor B:

Enumerate many possibilities

for m near B9-25,1/6

Have f5 & B—125,1/6
f4,f3,f2,f1,f0 could be
as large as B0-25,1/6

Hope that they are smaller,
on scale of B~12541/6

Conjecturally this happens

within roughly B’ trials.

Then (i —jm)(fg5i> 4 --- + fo °)
is on scale of B~1R%n2/6

for 1, on scale of R.

Several more ways; depends on n.

Asymptotic cost e

Number of bit ope
in number-field sie

with theorists’ par
ic L1.90...—|—O(1) whe

exp((log n)'/3(log
What are theorists

Choose degree d v
d/(log n)1/3(loglc
€1.40...4 o(1).

ance)

To reduce f values by factor B:

Enumerate many possibilities
for m near B0-2511/6

Have f5 & B—125,1/6
f4,f3,f2,f1,f0 could be
as large as B0-25,1/6

Hope that they are smaller,
on scale of B—1251/6

Conjecturally this happens

within roughly B’ trials.

Then (i —jm)(f5i> + -+ fq)°)
is on scale of B~1R%n2/6

for 1,/ on scale of R.

Several more ways; depends on n.

Asymptotic cost exponents

Number of bit operations
in number-field sieve,

with theorists’ parameters,
ic [1.90..4+0(1) \where | —

exp((log n)/3(log log n)?/3)
What are theorists’ paramet

Choose degree d with
d/(log n)/3(loglog n)~1/3
€1.40...4 o(1).

To reduce f values by factor B:

Enumerate many possibilities
for m near B0-25,1/6

Have f5 & B—125,1/6
f4,f3,f2,f1,f0 could be
as large as B0-25,1/6

Hope that they are smaller,
on scale of B~12541/6

Conjecturally this happens

within roughly B’ trials.

Then (i —jm)(fgi> + -+ fo °)
is on scale of B~1R%n2/6

for 1, on scale of R.

Several more ways; depends on n.

Asymptotic cost exponents

Number of bit operations
in number-field sieve,

with theorists’ parameters,
ic [1.90..4+0(1) \where | —

exp((log n)1/3(loglog n)?/3).
What are theorists’ parameters?

Choose degree d with
d/(log n)/3(loglog n)~1/3
€1.40...4 o(1).

e f values by factor B:

1te many possibilities
ar BO251/6

~ 8_1'25n1/6.

», f1, fo could be
s B0-25,1/6

at they are smaller,
of 8_1'25n1/6.

irally this happens

bughly B+ trials.
—jm)(fsi> +-- -+ foj°)
le of B~1R6/72/6

n scale of R.

more ways; depends on n.

Asymptotic cost exponents

Number of bit operations
in number-field sieve,

with theorists’ parameters,
ic [1.90..4+0(1) \where | —

exp((log n)1/3(log log n)?/3).
What are theorists’ parameters?

Choose degree d with
d/(log n)/3(loglog n)~1/3
€1.40...4 o(1).

Choose
Write n
md+f,
with eac
Choose
In case t

Test sm
for all c
with 1 <
using pr
1 1.90...+

Conjectt
smooth

s by factor B:

bossibilities
1/6

11/6

yuld be
1/6

e smaller,
’n1/6.

happens
2 trials.

P+ fof°)
6 ,2/6

R.
: depends on n.

Asymptotic cost exponents

Number of bit operations
in number-field sieve,

with theorists’ parameters,
ic [1.90..4+0(1) \where | —

exp((log n)1/3(log log n)?/3).
What are theorists’ parameters?

Choose degree d with
d/(log n)/3(loglog n)~1/3
€1.40...4 o(1).

Choose integer m
Write n as

md 4+ f, ymd-1_
with each f; beloy
Choose f with sor
In case there are k

Test smoothness ¢
for all coprime pai

with 1 < j,j < L9
using primes < LY
L1.90...—|—O(1) pairs.

Conjecturally L1©
smooth values of |

r B:

fo)°)

on n.

Asymptotic cost exponents

Number of bit operations
in number-field sieve,

with theorists’ parameters,
ic [1.90..4+0(1) \where | —

exp((log n)1/3(log log n)?/3).
What are theorists’ parameters?

Choose degree d with
d/(log n)/3(loglog n)~1/3
€1.40...4 o(1).

Choose integer m ~ nl/d

Write n as
md+f imd=1 4. 4 fr
with each f, below n(1+o(1)
Choose f with some randon
in case there are bad f's.

Test smoothness of | — jm
for all coprime pairs (/,)

with 1 < j,j < LO.95...——0(1)
using primes < [0:95-.+0o(1)

L1.90...—|—O(1) pairs.

Conjecturally [1.65...40(1)
smooth values of /| — jm.

Asymptotic cost exponents

Number of bit operations
in number-field sieve,

with theorists’ parameters,
ic [1.90..4+0(1) \where | —

exp((log n)1/3(log log n)?/3).
What are theorists’ parameters?

Choose degree d with
d/(log n)/3(loglog n)~1/3
€1.40...4 o(1).

Choose integer m = nl/d

Write n as

ma+fy 1m9 L+ .+ Ffim+fg
with each £, below n(1te(1))/d
Choose f with some randomness
in case there are bad f's.

Test smoothness of | — jm
for all coprime pairs (/,)

with 1 <j,j < LO'95“'“O(1),
using primes < [0-95-.+0o(1)

L1.90...—|—O(1) pairs.

Conjecturally [1.65...40(1)
smooth values of 1 — jm.

tic cost exponents

of bit operations
er-field sieve,

orists’ parameters,
+o(1) where L =
n)/3(loglog n)%/3).

e theorists’ parameters?

degree d with
)1/3(loglog n)~1/3
.+ o(1).

Choose integer m = nl/d

Write n as

ma+fy 1m9 1+ .+ Ffim+fg
with each f, below n(1tol1))/d
Choose f with some randomness
in case there are bad f's.

Test smoothness of | — jm
for all coprime pairs (/,)

with 1 < j,j < LO.95...——0(1)
using primes < [0:95-.+0o(1)

L1.90...—|—O(1) pairs.

Conjecturally [1.65...40(1)
smooth values of /| — jm.

Use 91

For eact
with sm
test smc
and 1 —
using pri
L1.77...+4

Each |j¢
Conjectt
smooth

In the e

Xponents

rations
Ve,
ameters,
re [=
log n)%/3).

' parameters?

vith

»gn)_l/?’

Choose integer m = nl/d

Write n as

ma+fy 1m9 L+ .+ Ffim+fg
with each £, below n(1te(1))/d
Choose f with some randomness
in case there are bad f's.

Test smoothness of | — jm
for all coprime pairs (/,)

with 1 </, j < LO'95“'“O(1),
using primes < [0-95-.+0o(1)

L1.90...—|—O(1) pairs.

Conjecturally [1.65...40(1)
smooth values of 1 — jm.

Use [0-12...+0(1)

For each (/,))

with smooth 1 —
test smoothness o
and / — j B and so
using primes < L0

L1.77...+0(1) tests.
Each |j9f (i /j)] <
Conjecturally L9
smooth congruenc

[0.95...+0(1) comp:

In the exponent ve

ers?

Choose integer m ~ nl/d

Write n as

ma+fy 1m9 14+ .+ Ffim+fg
with each f, below n(1tol1))/d
Choose f with some randomness
in case there are bad f's.

Test smoothness of | — jm
for all coprime pairs (/,)

with 1 < j,j < LO.95...——0(1)
using primes < [0:95..+0o(1)

L1.90...—|—O(1) pairs.

Conjecturally [1.65...40(1)
smooth values of /| — jm.

Use L0-12--+0(1) number fiel

For each (/,))
with smooth 1 — jm,
test smoothness of 1 — jr

and / — j B and so on,
using primes < [0.82...4+0(1)

Each ‘jdf(l/j)| < m2.86...—|—<
Conjecturally [0-95...+0(1)
smooth congruences.

[0-95..+0(1) components
In the exponent vectors.

Choose integer m ~ nl/d

Write n as

ma+fy 1m9 L4+ .+ Ffim+fg
with each £, below n(1to(1))/d
Choose f with some randomness
in case there are bad f's.

Test smoothness of | — jm
for all coprime pairs (/,)

with 1 <j,j < LO'95“'“O(1),
using primes < [0-95-.+0o(1)

L1.90...—|—O(1) pairs.

Conjecturally [1.65...40(1)
smooth values of 1 — jm.

Use L0-12.-+0(1) humber fields.

For each (/,))
with smooth 1 — jym,
test smoothness of 1 — jr

and / — j B and so on,
using primes < [0-82..+0(1)

L1.77...—|—O(1) tests.
Each \jdf(l/j)‘ < m2.86...4+0(1)

Conjecturally [0.95...+0(1)
smooth congruences.

[0-95..+o(1) components
In the exponent vectors.

integer m =~ nl/d

as

Cam o fim + f
h £, below n(lto(l))/d

f with some randomness
here are bad f's.

bothness of I — jm
prime pairs (/,)

j,j < LO'95"'"O(1),
mes < [0.95...4+0(1)

values of i — jm.

Use L0-12.-40(1) humber fields.

For each (/,))
with smooth 1 — jm,
test smoothness of 1 — jr

and / — j B and so on,
using primes < [0.82...4+0(1)

Each ‘jdf(l/j)| < m2.86...—|—0(1)_

Conjecturally [0-95...40(1)
smooth congruences.

[0-95..+0(1) components
In the exponent vectors.

Three si

(log)t
v, I, .
(log n)?
m, i — J

log n bit

Unavoid
usual sm
forces (I
balancin

forces d
and dlo

1/d

~ N

L fim 4 fo
v nll+o(1))/d

ne randomness
ad f's.

f 1 —/m

rs (/,)
.95...——0(1)’

95...+0(1)

>...+0(1)

—/m.

Use L0-12.-+0(1) humber fields.

For each (/,))
with smooth 1 — jm,
test smoothness of 1 — jr

and / — j B and so on,
using primes < [0-82..+0(1)

Each \jdf(l/j)‘ < m2.86...4+0(1)

Conjecturally [0.95...+0(1)
smooth congruences.

[0-95..+o(1) components
In the exponent vectors.

Three sizes of nun

(log n)/3(log log |
Yol J.

(log n)%/3(log log 1
m,i—jm, jof (i

log n bits: n.

Unavoidably 1/3 i
usual smoothness
forces (log y)? ~ |
balancing norms w
forces dlogy =~ lo
and dlog m =~ log

Use L0-12.-40(1) humber fields.

For each (/,))
with smooth 1 — jm,
test smoothness of 1 — jr

and / — j B and so on,
using primes < [0.82...4+0(1)

Each ‘jdf(l/j)| < m2.86...—|—0(1)_

Conjecturally [0.95...+0(1)
smooth congruences.

[0-95..+0(1) components
In the exponent vectors.

Three sizes of numbers here

(log n)Y/3(log log n)?/3 bits:
Yol J.

(log n)%/3(log log n)1/3 bits:
m,i—jm, jo (i /).

log n bits: n.

Unavoidably 1/3 in exponen
usual smoothness optimizati
forces (log y)? ~ log m;
balancing norms with m
forces dlogy ~ log m;

and dlogm =~ logn.

Use L0-12.-+0(1) humber fields.

For each (/,))
with smooth 1 — jm,
test smoothness of 1 — jr

and / — j B and so on,
using primes < [0-82..+0(1)

Each \jdf(l/j)‘ < m2.86...4+0(1)

Conjecturally [0.95...+0(1)
smooth congruences.

[0-95..+o(1) components
In the exponent vectors.

Three sizes of numbers here:

(log n)Y/3(log log n)?/3 bits:
Yol J.

(log n)%/3(log log n)1/3 bits:
m,i—jm, jo (i/j).

log n bits: n.

Unavoidably 1/3 in exponent:
usual smoothness optimization
forces (log y)? ~ log m;
balancing norms with m
forces dlogy ~ log m;

and dlogm =~ logn.

2..+0(1) number fields.
 (7,J)
othness of i — jr

J B and so on,
mes S LO.82...—|—O(1).

o(1) tests.

{f(i/j)| < m2-86...4+0(1)

irally [0.95...4+0(1)

congruences.

(1) com ponents
(ponent vectors.

Three sizes of numbers here:

(log n)!/3(log log n)?/3 bits:
Yol J.

(log n)%/3(log log n)1/3 bits:
m,i—jm,jo(i/j).

log n bits: n.

Unavoidably 1/3 in exponent:
usual smoothness optimization
forces (log y)? ~ log m;
balancing norms with m
forces dlogy ~ log m;

and dlogm =~ logn.

Batch N

The nun
L1.90... ‘

finding <
L1'77"'—|—'

finding <

Many n
L1.90...—|—4

to find s

Oops, lit
fix by re
But still
batch In
factoring

umber fields.

f1—Jr
on,
82...+0(1)

m2.86...4+0(1)

>...+0(1)

€S.

nents
Ctors.

Three sizes of numbers here:

(log n)Y/3(log log n)?/3 bits:
Yol J

(log n)%/3(log log n)/3 bits:
m,i—jm,j%(i/j).

log n bits: n.

Unavoidably 1/3 in exponent:
usual smoothness optimization
forces (log y)? ~ log m;
balancing norms with m
forces dlogy ~ log m;

and dlogm =~ logn.

Batch NFS

The number-field
] 1.90... o(1) bit op

finding smooth / -
L1.77...—|—O(1) bit op

finding smooth j ¢

Many n's can shai
L1.90...—|—O(1) bit op

to find squares for

Oops, linear algeb
fix by reducing y.
But still end up fa
batch in much les:
factoring each n s

ds.

(1)

Three sizes of numbers here:

(log n)Y/3(log log n)?/3 bits:
Yol J.

(log n)%/3(log log n)1/3 bits:
m,i—jm,jo(i/j).

log n bits: n.

Unavoidably 1/3 in exponent:
usual smoothness optimization
forces (log y)? ~ log m;
balancing norms with m
forces dlogy ~ log m;

and dlogm =~ logn.

Batch NFS

The number-tfield sieve used
L1.90...

o(1) bit operations
finding smooth / — jm; only
[1.77..+0(1) it operations
finding smooth j9f (i /).

Many n's can share one m;
[1.90..+0(1) it operations
to find squares for all n's.

Oops, linear algebra hurts;
fix by reducing y.

But still end up factoring
batch in much less time tha

factoring each n separately.

Three sizes of numbers here: Batch NFS

(log n)/3(log log n)?/3 bits: The number-field sieve used
v, I,j L1.90...

(log n)%/3(log log n)1/3 bits:
m,i—jm, jo (i/j).

o1) bit operations
finding smooth / — jm; only
[1.77..+0(1) it operations
finding smooth j9f (i /).

log n bits: n. |

Many n's can share one m;
Unavoidably 1/3 in exponent: [1.90..+0o(1) it operations
usual smoothness optimization to find squares for all n's.

forces (log v)? ~ log m:
(22 .g Oops, linear algebra hurts;
balancing norms with m £ b reduc
forces dlogy ~ log m; Dy Tedueins v,

and dlog m ~ log n. But still end up factoring

batch in much less time than

factoring each n separately.

zes of numbers here:

/3(Iog log n)2/3 bits:

/3(Iog log n)l/3 bits:
m, jof(if).

S. Nn.

ably 1/3 in exponent:
10oothness optimization
og y)? ~ log m;

g norms with m

log y =~ log m;

>m =~ logn.

Batch NFS

The number-tfield sieve used
L1.90...

o(1) bit operations
finding smooth i — jm; only
[1.77..+0(1) it operations
finding smooth j9f (i /).

Many n's can share one m;
[1.90..+0(1) it operations
to find squares for all n's.

Oops, linear algebra hurts;
fix by reducing y.

But still end up factoring
batch in much less time than

factoring each n separately.

Asymptc
paramet

d/(log n
c 1.10.

Primes -
1<1/,j

Comput
finds L1
smooth

L1.64...—|—4

for each

1bers here:

1)2/3 bits:

1)1/3 bits:

/J).

n exponent:
optimization
0g m;

/ith m

2 M,

n.

Batch NFS

The number-field sieve used

L1.90...

o1) bit operations

finding smooth / — jm; only
[1.77..+0(1) it operations

finding smooth j9f (i /).

Many n's can share one m;
[1.90..+0o(1) it operations

to find squares for all n's

Oops, linear algebra hurts;

fix by reducing y.

But still end up factoring
batch in much less time t
factoring each n separate

nan

Asymptotic batch-
parameters:

d/(log n)1/3(loglc
€1.10...4 o(1).

Primes < [0-82.-F

1 < I,_j < Ll.OO...-F

Computation inde
finds L1.64...—|—O(1)

smooth values /1 —

for each target n.

Batch NFS

The number-tfield sieve used
L1.90...

o(1) bit operations
finding smooth /1 — jm; only
[1.77..+0(1) it operations
finding smooth j9f (i /).

Many n's can share one m;
[1.90..+0(1) it operations
to find squares for all n's.

Oops, linear algebra hurts;
fix by reducing y.

But still end up factoring
batch in much less time than

factoring each n separately.

Asymptotic batch-NFS
parameters:

d/(log n)1/3(loglog n)~1/3
€1.10...4 o(1).

Primes < LO.82...—|—O(1)_
1 < I,j < Ll.OO...—I—O(l)_

Computation independent o
finds L1.64...—|—O(1)

smooth values 1 — jm.

for each target n.

Batch NFS

The number-field sieve used

L1.90...

o1) bit operations

finding smooth / — jm; only
[1.77..+0(1) it operations

finding smooth j9f (i /).

Many n's can share one m;
[1.90..+0o(1) it operations

to find squares for all n's

Oops, linear algebra hurts;

fix by reducing y.

But still end up factoring
batch in much less time t
factoring each n separate

nan

Asymptotic batch-NFS
parameters:

d/(log n)1/3(loglog n)~1/3
€1.10...4 o(1).

Primes < LO.82...—|—0(1)_
1 < I,_j < Ll.OO...—I—O(l)_

Computation independent of n
finds L1.64...—|—O(1)

smooth values 1 — jm.

for each target n.

FS

nber-field sieve used
(1) bit operations
mooth / — jm; only
(1) bit operations
mooth j9f (i/j).

's can share one m;
(1) bit operations
quares for all n's.

1ear algebra hurts;
ducing y.

end up factoring
much less time than

r each n separately.

Asymptotic batch-NFS
parameters:

d/(log n)1/3(loglog n)~1/3
€1.10...+ o(1).

Primes S LO.82...—|—O(1).
1 < I,j < Ll.OO...—I—O(l)_

Computation independent of n
finds L1.64...—|—O(1)

smooth values 1 — jm.

for each target n.

Batch N

Expand
n — nzyr
with 0 <

Assume
n 7X7 -+

Choose
consider
that — F

and gcd

Choose
y = 266

sieve used
erations
- Jm; only
erations
(/7).
‘e one m;

erations
all n's.

ra hurts:

ctoring
5 time than

eparately.

Asymptotic batch-NFS
parameters:

d/(log n)1/3(loglog n)~1/3
€ 1.10...+ o(1).

Primes < LO.82...—|—O(1).
1 < I,_] < Ll.OO...—|—O(1)_

Computation independent of n
finds L1.64...—|—O(1)

smooth values 1 — jm.

for each target n.

Batch NFS for RS

Expand n in base
n — n7m7 + ngm

with 0 < nqg, n1y,.

Assume irreducibil
n7><7 + n6><6 + -

Choose height H -
consider pairs (a,
that —-H < a <H
and gcd{a, b} =1

Choose smoothnes
y = 200 4 299,

Asymptotic batch-NFS
parameters:

d/(log n)1/3(loglog n)~1/3
€1.10...4 o(1).

Primes < LO.82...—|—O(1)_
1 < I,j < Ll.OO...—I—O(l)_

Computation independent of n
finds L1.64...—|—O(1)

smooth values 1 — jm.

for each target n.

Batch NFS for RSA-3072

Expand n in base m = 23%4

n:n7m7+n6m6+---+
with 0 < ng,n1q,..., ny <n

Assume irreducibility of
n7x7+n6x6+---—|—n0.

Choose height H = 262420
consider pairs (a, b) € Z X 2
that —-H <a < H,0< b<
and gcd{a, b} = 1.

Choose smoothness bound
y = 200 4 2%

Asymptotic batch-NFS
parameters:

d/(log n)/3(loglog n)~1/3
€1.10...4 o(1).

Primes < LO.82...—|—0(1)_
1 < I,_j < Ll.OO...—|—O(1)_

Computation independent of n
finds L1.64...—|—O(1)

smooth values 1 — jm.

for each target n.

Batch NFS for RSA-3072

Expand n in base m = 2334

n:n7m7+n6m6+---+no
with 0 < nqg, n1q,..., ny < m.

Assume irreducibility of
n7x7+n6x6+---+n0.

Choose height H = 20242014 257,
consider pairs (a, b) € Z x Z such
that —-H <a < H,0< b<H,
and gcd{a, b} = 1.

Choose smoothness bound
y =200 4 2%

ytic batch-NFS
ers:

)1/3(log log n) /3
.+ o(1).
< LO.82...—|—O(1).

< Ll.OO...—|—O(1)_

ation independent of n
64...4+0(1)

values 1 — jm.

o(1) operations
target n.

Batch NFS for RSA-3072

Expand n in base m = 2334
n :n7m7+n6m6+---+n0

with 0 < ng,n1q,..., ny < m.

Assume irreducibility of
n7x7+n6x6+---—|—n0.

Choose height H = 20242014 257,

consider pairs (a, b) € Z x Z such
that —H <a<H,0<b<H,
and gcd{a, b} = 1.

Choose smoothness bound
y = 200 4 2%

There ai
12H? /7
pairs (a,

Find all

y-Smoot
C— Nnyd

Combine
Into a fa
If there .

NFES
'gn)—1/3

o(1)
o(1)

pendent of n

Jjm.

lons

Batch NFS for RSA-3072

Expand n in base m = 2334
n :n7m7+n6m6+---+no

with 0 < nqg,n1q,..., ny < m.

Assume irreducibility of
n7x7+n6x6+---+n0.

Choose height H = 20242014 257,

consider pairs (a, b) € Z x Z such
that —H <a < H,0< b<H,
and gcd{a, b} = 1.

Choose smoothness bound
y =200 4 2%

There are about
12H2/7T2 ~ 2125.5
pairs (a, b).

Find all pairs (a, £
y-smooth (a — b
c=n7a’ + nga®l

Combine these coi
Into a factorizatiol
if there are enougl|

Number of congru
~ 2y/logy ~ 2%

f n

Batch NFS for RSA-3072

Expand n in base m = 2334
n :n7m7+n6m6+---+n0
with 0 < ng,n1,...,n7 < m.

Assume irreducibility of
n7x7+n6x6+---—|—n0.

Choose height H = 20242014 257,

consider pairs (a, b) € Z x Z such
that —H <a<H,0<b<H,
and gcd{a, b} = 1.

Choose smoothness bound
y =200 4 2%

There are about
12H2/7T2 ~ 2125.51
pairs (a, b).

Find all pairs (a, b) with
y-smooth (a — bm)c where
c=n7a’ +nga®b+ -+ n

Combine these congruences
into a factorization of n,
if there are enough congruer

Number of congruences nee
~ 2y/logy ~ 20200

Batch NFS for RSA-3072

Expand n in base m = 2334
n :n7m7+n6m6+---+no
with 0 < nqg, n1q, ..., ny < m.

Assume irreducibility of
n7x7+n6x6+---+n0.

Choose height H = 20242014 257

consider pairs (a, b) € Z x Z such
that —-H <a < H,0< b<H,
and gcd{a, b} = 1.

Choose smoothness bound
y =200 4 2%

There are about
12H2/7T2 ~ 2125.51
pairs (a, b).

Find all pairs (a, b) with
y-smooth (a — bm)c where
c=n7a’ + nga®b+ - -+ ngb’.

Combine these congruences
Into a factorization of n,

if there are enough congruences.

Number of congruences needed
~ 2y/logy ~ 20200

FS for RSA-3072

n in base m = 2384
n7+n6m6+---+n0
. nog,Nn1,...,h7 < m.

irreducibility of
n6X6—|—---—|—n0.

height H = 20242614 257

pairs (a, b) € Z x Z such
[<a<H 0<bLSH,
{a, b} =1.

smoothness bound
+ 2.

There are about

12H2/7T2 ~ 2125.51

pairs (a, b).

Find all pairs (a, b) with
y-smooth (a — bm)c where

c=n7a’ + nega®b+---+ ngb’.

Combine these congruences
Into a factorization of n,

if there are enough congruences.

Number of congruences needed
~ 2y/logy ~ 20200

Heuristi
a — bm
chance ¢
Integer |
and this
where u

Have u

and vt
so there
2107.09 F

such tha

A-3072

m = 23384,
N7 <m.
ity of
-+ Nng.

= 2024 0014 257,

h) € Z x Z such
,0<b< H,

5s bound

There are about

12H2/7T2 ~ 2125.51

pairs (a, b).

Find all pairs (a, b) with
y-smooth (a — bm)c where

c=n7a’ + nga®b+---+ ngb’.

Combine these congruences
Into a factorization of n,

if there are enough congruences.

Number of congruences needed
~ 2y/logy ~ 20200

Heuristic approxin
a — bm has same
chance as a unifor
integer in [1, Hm]
and this chance is
where u = (log(H

Have u ~ 6.707

and Y ~ 2—18.41

so there are about
2107.09 pairs (a, b)

such that a — bm

L_|_257:

7 such

There are about

12H2/7T2 ~ 2125.51

pairs (a, b).

Find all pairs (a, b) with
y-smooth (a — bm)c where

c=n7a’ + nga®b+---+ ngb’.

Combine these congruences
Into a factorization of n,

if there are enough congruences.

Number of congruences needed
~ 2y/logy ~ 20200

Heuristic approximation:

a — bm has same y-smooth
chance as a uniform randomn
integer in [1, Hm],

u

and this chance is u™
where u = (log(Hm))/log

Have u =~ 6.707

and u Y ~ 2—18.42,

so there are about
2107.09 pairs (a, b)

such that a — bm i1s smooth

There are about

12H2/7T2 ~ 2125.51

pairs (a, b).

Find all pairs (a, b) with
y-smooth (a — bm)c where

c=n7a’ + nga®b+---+ ngb’.

Combine these congruences
Into a factorization of n,

if there are enough congruences.

Number of congruences needed
~ 2y/logy ~ 20200

Heuristic approximation:

a — bm has same y-smoothness
chance as a uniform random
integer in [1, Hm],

—Uu

and this chance is u
where u = (log(Hm))/ log y.

Have u ~ 6.707

and =Y ~ 2~ 18. 42

so there are about
2107.09 pairs (a, b)

such that a — bm i1s smooth.

e about
2 ~ 2125.51

).

pairs (a, b) with
h (a — bm)c where

[gut n6a6b+ e n0b7.

> these congruences
ctorization of n,

are enough congruences.

of congruences needed
gy A~ 262 06

Heuristic approximation:

a — bm has same y-smoothness
chance as a uniform random
integer in [1, Hm],

—Uu

and this chance is u
where u = (log(Hm))/ log y.

Have u ~ 6.707

and u~Y ~ 2~ 18. 42

so there are about
2107.09 pairs (a, b)

such that a — bm i1s smooth.

Heuristi
¢ has sa
as a unii
[1,8H"r
and this
where v

Have v
and vV
so there
262.08 oF

a— bm

Safely al

) with
)¢ where

+ -+ ngh .

1gruences
1 of n,

1 congruences.

ences needed
06_

Heuristic approximation:

a — bm has same y-smoothness
chance as a uniform random
integer in [1, Hm],

—Uu

and this chance is u
where u = (log(Hm))/ log y.

Have u ~ 6.707

and =Y ~ 2~ 18. 42

so there are about
2107.09 pairs (a, b)

such that a — bm i1s smooth.

Heuristic approxin
¢ has same y-smo
as a uniform randc
[1,8H m],

and this chance is
where v = (log(8F

Have v =~ 12.395

and vV ~ 20
so there are about
202.08 pairs (a, b)

a — bm and c are

Safely above 2020

1CES.

ded

Heuristic approximation:

a — bm has same y-smoothness
chance as a uniform random
integer in [1, Hm],

and this chance is u™ ¥

where u = (log(Hm))/ log y.

Have u ~ 6.707

and u~Y ~ 2~ 18. 42

so there are about
2107.09 pairs (a, b)

such that a — bm i1s smooth.

Heuristic approximation:

¢ has same y-smoothness ct
as a uniform random integet
1, 8H7m],

and this chance is v
where v = (log(8H"m))/ lo;

—V

Have v =~ 12.395

and vV ~ 2 45. 01

so there are about
202.08 pairs (a, b) such that
a — bm and c are both smo

Safely above 202:06,

Heuristic approximation:

a — bm has same y-smoothness
chance as a uniform random
integer in [1, Hm],

and this chance is u™ ¥

where u = (log(Hm))/ log y.

Have u ~ 6.707

and =Y ~ 2~ 18. 42

so there are about
2107.09 pairs (a, b)

such that a — bm i1s smooth.

Heuristic approximation:
¢ has same y-smoothness chance
as a uniform random integer in
[1,8H m],

and this chance is v
where v = (log(8H"m))/log y.

—V

Have v =~ 12.395

and vV ~ 2~ —45, 01

so there are about
202.08 pairs (a, b) such that
a — bm and c are both smooth.

Safely above 202-00,

= approximation:

has same y-smoothness
s a uniform random

n (1, Hm],
chance is u™

= (log(Hm))/logy.

~ 0.707
|~ 2—18.42

u

are about
airs (a, b)
t a — bm 1s smooth.

Heuristic approximation:

¢ has same y-smoothness chance
as a uniform random integer in
[1,8H m],

and this chance is v
where v = (log(8H"m))/ log y.

vV

Have v &~ 12.395
and vV ~ 2—45.01
so there are about
202.08 pairs (a, b) such that

a — bm and c are both smooth.

Safely above 202:06,

Biggest
Check 2
to find t
where a

This ste
reused b

1ation:
y-smoothness

m random

u—U

m))/logy.

IS smooth.

Heuristic approximation:

¢ has same y-smoothness chance
as a uniform random integer in
[1,8H m],

and this chance is v
where v = (log(8H"m))/ log y.

"4

Have v =~ 12.395

and vV ~ 2—45.01,

so there are about
202.08 pairs (a, b) such that

a — bm and c are both smooth.

Safely above 202-06,

Biggest step in co
Check 212231 pajr

to find the 2107.09
where a — bm iIs s

This step Is indepe
reused by many In

NESS

Heuristic approximation:

¢ has same y-smoothness chance
as a uniform random integer in
[1,8H m],

and this chance is v
where v = (log(8H"m))/ log y.

vV

Have v =~ 12.395

and vV ~ 2—45.01’

so there are about
202.08 pairs (a, b) such that

a — bm and c are both smooth.

Safely above 202:06,

Biggest step in computation
Check 21221 pairs (a, b)

to find the 210799 pairs
where a — bm I1s smooth.

This step is independent of
reused by many integers .

Heuristic approximation:

¢ has same y-smoothness chance
as a uniform random integer in
[1,8H m],

and this chance is v
where v = (log(8H"m))/log y.

"4

Have v =~ 12.395
and vV ~ 2401
so there are about
062.08 pairs (a, b) such that

a — bm and c are both smooth.

Safely above 202-06,

Biggest step in computation:
Check 21221 pairs (a, b)

to find the 210799 pairs
where a — bm Is smooth.

This step is independent of N,
reused by many integers .

Heuristic approximation:

¢ has same y-smoothness chance

as a uniform random integer in
[1,8H m],

and this chance is vV

where v = (log(8H"m))/log y.

Have v =~ 12.395

and vV ~ 2—45.01,

so there are about
202:08 pairs (a, b) such that

a — bm and c are both smooth.

Safely above 202-06,

Biggest step in computation:
Check 21221 pairs (a, b)

to find the 210799 pairs
where a — bm Is smooth.

This step is independent of N,
reused by many integers .

Biggest step depending on N:
Check 210799 pairs (a, b)
to see whether ¢ Is smooth.

This is much less
computation! ... oris it?

= approximation:

me y-smoothness chance
form random integer in
n|,

chance is v
= (log(8H"m))/log y.

~ 12.395
A 2—45.01

vV

are about
irs (a, b) such that
and c are both smooth.

hove 20200,

Biggest step in computation:

Check 21221 pairs (a, b)
to find the 210799 pairs
where a — bm Is smooth.

This step is independent of N,

reused by many integers V.

Biggest step depending on N:
Check 210799 pairs (a, b)
to see whether c Is smooth.

This is much less
computation! ... oris it?

The 210
are not
SO No ea
for prim

1ation:
othness chance
om integer In

V—V

1'm))/log y.

such that
both smooth.

6 .

Biggest step in computation:

Check 21221 pairs (a, b)
to find the 210799 pairs
where a — bm 1s smooth.

This step is independent of N,
reused by many integers .

Biggest step depending on N:
Check 210799 pairs (a, b)
to see whether c Is smooth.

This is much less
computation! ... oris it?

The 2107-09 hairs |
are not consecutiv

SO NO easy way to
for prime divisors

1aNCE

1N

oth.

Biggest step in computation:

Check 21221 pairs (a, b)
to find the 210799 pairs
where a — bm 1s smooth.

This step is independent of N,
reused by many integers .

Biggest step depending on N:
Check 210799 pairs (a, b)
to see whether c Is smooth.

This is much less
computation! ... oris it?

The 219799 pairs (a, b)
are not consecutive,

SO NO easy way to sieve
for prime divisors of c.

Biggest step in computation:

Check 21221 pairs (a, b)
to find the 210799 pairs
where a — bm 1s smooth.

This step is independent of N,
reused by many integers .

Biggest step depending on N:
Check 210799 pairs (a, b)
to see whether c Is smooth.

This is much less
computation! ... oris it?

The 219799 pairs (a, b)
are not consecutive,

SO NO easy way to sieve
for prime divisors of c.

Biggest step in computation:

Check 21221 pairs (a, b)
to find the 210799 pairs
where a — bm 1s smooth.

This step is independent of N,
reused by many integers .

Biggest step depending on N:
Check 210799 pairs (a, b)
to see whether c Is smooth.

This is much less
computation! ... oris it?

The 219799 pairs (a, b)
are not consecutive,

SO NO easy way to sieve
for prime divisors of c.

Fix: factor each number
separately:
start with trial division,

then Pollard rho,

then Pollard p — 1,
then ECM.

Biggest step in computation:

Check 21221 pairs (a, b)
to find the 210799 pairs
where a — bm 1s smooth.

This step is independent of N,
reused by many integers .

Biggest step depending on N:
Check 210799 pairs (a, b)
to see whether c Is smooth.

This is much less
computation! ... oris it?

The 219799 pairs (a, b)
are not consecutive,

SO NO easy way to sieve
for prime divisors of c.

Fix: factor each number
separately:
start with trial division,

then Pollard rho,

then Pollard p — 1,
then ECM.

Most of them covered in
http://facthacks.cr.yp.to/

step In computation:

125.51 pairs (a’ b)

he 210709 hairs

— bm I1s smooth.

D is independent of N,
y many integers V.

step depending on N:
107.09 pairs (a, b)

hether ¢ i1s smooth.

nuch less
tion! ... oris it?

The 219799 pairs (a, b)
are not consecutive,

SO NO easy way to sieve
for prime divisors of c.

Fix: factor each number
separately:
start with trial division,

then Pollard rho,

then Pollard p — 1,
then ECM.

Most of them covered in
http://facthacks.cr.yp.to/

The rho

Define ¢

Every pr

(p1 — P2

- (p3s7
Also ma

Can con
~ 214 m

very littl

Compare
for trial

mputation:

s (a, b)
pairs
mooth.

ndent of NV,
tegers .

ding on -
s (a, b)
5 smooth.

or Is It?

The 219799 pairs (a, b)
are not consecutive,

SO NO easy way to sieve
for prime divisors of c.

Fix: factor each number
separately:
start with trial division,

then Pollard rho,

then Pollard p — 1,
then ECM.

Most of them covered in
http://facthacks.cr.yp.to/

The rho method

Define pj =0, p,

Every prime < 24U

(k1 — P2)(P2 — P4

o (P3575 — P7150)
Also many larger |

Can compute gcd-
~ 21% multiplicati
very little memory

Compare to ~ 210
for trial division uj

The 219799 pairs (a, b)
are not consecutive,

SO NO easy way to sleve
for prime divisors of c.

Fix: factor each number
separately:
start with trial division,

then Pollard rho,

then Pollard p — 1,
then ECM.

Most of them covered in
http://facthacks.cr.yp.to/

The rho method

Detfine p, = 0, Pri1 = p%(+

Every prime < 220 divides S

(p1 — p2)(p2 — pa)(p3 — p6)

o (P3575 — P7150)'
Also many larger primes.

Can compute gcd{c, S} usir
~ 21% multiplications mod ¢
very little memory.

Compare to ~ 21 divisions
for trial division up to 220,

The 219799 pairs (a, b)
are not consecutive,

SO NO easy way to sieve
for prime divisors of c.

Fix: factor each number
separately:
start with trial division,

then Pollard rho,

then Pollard p — 1,
then ECM.

Most of them covered in
http://facthacks.cr.yp.to/

The rho method

Detfine p, =0, Pri1 = pi + 11.

Every prime < 220 divides S =

(p1 — p2)(p2 — pa)(p3 — p6)

o (P3575 — P7150)-
Also many larger primes.

Can compute gcd{c, S} using
~ 214 multiplications mod ¢,
very little memory.

Compare to ~ 210 divisions
for trial division up to 22V,

09 pairs (a, b)
~onsecutive,

sy way to sieve
> divisors of c.

or each number

ly:
h trial division,

lard rho,

lard p — 1,
M.

them covered In
acthacks.cr.yp.to/

The rho method

Detfine p, = 0, Pri1 = pi + 11.

Every prime < 220 divides S =

(p1 — P2)(p2 — pa)(p3 — P6)

o (P3575 — P7150)'
Also many larger primes.

Can compute gcd{c, S} using
~ 214 multiplications mod ¢,
very little memory.

Compare to ~ 21 divisions
for trial division up to 220,

More ge
Comput:

(p1 — P2

How big

for all pi

Plausible

so y1/2

Reason:
p1 mod
|f P; MO

then py
for k € |

umber

Ision,

ared In
r.yp.to/

The rho method

Detfine p, =0, Pri1 = pi + 11.

Every prime < 220 divides S =

(p1 — p2)(p2 — pa)(p3 — p6)

o (P3575 — P7150)-
Also many larger primes.

Can compute gcd{c, S} using
~ 214 multiplications mod ¢,
very little memory.

Compare to ~ 210 divisions
for trial division up to 22V,

More

generally: C

Compute gcd{c, S

(p1 —

How
for al

p2)(p2 — pa

oig does z h:

primes < y

Plausible conjectu
so y1/2to(1) mult

Reason: Consider

p1 mod p, p> mod {

It pjmodp=p;m

then p, mod p = ¢

for k

c(j—0NZr

The rho method

Detfine p, = 0, Pri1 = pi + 11.

Every prime < 220 divides S =

(p1 — P2)(p2 — pa)(p3 — P6)

o (103575 — P7150)'
Also many larger primes.

Can compute gcd{c, S} using
~ 214 multiplications mod ¢,
very little memory.

Compare to ~ 21 divisions
for trial division up to 220,

More generally: Choose z.
Compute gcd{c, S} where S

(p1 — p2)(p2 — pa) - - (pz —

How big does z have to be

for all primes < y to divide

Plausible conjecture: yl/2+<
so y1/2t91) mults mod ¢

Reason: Consider first collis
p1 mod p, po mod p,
It pj mod p = p; mod p
then p, mod p = pyy mod p
forke (j —i)ZNJ[i,o0]N]

The rho method

Detfine p, = 0, Pyl = pi + 11.

Every prime < 220 divides S =

(p1 — p2)(p2 — pa)(p3 — po)

o (P3575 — P7150)-
Also many larger primes.

Can compute gcd{c, S} using
~ 214 multiplications mod ¢,
very little memory.

Compare to ~ 210 divisions
for trial division up to 22V,

More generally: Choose z.
Compute gcd{c, S} where § =

(p1 — p2)(p2 — p4) - - (P2 — P22)-

How big does z have to be

for all primes < y to divide §7

Plausible conjecture: y!/2to(1).
so y1/2t91) mults mod c

Reason: Consider first collision in
p1 mod p, po mod p,

It pj mod p = p; mod p

then p, mod p = pr mod p

for ke (j —i)ZN[i,o0]N]j, 0]

‘method

_ _ 2
»O_O, pk_|_1—pk—|—]_]..

ime < 220 divides S =

)(p2 — pa)(p3 — po)

5 — P7150)-
ny larger primes.

pute gecd{c, S} using
ultiplications mod c,
e memory.

> to ~~ 210 divisions

division up to 22V,

More generally: Choose z.
Compute gcd{c, S} where § =

(p1 — p2)(p2 — p4) - - (P2 — p2z)-

How big does z have to be

for all primes < y to divide §7

Plausible conjecture: y!/2to(1).
so y1/2t91) mults mod ¢

Reason: Consider first collision In
p1 mod p, po mod p,

It pj mod p = p; mod p

then oy mod p = py, mod p

for ke (j —i)ZN[i,o0]N]j, 00l

The p—

51 = pX
divisors
3,57,
37, 41,
89, 97, -
137, 151

These d
70 of th
156 of t
296 of t
470 of t
etc.

F1 :P%<+11-

"divides S =
)(P3 — P6)

rimes.

r ™
¢, S} using
ons mod ¢,

divisions

y to 220,

More generally: Choose z.
Compute gcd{c, S} where § =

(p1 — p2)(p2 — p4) - - (P2 — P22)-

How big does z have to be

for all primes < y to divide §7

Plausible conjecture: y!/2to(1).
so y1/2t91) mults mod c

Reason: Consider first collision In
p1 mod p, po mod p,

It pj mod p = p; mod p

then p, mod p = pyr, mod p

for ke (j —i)ZN[i,o0]N]j, 0]

The p—1 methoc

51 _ 2232792560 ~

divisors

3,5, 7,11, 13, 17
37,41, 43, 53, 61
89, 97, 103, 109,
137, 151, 157, 18:

These divisors incl
70 of the 168 prin

156 of t
296 of t

ne 1229

ne 9592

D
D

470 of the 78498

etc.

11,

More generally: Choose z.
Compute gcd{c, S} where § =

(p1 — p2)(p2 — p4) - - (P2 — P2z)-

How big does z have to be

for all primes < y to divide §7

Plausible conjecture: y!/2to(1).
so y1/2t91) mults mod ¢

Reason: Consider first collision In
p1 mod p, po mod p,

It pj mod p = p; mod p

then oy mod p = py, mod p

for ke (j —i)ZN[i,o0] N}, 00l

The p—1 method

51 _ 2232792560

divisors

— 1 has pr

3,5, 7,11,13, 17, 19, 23, -
37,41, 43, 53, 61, 67, 71, 7
89, 97, 103, 109, 113, 127,
137, 151, 157, 181, 191, 19¢

These divisors include
70 of the 168 primes < 103;

156 of t
296 of t

ne 1229

ne 9592

orimes < 1

orimes < 1

470 of the 78498 primes < |

etc.

More generally: Choose z.
Compute gcd{c, S} where S =

(p1 — p2)(p2 — p4) - - (P2 — P22)-

How big does z have to be

for all primes < y to divide §7

Plausible conjecture: y!/2to(1).
so y1/2t9(1) mults mod c

Reason: Consider first collision In
p1 mod p, po mod p,

It p; mod p = p; mod p

then p, mod p = pyr, mod p

for ke (j —i)ZN[i,o0] N[}, 00l

The p—1 method

S = 2232792560 _ 1 has prime

divisors

3,5,7,11, 13, 17, 19, 23, 29, 31,
37, 41, 43, b3, 61, 67, 71, 73, 79,
389, 97, 103, 109, 113, 127, 131,
137, 151, 157, 181, 191, 199 etc.

These divisors include

70 of the 168 primes < 103;
156 of the 1229 primes < 10%:
206 of the 9592 primes < 10°;
470 of the 78498 primes < 10°;

etc.

nerally: Choose z.
e gcd{c, S} where S =

)02 — p4) - (pz — p2z).

“does z have to be
imes < y to divide 57

> conjecture: yl/2+o(l)

(1) mults mod c.
Consider first collision in
), pomod p,

dp=p; modp
mod p = py, mod p

j—i)ZN][i,o0]lN]j, 00].

The p—1 method

51 _ 2232792560

divisors

3,5, 7,11, 13, 17, 19, 23, 29, 31,
37,41, 43, 53, 61, 67, 71, 73, 79,

— 1 has prime

89, 97, 103, 109, 113, 127, 131,
137, 151, 157, 1381, 191, 199 etc.

These divisors include
70 of the 168 primes < 103;

156 of t
296 of t

ne 1229

ne 9592

srimes < 104

srimes < 10°;

470 of the 78498 primes < 10°;

etc.

An odd

divides 2
iff order
multiplic
divides ¢

Many w.
2327925

Why so
Answer:
= lem{1
=2%. 3

hoose Zz.
} where § =

) (pz — p2z)

ve to be
to divide S?

re: y1/2+o(1);

. mod c.

first collision in
), ...
od p

>, mod p

[/, 00] N[}, o0].

The p—1 method

51 _ 2232792560

divisors

3,5, 7,11, 13, 17, 19, 23, 29, 31,

— 1 has prime

37, 41, 43, 53, 61, 67, 71, 73, 79,
89, 97, 103, 109, 113, 127, 131,
137, 151, 157, 181, 191, 199 etc.

These divisors include
70 of the 168 primes < 103;

156 of t
296 of t

ne 1229

ne 9592

srimes < 10%:
srimes < 10°;

470 of the 78498 primes < 10°:

etc.

An odd prime p
divides 2232792560

Iff order of 2 in th
multiplicative grol
divides s = 23279

Many ways for thi
232792560 has 96

Why so many?

Answer: s = 2327
=lcm{1, 2,3, 4,5,
=2%.32.5.7.1:

pZZ)-

S7
>(1);

lon In

j, 00].

The p—1 method

51 _ 2232792560

divisors

3,5, 7,11, 13, 17, 19, 23, 29, 31,
37,41, 43, 53, 61, 67, 71, 73, 79,

— 1 has prime

89, 97, 103, 109, 113, 127, 131,
137, 151, 157, 131, 191, 199 etc.

These divisors include
70 of the 168 primes < 103;

156 of t
296 of t

ne 1229

ne 9592

srimes < 10%:
srimes < 10°:

470 of the 78498 primes < 10°:

etc.

An odd prime p
divides 2232792560 1

Iff order of 2 in the
multiplicative group F,
divides s = 232792560.

Many ways for this to happe
232792560 has 960 divisors.

Why so many?

Answer: s = 232792560
=lcm{1,2,3,4,5,...,20}
=2%.32.5.7-11-13-17 -

The p—1 method
51 _ 2232792560

— 1 has prime
divisors

3,5, 7,11, 13, 17, 19, 23, 29, 31,

37, 41, 43, 53, 61, 67, 71, 73, 79,
89, 97, 103, 109, 113, 127, 131,
137, 151, 157, 181, 191, 199 etc.

These divisors include

70 of the 168 primes < 103;
156 of the 1229 primes < 10%:
206 of the 9592 primes < 10°;

470 of the 78498 primes < 10°:
etc.

An odd prime p
divides 2232792560 1

Iff order of 2 in the
multiplicative group F7
divides s = 232792560.

Many ways for this to happen:
232792560 has 960 divisors.

Why so many?

Answer: s = 232792560
=lcm{1,2,3,4,5,...,20}
=2%.32.5.7.11-13-17-19.

1 method

232792560 1 has prime

11, 13, 17, 19, 23, 29, 31,

13, 53, 61, 67, 71, 73, 79,
103, 109, 113, 127, 131,
, 157, 181, 191, 199 etc.

visors include

e 168 primes < 103;

e 1229 primes < 10%;
e 9592 primes < 10°;
he 78498 primes < 106

An odd prime p
divides 2232792560 1

Iff order of 2 in the
multiplicative group F,
divides s = 232792560.

Many ways for this to happen:
232792560 has 960 divisors.

Why so many?
Answer: s = 232792560
=lcm{1,2,3,4,5,..., 20}

—924.32.5.7.11-13-17 - 10.

Can con
using 41
(Side no

Ring ope

This cor
22 =2
712 _ »6
$55. H11C
3552,
2568321.21
2909345.
2363738§
»1454953
»1163962:

- 1 has prime

, 19, 23, 29, 31,

67, 71, 73, 79,
113, 127, 131,
[, 191, 199 etc.

ude

1es < 103;
rimes < 10%:
rimes < 10°:
orimes < 10°;

An odd prime p
iff order of 2 in the
multiplicative group F}

divides s = 232792560.

Many ways for this to happen:
232792560 has 960 divisors.

Why so many?
Answer: s = 232792560
=lcm{1,2,3,4,5,..., 20}

—924.32.5.7.11-13-17 - 10.

Can compute 2232
using 41 ring oper
(Side note: 41 is

Ring operation: 0.

This computation:
22 =2.2; 23 = 2
212 _ 96.96. 913 _
255; 2110; 2111; 222,
13552. 57104. »1420¢
256831,1.21136’68.22271
290934,5; 21818,690; 9
23637383; 27274766;
214549535; ~2909907
2116396280; 2232792

Ime

9, 31,

3, 79,
131,
) etc.

An odd prime p
iff order of 2 in the
multiplicative group F},

divides s = 232792560.

Many ways for this to happen:
232792560 has 960 divisors.

Why so many?
Answer: s = 232792560
=lcm{1,2,3,4,5, ..., 20}

—924.32.5.7.11-13-17 - 10.

Can compute 2232792500 __ 1
using 41 ring operations.
(Side note: 41 is not minim

Ring operation: 0, 1, +,

This computation: 1; 2 =1
22=12.2;2>=22.2;20 =

212 _ 96.96. 913 _ 912.5. 526
255.9110. 5111. 5222. 5444 8¢
235é2. 27i04. 2i4208.,22841,6.)
2568311.21136,68.22273,36.24546,72.
2909345.21818%90.218i8691.25
23637385; 2727476é; 2727476%; >

214549535. 529099070. 55819314
2116396280. 5232792560. 523279

An odd prime p
iff order of 2 in the
multiplicative group F}

divides s = 232792560.

Many ways for this to happen:
232792560 has 960 divisors.

Why so many?
Answer: s = 232792560
=1lcm{l,2,3,4,5,..., 20}

—924.32.5.7.11-13-17 - 10.

Can compute 2232792500 __ 1
using 41 ring operations.
(Side note: 41 is not minimal.)

Ring operation: 0, 1, +,

This computation: 1; 2 =14 1;

22 =12.2;23=22.2; 20 =23.23;
212 _ 96.96. 913 _ 912.5. 526. 927. 554,
255; 2110; 2111; 2222; 2444; 2888; 21776;
23552. 57104. 714208. 528416. 528417

256834,1.2113668.22273'36.24546'72.29093,44.
290934,5. 21818,690. 218’18691. 2?;637382.,
23637381,%. 27274766. 2727476%. 21454951,%4.
21454953%. 2290990%0. 258198i40. |
2116396286; 223279256,50; 2232792;360 1

prime p
2232792560 1
of 2 In the
ative group F7
= 232792560.

ays for this to happen:
60 has 960 divisors.

many?’
s = 232792560
,2,3,4,5,...,20}

> .5.7-11-13-17-19.

Can compute 2232792500 __ 1
using 41 ring operations.
(Side note: 41 is not minimal.)

Ring operation: 0, 1, 4+, —, -.

This computation: 1; 2 =1+ 1;

22 =12.2;23=22.2; 20 =23.23;
212 _ 96.96. 913 _ 912.5. 526. 527. 554,
255; 2110; 2111; 2222; 2444; 2888; 21776;
13552. 57104. 514208. 528416. 5238417
2568311.21136,68.22273,36.24546,72.29093,44.
290934’5; 21818'690; 218,18691; 2é637382;'

23637383. 27274766. 27274767. 214549534.

214549535. 529099070. 558195140.
2116396280; 2232792560; 2232792560 _ 1

Given pc
can com
using 41
Notatior

e.g. Cc=
227

254

MO

MO«

299 Mo

2110 oo

22327925

— 1

e

p Fj
2560.

s to happen:
0 divisors.

92560
..,20)

[- 13-17-19.

Can compute 2232792500 __ 1

using 41 ring operations.
(Side note: 41 is not minimal.)

Ring operation: 0, 1, 4+, —, -.

This computation: 1; 2 =14 1;

22 =12.2;23=22.2; 20 =23.23
212 _ 96.96. 913 _ 912.5. 526. 927. 554,
255; 2110; 2111; 2222; 2444; 2888; 21776;
13552. 57104. »14208. 528416. 528417
256834,1.2113668.22273'36.24546'72.29093,44.
290934,5. 21818,690. 218’18691. 2?;637382.,
23637381,%. 27274766. 2727476%. 21454951,%4.
21454953%. 2290990%0. 258198i40. |
2116396286; 223279256,50; 2232792;360 1

Given positive inte

can compute 232

using 41 operatior

Notation: a mod £

e.g. ¢=3597231:

227
254

MOC
MOQ

2°° mod ¢ = 1871

2110 mo

C

c = 134~
c = 134~
— 935¢
c = 1871
— 145¢&

2232792560 __ 1 mod

N

19.

Can compute 2232792500 __ 1
using 41 ring operations.
(Side note: 41 is not minimal.)

Ring operation: 0, 1, +,

This computation: 1; 2 =1+ 1;
22 =12.2;23=12%2.2,20=23.23,

212 _ 26_26. 213 _ 212_2. 226. 227. 254.
255. 2110. 2111. 2222. 2444 . 2888. 21776.

23552. 57104. 514208. 528416. 528417
256834;2113668;2227336;2454672;2909344;
~909345. 51818690. »1818691. 53637382.

23637383. 27274766. 27274767. 214549534.

214549535. 529099070. 558195140.
2116396280; 2232792560; 2232792560 _ 1

Given positive integer n,
can compute 232192500 __ 1
using 41 operations in Z/c.

Notation: amodb=a — b|

e.g. ¢c=38b97231219: ...
22" mod ¢ = 134217728:
294 mod ¢ = 134217728° m

— 935663516
229 mod ¢ = 1871327032;
2110 mod ¢ = 18713270324 r
— 1458876811 .
2232192560 _1 mod c= 56260

Can compute 2232792500 __ 1
using 41 ring operations.
(Side note: 41 is not minimal.)

Ring operation: 0, 1, +,

This computation: 1; 2 =1+ 1;
22 =12.2;23=22.2; 20 =23.23;

212 _ 26_26. 213 _ 212.2. 226. 227. 254.
295 2110. 2111. 2222. 2444 . 2888. 21776.

23552. 57104. »14208. 528416. 528417
256834;2113668;2227336;2454672;2909344;
~909345. 11818690. »1818691. 53637352.

23637383. 27274766. 27274767. 214549534.

214549535. 529099070. 558195140.
2116396280; 2232792560; 2232792560 _ 1

Given positive integer n,

2232792560

can compute — I modc

using 41 operations in Z/c.
Notation: amodb=a — b|a/b|.

e.g. ¢ =8b97231219: ...
22" mod ¢ = 134217728:
254 mod ¢ = 1342177282 mod n
— 935663516;
229 mod ¢ = 1871327032;
2110 mod ¢ = 18713270322 mod ¢
— 1458876811; .. .;
2232792560 _1 mod c= 5626089344

Can compute 2232792500 __ 1
using 41 ring operations.
(Side note: 41 is not minimal.)

Ring operation: 0, 1, +,

This computation: 1; 2 =1+ 1;
22 =12.2;23=22.2; 20 =23.23;

212 _ 26_26. 213 _ 212.2. 226. 227. 254.
295 2110. 2111. 2222. 2444 . 2888. 21776.

23552. 57104. »14208. 528416. 528417
256834;2113668;2227336;2454672;2909344;
~909345. 11818690. »1818691. 53637352.

23637383. 27274766. 27274767. 214549534.

214549535. 529099070. 558195140.
2116396280; 2232792560; 2232792560 _ 1

Given positive integer n,

2232792560

can compute — I modc

using 41 operations in Z/c.
Notation: amodb=a — b|a/b|.

e.g. ¢ =8b97231219: ...
22" mod ¢ = 134217728:
254 mod ¢ = 1342177282 mod n
— 935663516;
229 mod ¢ = 1871327032;
2110 mod ¢ = 18713270322 mod ¢
— 1458876811; .. .;
2232792560 _1 mod c= 5626089344

Easy extra computation (Euclid):
gcd{5626089344, c} = 991.

ring operations.
te: 41 is not minimal.)

>ration: 0, 1, +, —, -.

nputation: 1; 2 =1+ 1;
2; 23 =22.2; 20 =23.23,

_26. 213 _ 212_2. 226. 227. 294
. 9111. »222. 5444. »888. 7 1776.

104 . 214208. 228416. 228417.
.13668.2227336.2454672.2909344.
21818690. 21818691. 23637382.

. 27274766. 27274767. 214549534.

. 229099070. 558198140
30. £232792560. 5232792560 _ 1

Given positive integer n,

2232792560

can compute — 1 modc

using 41 operations in Z/c.
Notation: amodb=a — b|a/b|.

e.g. ¢ =8b97231219: ...
22" mod ¢ = 134217728:
2%% mod ¢ = 1342177282 mod n
= 935663516;
22 mod ¢ = 1871327032;
2110 mod ¢ = 18713270322 mod ¢
— 1458876811; . ..:

2232792560 _1 mod c= 5626089344

Easy extra computation (Euclid):
gcd{5626089344, c} = 991.

This p -
quickly 1
Main wc

Could in
c's divisi
The 167
would h:

Not clea
Dividing
is faster
The p—
only 70
trial divi

792560 1

ations.

10t minimal.)

’1’ l’
1;2=1+1,
3_2; 26:23_23;

212.2. 226. 227. 254.
. 2444 . 2888. 21776.

3 228416. 228417.
336;2454672;2909344;
!1818691. 23637382.

27274767. 214549534.

). »53198140.
560. 1232792560 _ 1

Given positive integer n,

2232792560

can compute — I modc

using 41 operations in Z/c.
Notation: amodb=a — b|a/b|.

e.g. ¢ =8b97231219: ...
22" mod ¢ = 134217728:
2%% mod ¢ = 1342177282 mod n
— 935663516;
229 mod ¢ = 1871327032;
2110 mod ¢ = 18713270322 mod ¢
— 1458876811; . ..:

2232792560 _1 mod c=5626089344.

Easy extra computation (Euclid):
gcd{5626089344, c} = 991.

This p— 1 metho

quickly factored c
Main work: 27 sq

Could instead hav

c's divisibility by 2
The 167th trial dr
would have found

Not clear which m
Dividing by small
Is faster than squs
The p—1 methoc
only 70 of the prir
trial division finds

al.)

+ 1,
23_:23.

227.254.
38; 21776;

28417 .
.2909344
637382.

14549534 .

0.
2560__1_

Given positive integer n,
can compute 2232792560 _ 1 mod ¢

using 41 operations in Z/c.
Notation: amodb=a — b|a/b|.

e.g. ¢c=8b97231219: ...
227 mod ¢ = 134217728;
2% mod ¢ = 1342177282 mod n
= 935663516;
mod ¢ = 1871327032;
2110 mod ¢ = 18713270322 mod ¢
— 14588763811; ...;

255

2232792560 _1 mod c= 5626089344

Easy extra computation (Euclid):
gcd{5626089344, c} = 991.

This p — 1 method (1974 P
quickly factored ¢ = 859723
Main work: 27 squarings mc

Could instead have checked
c's divisibility by 2,3,5,
The 167th trial division

would have found divisor 99

Not clear which method is &
Dividing by small p

Is faster than squaring mod
The p— 1 method finds
only 70 of the primes < 100
trial division finds all 168 pr

Given positive integer n,
can compute 2232792560 _ 1 mod ¢
using 41 operations in Z/c.

Notation: amod b= a — b|a/b].

e.g. ¢ =8b97231219: ...
227 mod ¢ = 134217728;
2°4 mod ¢ = 1342177282 mod n
= 935663516;
mod ¢ = 13871327032:
2110 mod ¢ = 18713270322 mod ¢
— 1458876311; .. .;

255

2232792560 _1 mod c=5626089344.

Easy extra computation (Euclid):
gcd{5626089344, c} = 991.

This p — 1 method (1974 Pollard)
quickly factored ¢ = 8597231219.
Main work: 27 squarings mod c.

Could instead have checked
c's divisibility by 2,3,5,. ...
The 167th trial division
would have found divisor 991.

Not clear which method is better.
Dividing by small p

Is faster than squaring mod c.
The p—1 method finds

only 70 of the primes < 1000;
trial division finds all 168 primes.

sitive integer n,
pute 2232792500 _ 1 mod ¢

operations in Z/c.
;. amodb=a — bla/b|.

8507231219: ...

1 c= 134217728:;

{c= 1342177282 mod n
— 935663516

i c = 1871327032

| ¢ = 18713270322 mod ¢
— 1458876811; .. .;

0 _1 mod c= 5626089344

ra computation (Euclid):
6089344, c} = 991.

This p — 1 method (1974 Pollard)
quickly factored ¢ = 8597231219.
Main work: 27 squarings mod c.

Could instead have checked
c's divisibility by 2,3,5,
The 167th trial division
would have found divisor 991.

Not clear which method is better.
Dividing by small p

is faster than squaring mod c.
The p—1 method finds

only 70 of the primes < 1000;
trial division finds all 168 primes.

Scale ur
s = lcm:
using 13
find 231

Is a squz
faster th

Or

s = lem:
using 14
find 180

Is a squ:
faster th

Extra be
no need

ger n,

92560 __ q mod ¢

sin Z/c.
y=a — bla/b|.

19: ...
17728:
177282 mod n
63516;
327032;
3270322 mod ¢
376811; .. .;

c=5626039344.

tation (Euclid):
ch = 991.

This p—1 met

nod (1974 Pollard)

quickly factorec
Main work: 27

Could instead h

c = 8597231219.
squarings mod c.

ave checked

c's divisibility by 2,3,5,. ...

The 167th tnal

division

would have found divisor 991.

Not clear which method i1s better.

Dividing by small p

Is faster than squaring mod c.
The p— 1 method finds

only 70 of the primes < 1000;

trial division fin

ds all 168 primes.

Scale up to larger
s =1lcm{1, 2, 3,4,
using 136 squaring
find 2317 of the p

Is a squaring mod
faster than 17 tria

Or

s =1lecm{1, 2, 3,4,
using 1438 squarir
find 180121 of the

Is a squaring mod
faster than 125 tri

Extra benefit:
no need to store t

od n

nod ¢

39344.

clid);

This p — 1 method (1974 Pollard)
quickly factored ¢ = 8597231219.
Main work: 27 squarings mod c.

Could instead have checked
c's divisibility by 2,3,5,
The 167th trial division
would have found divisor 991.

Not clear which method is better.
Dividing by small p

is faster than squaring mod c.
The p—1 method finds

only 70 of the primes < 1000;
trial division finds all 168 primes.

Scale up to larger exponent
s=1cm{1,2,3,4,5,..., 100
using 136 squarings mod ¢

find 2317 of the primes < 1i

Is a squaring mod ¢
faster than 17 trial divisions

Or

s=1lcm{1,2,3,4,5,..., 100
using 1438 squarings mod ¢
find 180121 of the primes <

Is a squaring mod ¢
faster than 125 trial division

Extra benefit:
no need to store the primes.

This p — 1 method (1974 Pollard)
quickly factored ¢ = 8597231219.
Main work: 27 squarings mod c.

Could instead have checked
c's divisibility by 2,3,5,. ...
The 167th trial division
would have found divisor 991.

Not clear which method is better.
Dividing by small p

Is faster than squaring mod c.
The p—1 method finds

only 70 of the primes < 1000;
trial division finds all 168 primes.

Scale up to larger exponent
s=1cm{1,2,3,4,5,..., 100}:
using 136 squarings mod ¢
find 2317 of the primes < 10°.

Is a squaring mod ¢
faster than 17 trial divisions?

Or

s =lecm{1,2,3,4,5,...,1000}:
using 1438 squarings mod ¢
find 180121 of the primes < 107

Is a squaring mod ¢
faster than 125 trial divisions?

Extra benefit:
no need to store the primes.

-1 method (1974 Pollard)

actored ¢ = 8597231219.
rk: 27 squarings mod c.

stead have checked
bility by 2, 3,5,
th trial division

ave found divisor 991.

r which method Is better.
by small p

than squaring mod c.

1 method finds

of the primes < 1000;
sion finds all 168 primes.

Scale up to larger exponent
s=1cm{1,2,3,4,5,..., 100}
using 136 squarings mod ¢
find 2317 of the primes < 10°.

Is a squaring mod ¢
faster than 17 trial divisions?

Or
s=1lcm{1,2,3,4,5,..., 1000}:
using 1438 squarings mod ¢

find 180121 of the primes < 107.

Is a squaring mod ¢
faster than 125 trial divisions?

Extra benefit:
no need to store the primes.

Plausible

order of
So unifo
divides
with pro

(1.4...-
produce

Similar 1
finds far

1 (1974 Pollard)
= 8597231219.
larings mod c.

e checked
,3,5,.. ..
/1slon
divisor 991.

ethod iIs better.

p
ring mod c.

| finds
nes < 1000:;
all 168 primes.

Scale up to larger exponent
s=1cm{1,2,3,4,5,..., 100}:
using 136 squarings mod ¢
find 2317 of the primes < 10°.

Is a squaring mod ¢
faster than 17 trial divisions?

Or
s=1cm{1,2,3,4,5,..., 1000}:
using 1438 squarings mod ¢

find 180121 of the primes < 107

Is a squaring mod ¢
faster than 125 trial divisions?

Extra benefit:
no need to store the primes.

Plausible conjectu

exp \/(% + o(1))l¢

then p—1 divides
for H/ K1) pri
Same if p—1 is re¢

order of 2 in F;.

So uniform randor
divides 2|Cm{1,2 /

with probability 1,

produce olem{1,2,...

Similar time spent
finds far fewer prir

ollard)
1219.
d C.

etter.

Imes.

Scale up to larger exponent
s=1cm{1,2,3,4,5,..., 100}
using 136 squarings mod ¢
find 2317 of the primes < 10°.

Is a squaring mod ¢
faster than 17 trial divisions?

Or
s=1lcm{1,2,3,4,5,..., 1000}:
using 1438 squarings mod ¢

find 180121 of the primes < 107.

Is a squaring mod ¢
faster than 125 trial divisions?

Extra benefit:
no need to store the primes.

Plausible conjecture: if K is
exp \/(% + 0(1))log H log lo
then p—1 divides lcm{1, 2, .
for H/KHO(l) primes p < f
Same if p — 1 is replaced by

order of 2 in F:;.

So uniform random prime p
divides 2|Cm{1,2 K} 1
with probability 1/K1+(1),

(1.4... 4 o(1))K squarings
oroduce 2|Cm{1,2 K} 1m

Similar time spent on trial d

finds far fewer primes for lar

Scale up to larger exponent
s =1cm{1,2,3,4,5,..., 100}:
using 136 squarings mod ¢
find 2317 of the primes < 10°.

Is a squaring mod ¢
faster than 17 trial divisions?

Or
s=1cm{1,2,3,4,5,..., 1000}:
using 1438 squarings mod ¢

find 180121 of the primes < 107

Is a squaring mod ¢
faster than 125 trial divisions?

Extra benefit:

no need to store the primes.

Plausible conjecture: if K is

exp \/(% + o(l))log H loglog H
then p—1 divides Icm{1,2, ..., K}
for H/KHO(l) primes p < H.
Same if p — 1 is replaced by

order of 2 in F;.

So uniform random prime p < H
divides 2|Cm{1,2 K} 1
with probability 1/K1+0(1),

(1.4...+ o(1))K squarings mod c
produce olem{l.2,...K} _ {modc.

Similar time spent on trial division

finds far fewer primes for large H.

 to larger exponent
{1,2,3,4,5,..., 100}
6 squarings mod ¢
7 of the primes < 10°.

aring mod ¢
an 17 trial divisions?

{1,2,3,4,5,..., 1000}:
38 squarings mod ¢

121 of the primes < 107.

aring mod ¢
an 125 trial divisions?

nefit:
to store the primes.

Plausible conjecture: if K is

exp \/(% + o(l))log H loglog H
then p—1 divides Icm{1,2, ..., K}
for H/KHO(l) primes p < H.
Same if p — 1 is replaced by

order of 2 in F:;.

So uniform random prime p < H
divides 2|Cm{1,2 K} 1
with probability 1/K1(1),

(1.4...+ o(1))K squarings mod ¢
produce olem{1.2,...K} _ {1 modc.

Similar time spent on trial division

finds far fewer primes for large H.

Safe prir

This me
to factoil
have sm

To cons
avoid su

ANSI dc
using s
primes ¢
when ge

This doe

NFS nor
algorithr

exponent

rimes < 10°.

C
| divisions?

1gs mod ¢

. primes < 107

C
al divisions?

he primes.

Plausible conjecture: if K is

exp \/(% + o(l))log H log log H
then p—1 divides Icm{1,2, ..., K}
for H/KHO(l) primes p < H.
Same if p — 1 is replaced by

order of 2 in F;.

So uniform random prime p < H
divides 2|Cm{1,2 K} 1
with probability 1/K1+0(1).

(1.4...+ o(1))K squarings mod ¢
produce olem{l.2,...K} _ {modc.

Similar time spent on trial division

finds far fewer primes for large H.

Safe primes

This means numb
to factor if their f:
have smooth p; —

To construct hard
avoid such factors

ANSI does recomr
using “safe primes
primes of the formr
when generating F

This does not helg
NFS nor against t
algorithms.

Plausible conjecture: if K is

exp \/(% + o(l))log H loglog H
then p—1 divides Icm{1,2, ..., K}
for H/KHO(l) primes p < H.
Same if p — 1 is replaced by

order of 2 in F:;.

So uniform random prime p < H
divides 2|Cm{1,2 K} 1
with probability 1/K1(1),

(1.4...+ o(1))K squarings mod ¢
produce olem{1.2,...K} _ 1 modc.

Similar time spent on trial division

finds far fewer primes for large H.

Safe primes

This means numbers are eas
to factor if their factors p;
have smooth p; — 1.

To construct hard instances
avoid such factors — that's 1

ANSI does recommend
using “safe primes’, I.e.,
primes of the form 2p’ + 1
when generating RSA modu

This does not help against t
NFS nor against the followir
algorithms.

Plausible conjecture: if K is

exp \/(% + o(l))log H log log H
then p—1 divides Icm{1,2, ..., K}
for H/KHO(l) primes p < H.
Same if p — 1 is replaced by

order of 2 in F;.

So uniform random prime p < H
divides 2|Cm{1,2 K} 1
with probability 1/K11o(1).

(1.4...+ o(1))K squarings mod ¢
produce olem{l.2,...K} _ {modc.

Similar time spent on trial division

finds far fewer primes for large H.

Safe primes

This means numbers are easy
to factor if their factors p;
have smooth p; — 1.

To construct hard instances
avoid such factors — that's it?

ANSI does recommend

using “safe primes’, i.e.,
primes of the form 2p’ + 1
when generating RSA moduli.

This does not help against the
NFS nor against the following
algorithms.

> conjecture: if K is

-+ o(1))log H log log H

1 divides Icm{1,2, ..., K}
1+0(1) primes p < H.

p — 1 iIs replaced by

2 in F.

rm random prime p < H
2|cm{1,2 K} 1

bability 1/K1tol).

+ 0(1))K squarings mod ¢
2|Cm{1,2 K} 1 mod ¢

Ime spent on trial division

fewer primes for large H.

Safe primes

This means numbers are easy
to factor if their factors p;
have smooth p; — 1.

To construct hard instances
avoid such factors — that's it?

ANSI does recommend

using “safe primes’, I.e.,
primes of the form 2p’ + 1
when generating RSA moduli.

This does not help against the
NFS nor against the following
algorithms.

The p+

(1982 W

Define (
2327925

(3/5,4/

The Inte
iIs divisib
82 of th
223 of t
455 of t
720 of t
etc.

re: it K is
g H log log H

=p|aced by

n prime p < H

squarings mod ¢
K} —1modc

~on trial division

nes for large H.

Safe primes

This means numbers are easy
to factor if their factors p;
have smooth p; — 1.

To construct hard instances
avoid such factors — that's it?

ANSI does recommend

using “safe primes’, i.e.,
primes of the form 2p’ + 1
when generating RSA moduli.

This does not help against the
NFS nor against the following
algorithms.

The p+ 1 factoriz

(1982 Williams)

Define (X,Y) € Q
232792560th mult
(3/5,4/5) in the ¢

The integer Sy =

is divisible by

82 of the primes <

223 of t
455 of t
720 of t
etc.

ne primes

NE

NE

rimes

rimes

mod ¢
od c.
Ivision

ge H.

Safe primes

This means numbers are easy
to factor if their factors p;
have smooth p; — 1.

To construct hard instances
avoid such factors — that's it?

ANSI does recommend

using “safe primes’, I.e.,
primes of the form 2p’ + 1
when generating RSA moduli.

This does not help against the
NFS nor against the following
algorithms.

The p+ 1 factorization met

(1982 Williams)

Define (X,Y) e Q xQ ast
232792560th multiple of
(3/5,4/5) in the group Cloc

The integer Sy = 5232792500
is divisible by
82 of the primes < 103;

223 of

455 of

720 of

etc.

t
t
t

e primes < 10%;

NE

NE

srimes < 10°;

orimes < 100;

Safe primes

This means numbers are easy
to factor if their factors p;
have smooth p; — 1.

To construct hard instances
avoid such factors — that's it?

ANSI does recommend

using “safe primes’, i.e.,
primes of the form 2p’ + 1
when generating RSA moduli.

This does not help against the
NFS nor against the following
algorithms.

The p-+ 1 factorization method

(1982 Williams)

Define (X,Y) € Q x Q as the
232792560th multiple of
(3/5,4/5) in the group Clock(Q).

The integer Sy = 52327923560 x
is divisible by
82 of the primes < 103;

223 of t
455 of t
720 of t
etc.

he primes < 10%;

NE

NE

srimes < 10°:

orimes < 100;

NES

ans numbers are easy
- 1f their factors p;
ooth p; — 1.

‘ruct hard instances
ch factors — that's 1t?

es recommend

afe primes’, I.e.,

f the form 2p’ + 1
nerating RSA moduli.

s not help against the
~against the following

Nns.

The p+ 1 factorization method

(1982 Williams)

Define (X,Y) € Q x Q as the
232792560th multiple of

(3/5,4/5) in the group Clock(Q).

The integer Sy = 5232792560 x
is divisible by

82 of the primes < 103

223 of the primes < 10%:

455 of the primes < 10°;

720 of the primes < 10°:

etc.

Given ar
compute
and comn
hoping t

Many p
are foun

If —1 is
and p +
then 523

Proof: ¢
(4/5 4
so (p +
in the g
SO 2327

Crs are €asy

1ctors p;
1.

Instances
— that's 1t?

nend
"ole.,

20" +1
SA moduli.

) against the
he following

The p-+ 1 factorization method

(1982 Williams)

Define (X,Y) € Q x Q as the
232792560th multiple of

(3/5,4/5) in the group Clock(Q).

The integer Sy = 52327923560 x
is divisible by

82 of the primes < 103:

223 of the primes < 10%;

455 of the primes < 10°;

720 of the primes < 10°:

etc.

Given an integer ¢
compute 523279256
and compute gcd
hoping to factor ¢

Many p's not four
are found by Clocl

If —1 is not a squ:
and p+ 1 divides

Proof: p=3 (m
(4/5+4 3i/5)P =4
so (p+ 1)(3/5,4/
in the group Clocl
so 232792560(3/5

he
1g

The p-+ 1 factorization method

(1982 Williams)

Define (X,Y) € Q x Q as the
232792560th multiple of
(3/5,4/5) in the group Clock(Q).

The integer Sy = 5232792560 x

is divisible by

82 of the primes < 103
223 of the primes < 10%;
455 of the primes < 10°:
720 of the primes < 10°:
etc.

Given an integer c,
compute 523279200 X mod ¢
and compute gcd with c,
hoping to factor c.

Many p's not found by F
are found by Clock(F).

If —1 is not a square mod p
and p+ 1 divides 23279256
then 5232792500 X mod p = 0

Proof: p=3 (mod 4), so
(4/5+43i/5)P =4/5—3i/5
so (p+1)(3/5,4/5) =(0,1
in the group Clock(F))

so 232792560(3/5,4/5) = (

The p-+ 1 factorization method

(1982 Williams)

Define (X,Y) € Q x Q as the
232792560th multiple of
(3/5,4/5) in the group Clock(Q).

The integer Sy = 52327923560 x

is divisible by

82 of the primes < 103
223 of the primes < 10%;
455 of the primes < 10°;
720 of the primes < 10°:

etc.

Given an integer c,

compute 523279200 X mod ¢
and compute gcd with c,
hoping to factor c.

Many p’s not found by Fj
are found by Clock(F).

If —1 is not a square mod p
and p+ 1 divides 232792560
then 5232792500 X mod p = 0.

Proof: p=3 (mod 4), so
(4/543i/5)P =4/5—3i/5 and
so (p+1)(3/5,4/5) = (0, 1)

in the group Clock(F))

so 232792560(3/5,4/5) = (0, 1).

1 factorization method

/illiams)

X,Y) e Q x Q as the
60th multiple of
5) in the group Clock(Q).

ger Sy = 5232792560 ¥

le by
e primes < 103
e primes < 10%;

he primes < 10°:

he primes < 10°;

Given an integer c,

compute 523279200 X mod ¢
and compute gcd with c,
hoping to factor c.

Many p's not found by F
are found by Clock(F).

If —1 is not a square mod p
and p + 1 divides 232792560
then 5232792580 X mod p = 0.

Proof: p=3 (mod 4), so
(4/5+ 3i/5)P =4/5 —3i/5 and
so (p+1)(3/5.4/5) = (0,1)

in the group Clock(F))

so 232792560(3/5,4/5) = (0, 1).

The ellig

Stage 1.
compute
s = lem:

Stage 2:
B1 < q
compute

If order
(same ci
divides s
R; = (0

Comput

ation method

X Q as the
iple of
rroup Clock(Q).

5232792560)(

2 103;

< 10%;
< 10°;
< 10°;

Given an integer c,

compute 523279200 X mod ¢
and compute gcd with c,
hoping to factor c.

Many p’s not found by Fj
are found by Clock(F).

If —1 is not a square mod p
and p+ 1 divides 232792560
then 5232792500 X mod p = 0.

Proof: p=3 (mod 4), so
(4/543i/5)P =4/5—3i/5 and
so (p+1)(3/5,4/5) = (0,1)

in the group Clock(F))

so 232792560(3/5,4/5) = (0, 1).

The elliptic-curve

Stage 1: Point P
compute R = sP
s=1cm{2,3,...,

Stage 2: Small pri

compute R; = g;F

If order of P on E

(same curve, redu
divides sg;, then

R; = (0,1) (using

Compute gcd{c, |

Given an integer c,

compute 523279200 X mod ¢
and compute gcd with c,
hoping to factor c.

Many p’s not found by F
are found by Clock(F).

If —1 is not a square mod p
and p + 1 divides 232792560
then 5232792580 X mod p = 0.

Proof: p=3 (mod 4), so
(4/5+ 3i/5)P =4/5 —3i/5 and
so (p+1)(3/5,4/5) =(0,1)

in the group Clock(F))

so 232792560(3/5,4/5) = (0, 1).

The elliptic-curve method

Stage 1: Point P on E over
compute R = sP for

S = |cm{2,3 Bl}.

Stage 2: Small primes
B1<aq, ..., gk < b2

compute R; = g;R.

If order of P on E/Fp,
(same curve, reduce mod p;

divides sq;, then
R; = (0,1) (using Edwards)

Compute gecd{c, || v(R;)}.

Given an integer c,

compute 523279200 X mod ¢
and compute gcd with c,
hoping to factor c.

Many p’s not found by Fj
are found by Clock(F).

If —1 is not a square mod p
and p+ 1 divides 232792560
then 5232792500 X mod p = 0.

Proof: p=3 (mod 4), so
(4/5+3i/5)P =4/5—3i/5 and
so (p+1)(3/5,4/5) = (0,1)

in the group Clock(F))

so 232792560(3/5,4/5) = (0, 1).

The elliptic-curve method

Stage 1: Point P on E over Z/c,
compute R = sP for

S = |cm{2,3 Bl}.

Stage 2: Small primes
B <aq, ..., gk < b2

compute R; = g;R.

If order of P on E/F),

(same curve, reduce mod p;)

divides sq;, then
R; = (0,1) (using Edwards).

Compute ged{c, || v(R;)}.

1 Integer c,

3 523279256OX mod ¢
pute gcd with c,

o factor c.

s not found by F
d by Clock(Fp).

not a square mod p
1 divides 232792560
2792560 ¥ mod p=0.

)=3 (mod 4), so
i /5)P = 4/5 — 3i /5 and

1)(3/5,4/5) = (0, 1)
oup Clock(Fp)

)2560(3/5, 4/5) = (0, 1).

The elliptic-curve method

Stage 1. Point P on E over Z/c,

compute R = sP for
S = |cm{2, 3,..., Bl}.

Stage 2: Small primes
B1<aq, ..., gk < b2

compute R; = g R.

If order of P on E/Fp,

(same curve, reduce mod p;)

divides sq;, then
R; = (0,1) (using Edwards).

Compute gecd{c, || v(R;)}.

Good ne
All prim
reasonat

Order of
cp+1
If a curv

Plausible
expy/ (2
then, for
a uniforr
has char
Find p u
< Bf—ko(
Time su

0X mod c
with ¢,

d by F7
<(Fp).
are mod p

232792560
nod p = 0.

od 4), so

/5 —3i/5 and
5)=(0,1)
(Fp)

,4/5) = (0,1).

The elliptic-curve method

Stage 1. Point P on E over Z/c,

compute R = sP for
S = |cm{2, 3,..., Bl}.

Stage 2: Small primes
B <aq, ..., gk < b2

compute R; = g;R.

If order of P on E/F),

(same curve, reduce mod p;)
divides sqg;, then

R; = (0,1) (using Edwards).

Compute ged{c, || y(R;)}-

Good news (for th
All primes < H fo

reasonable numbe

Order of elliptic-c

clp+1-2,pp
If a curve fails, try

Plausible conjectu

exp \/(% + o(1))l¢

then, for each prir

a uniform random
has chance > 1/5

Find p using, < B

< BerO(l) squarin

Time subexponent

and

0,1).

The elliptic-curve method

Stage 1. Point P on E over Z/c,

compute R = sP for
S = |cm{2, 3,..., Bl}.

Stage 2: Small primes

compute R; = g R.

If order of P on E/Fp,

(same curve, reduce mod p;)

divides sq;, then
R; = (0,1) (using Edwards).

Compute ged{c, || y(R;)}.

Good news (for the attacker
All primes < H found after
reasonable number of curve:s

Order of elliptic-curve grougp

clp+1-2/pp+1+2y
If a curve fails, try another.

Plausible conjecture: if By |

exp \/(% + 0(1))log H log lo
then, for each prime p < H,

a uniform random curve mo
1+0(1)

has chance > 1/B; to
Find p using, < B%+O(1) cur
< BerO(l) squarings.

Time subexponential in H.

The elliptic-curve method

Stage 1. Point P on E over Z/c,

compute R = sP for
S = |cm{2, 3,..., Bl}.

Stage 2: Small primes

compute R; = g;R.

If order of P on E/F),

(same curve, reduce mod p;)
divides sqg;j, then

R; = (0,1) (using Edwards).

Compute ged{c, || y(R;)}.

Good news (for the attacker):
All primes < H found after
reasonable number of curves.

Order of elliptic-curve group

clp+1-2/p.p+1+4+2,/p|.
If a curve fails, try another.

Plausible conjecture: if By is

exp \/(% + o(l))log H log log H
then, for each prime p < H,

a uniform random curve mod p
1+0(1)

has chance > 1/B; to find p.
Find p using, < B%Jro(l) CUrves;
< BerO(l) squarings.

Time subexponential in H.

ytic-curve method

Point P on E over Z/c,

R = sP for
{2,3,..., Bi1}.

Small primes

' Ri = giR.

of P on E/F,

urve, reduce mod p;)
q;, then

1) (using Edwards).

e ged{c, [y(Ri)}.

Good news (for the attacker):
All primes < H found after
reasonable number of curves.

Order of elliptic-curve group

clp+1-2/p.p+1+4+2,/p|
If a curve fails, try another.

Plausible conjecture: if By is

exp \/(% + o(l))log H loglog H
then, for each prime p < H,

a uniform random curve mod p

has chance > 1/B%+O(1)

Find p using, < B%+O(1) CUrvVes;

< BerO(l) squarings.

Time subexponential in H.

Bad RS/

to find p.

2004 Ba
checked
found 2

2012.02.
Augier—I
"Ron we
(Crypto
SSL/PG

distinct

those,
thanks t

method

on E over Z/c,

for

/Fp,
ce mod p;)

Edwards).
[y(Ri)}.

Good news (for the attacker):
All primes < H found after
reasonable number of curves.

Order of elliptic-curve group

clp+1-2/p.p+1+4+2,/p|.
If a curve fails, try another.

Plausible conjecture: if By is

exp \/(% + o(l))log H log log H
then, for each prime p < H,

a uniform random curve mod p
1+0(1)

has chance > 1/B; to find p.
Find p using, < B%Jro(l) CUrves;
< BerO(l) squarings.

Time subexponential in H.

Bad RSA randomt

2004 Bauer—Laurie

checked 18000 PC
found 2 keys shari

2012.02.14 Lenstr
Augier—Bos—Klein]
"Ron was wrong,
(Crypto 2012): ch
SSL/PGP RSA ke
distinct keys; factc
those,

thanks to shared

Good news (for the attacker):
All primes < H found after
reasonable number of curves.

Order of elliptic-curve group

clp+1-2/p.p+1+2,/p|
If a curve fails, try another.

Plausible conjecture: if By is

exp \/(% + o(l))log H loglog H
then, for each prime p < H,

a uniform random curve mod p
1+0(1)

has chance > 1/B; to find p.

Find p using, < B%+O(1) CUrvVes;

< BerO(l) squarings.

Time subexponential in H.

Bad RSA randomness

2004 Bauer—Laurie:

checked 18000 PGP RSA ke
found 2 keys sharing a facta

2012.02.14 Lenstra—Hughes-
Augier—Bos—Kleinjung—\Wacl

Ron was wrong, Whit Is rig

(Crypto 2012): checked 7 -
SSL/PGP RSA keys; found

C
t

istinct keys; factored 1272(

N0OSE,

thanks to shared prime factc

Good news (for the attacker):
All primes < H found after
reasonable number of curves.

Order of elliptic-curve group

clp+1-2/p.p+1+4+2,/p|.
If a curve fails, try another.

Plausible conjecture: if By is

exp \/(% + o(l))log H log log H
then, for each prime p < H,

a uniform random curve mod p
1+0(1)

has chance > 1/B; to find p.
Find p using, < B%Jro(l) CUrVes;
< BerO(l) squarings.

Time subexponential in H.

Bad RSA randomness

2004 Bauer—Laurie:

checked 18000 PGP RSA keys;
found 2 keys sharing a factor.

2012.02.14 Lenstra—Hughes—
Augier—Bos—Kleinjung—\Wachter
"Ron was wrong, Whit is right”
(Crypto 2012): checked 7 - 10°
SSL/PGP RSA keys; found 6 - 10°
distinct keys; factored 12720 of
those,

thanks to shared prime factors.

ws (for the attacker):
es < H found after
le number of curves.

elliptic-curve group

—-2./p,p+1+2,/p|.

e fails, try another.
> conjecture: if By is

-+ 0(1))log H log log H
~each prime p < H,

n random curve mod p

1ce > 1/B%+O(1)

sing, < B%+O(1) CUrvVes;
1)

bexponential in H.

squarings.

Bad RSA randomness

to find p.

2004 Bauer—Laurie:

checked 18000 PGP RSA keys;
found 2 keys sharing a factor.

2012.02.14 Lenstra—Hughes—
Augier—Bos—Kleinjung—\Wachter
"Ron was wrong, Whit Is right”
(Crypto 2012): checked 7 - 10°
SSL/PGP RSA keys; found 6 - 10°
distinct keys; factored 12720 of
those,

thanks to shared prime factors.

2012.02
Durume
announc
2012):

checked
keys; fac
2422 SS

“Almost
were ger
secure e
such as
to secur
as your

e attacker):
und after
r of curves.

Irve group

+142.,/p].
another.

re: it By is
g H log log H
ne p < H,

curve mod p
1+0(1)

1 to find p.
1+o0(1) |

. curves:
gs.

1al in H.

Bad RSA randomness

2004 Bauer—Laurie:

checked 18000 PGP RSA keys;
found 2 keys sharing a factor.

2012.02.14 Lenstra—Hughes—
Augier—Bos—Kleinjung—\Wachter
"Ron was wrong, Whit is right”
(Crypto 2012): checked 7 - 10°
SSL/PGP RSA keys; found 6 - 10°
distinct keys; factored 12720 of
those,

thanks to shared prime factors.

2012.02.17 Hening

Durumeric—Wustre
announcement (U
2012):

checked >107 SSI
keys; factored 248
2422 SSH host ke

“Almost all of the

were generated by
secure embedded |
such as routers an
to secure popular
as your bank or er

Bad RSA randomness

2004 Bauer—Laurie:

checked 18000 PGP RSA keys;
found 2 keys sharing a factor.

2012.02.14 Lenstra—Hughes—
Augier—Bos—Kleinjung—\Wachter
"Ron was wrong, Whit Is right”
(Crypto 2012): checked 7 - 10°
SSL/PGP RSA keys; found 6 - 10°
distinct keys; factored 12720 of
those,

thanks to shared prime factors.

2012.02.17 Heninger—
Durumeric—Wustrow—Halder
announcement (USENIX Se
2012):

checked >107 SSL/SSH RS
keys; factored 24816 SSL ke
2422 SSH host keys.

“Almost all of the vulnerabl

were generated by and are u
secure embedded hardware ¢
such as routers and firewalls
to secure popular web sites
as your bank or email provic

Bad RSA randomness

2004 Bauer—Laurie:

checked 18000 PGP RSA keys;
found 2 keys sharing a factor.

2012.02.14 Lenstra—Hughes—
Augier—Bos—Kleinjung—\Wachter
"Ron was wrong, Whit is right”
(Crypto 2012): checked 7 - 10°
SSL/PGP RSA keys; found 6 - 10°
distinct keys; factored 12720 of
those,

thanks to shared prime factors.

2012.02.17 Heninger—

Durumeric—-\Wustrow—Halderman
announcement (USENIX Security
2012):

checked >107 SSL/SSH RSA
keys; factored 24816 SSL keys,
2422 SSH host keys.

“Almost all of the vulnerable keys

were generated by and are used to
secure embedded hardware devices
such as routers and firewalls, not
to secure popular web sites such
as your bank or email provider.”

A randomness

uer—Laurie:
18000 PGP RSA keys;
keys sharing a factor.

14 Lenstra—Hughes—
3os—Kleinjung—\Wachter

s wrong, Whit is right”
2012): checked 7 - 10°

P RSA keys; found 6 - 10°
keys; factored 12720 of

o shared prime factors.

2012.02.17 Heninger—

Durumeric—Wustrow—Halderman
announcement (USENIX Security
2012):

checked >107 SSL/SSH RSA
keys; factored 24816 SSL keys,
2422 SSH host keys.

“Almost all of the vulnerable keys

were generated by and are used to
secure embedded hardware devices
such as routers and firewalls, not
to secure popular web sites such
as your bank or email provider.”

These c

pP1q1L, P2

PAq2, P5
and thus

Obvious
Faster:

Nice foll
Do this
Online d

These w
certified
should h
But: st

1E€SS

3!
- u

P RSA keys;
ng a factor.

a—Hughes—
ung—Wachter
Whit is right”
ecked 7 - 10°
ys: found 6 - 10°
ored 12720 of

rime factors.

2012.02.17 Heninger—
Durumeric—Wustrow—Halderman

announcement (USENIX Security

2012):

checked >107 SSL/SSH RSA
keys; factored 24816 SSL keys,
2422 SSH host keys.

“Almost all of t
were generated

ne vulnerable keys

oy and are used to

secure embedded hardware devices

such as routers and firewalls, not

to secure popular web sites such

as your bank or

emalil provider.”

These computatio

pP141, P2G2, P34G3,

P4@2, P545, P66:
and thus also py a

Obvious:GCD corr
Faster: scaled remr

Nice follow-up pro
Do this with Taiw
Online data base «

These were generc
certified smart car
should have good
But: student brok

VS;

1ter
ht”
100
6 - 10°
) of

JFS.

2012.02.17 Heninger—

Durumeric—Wustrow—Halderman
announcement (USENIX Security
2012):

checked >107 SSL/SSH RSA
keys; factored 24816 SSL keys,
2422 SSH host keys.

“Almost all of the vulnerable keys

were generated by and are used to
secure embedded hardware devices
such as routers and firewalls, not
to secure popular web sites such
as your bank or email provider.”

These computations find

pP141. P2G2, P34G3,

P4@2, P545, P66
and thus also py and p4.

Obvious:GCD computation.
Faster: scaled remainder tre

Nice follow-up project:
Do this with Taiwan citizen

Online data base of RSA ke

These were generated on
certified smart cards:

should have good randomne
But: student broke 103 key:s

2012.02.17 Heninger—
Durumeric—Wustrow—Halderman

announcement (USENIX Security

2012):

checked >107 SSL/SSH RSA
keys; factored 24816 SSL keys,
2422 SSH host keys.

“Almost all of t
were generated

ne vulnerable keys

oy and are used to

secure embedded hardware devices

such as routers and firewalls, not

to secure popular web sites such

as your bank or

emalil provider.”

These computations find ¢ in

pP141, P24G2, P34G3,

P4q2, P55, P66
and thus also py> and py.

Obvious:GCD computation.
Faster: scaled remainder trees.

Nice follow-up project:
Do this with Taiwan citizen cards.

Online data base of RSA keys.

These were generated on
certified smart cards;

should have good randomness.
But: student broke 103 keys.

17 Heninger—
ric—\\Wustrow—Halderman

ement (USENIX Security

>107 SSL/SSH RSA
tored 24816 SSL keys,
H host keys.

all of the vulnerable keys

1erated by and are used to
mbedded hardware devices
routers and firewalls, not
e popular web sites such
pank or email provider.”

These computations find ¢ in

pP141. P2G2, P34G3,

P4@2, P545, P66
and thus also py and p4.

Obvious:GCD computation.
Faster: scaled remainder trees.

Nice follow-up project:
Do this with Taiwan citizen cards.

Online data base of RSA keys.

These were generated on
certified smart cards;

should have good randomness.
But: student broke 103 keys.

Closer Ic

rer—
ow—Halderman
SENIX Security

_/SSH RSA
16 SSL keys,
VS.

vulnerable keys
and are used to
hardware devices
d firewalls, not
web sites such
nail provider.”

These computations find ¢ in

pP141, P2G2, P34G3,

P4q2, P55, P66
and thus also py and p4.

Obvious:GCD computation.
Faster: scaled remainder trees.

Nice follow-up project:

Do this with Taiwan citizen cards.

Online data base of RSA keys.

These were generated on
certified smart cards;

should have good randomness.
But: student broke 103 keys.

Closer look at the

man

curity

VS,

e keys
sed to
levices
. hot
such

er.

These computations find ¢ in

pP141. P2G2, P34G3,

P4@2, P545, P66
and thus also py and p4.

Obvious:GCD computation.
Faster: scaled remainder trees.

Nice follow-up project:

Do this with Taiwan citizen cards.

Online data base of RSA keys.

These were generated on
certified smart cards;

should have good randomness.
But: student broke 103 keys.

Closer look at the 119 prime

<8
A SAN Y ll,‘.’l
O e
<;..Ai: &)\‘IW/,,';/ D9 }\v \u

These computations find ¢ in

pP141, P2G2, P34G3,

P4q2, P55, P66
and thus also py> and py.

Obvious:GCD computation.
Faster: scaled remainder trees.

Nice follow-up project:

Do this with Taiwan citizen cards.

Online data base of RSA keys.

These were generated on
certified smart cards;

should have good randomness.
But: student broke 103 keys.

Closer look at the 119 primes

IC)
=
(=) () Gi () e
T & -
oD R @

omputations find ¢ in

R, P343,

J5, P6 a6
5 also po and pg.

:GCD computation.
scaled remainder trees.

OW-up project:

with Taiwan citizen cards.

ata base of RSA keys.

ere generated on
smart cards;
ave good randomness.

ident broke 103 keys.

Closer look at the 119 primes

< 8b
(S T =a,
Nl
O e

T
e é{gy&
G g A 2

NN
B>

Prime p
c0000000
00000000
00000000
00000000

ns find ¢ In

nd P4.
putation.

1ainder trees.

ject:

an citizen cards.

f RSA keys.

ted on

ds;
randomness.
e 103 keys.

Closer look at the 119 primes

p108

Prime p110 appea
c00000000000000000
000000000000000000
000000000000000000
000000000000000000

N

cards.

/S.

Closer look at the 119 primes

Prime pl110 appears 46 time
c000000000000000000000000000
0000000000000000000000000000
0000000000000000000000000000
0000000000000000000000000000

Closer look at the 119 primes

p84

Prime p110 appears 46 times

c0000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
000000000000000000000000000002£9

Closer look at the 119 primes

=
S R
- & by @
(=
© B @
p90
A"‘@%’?\ ORI
SoN =7 A
(e
o @ G D
@v' \ o (o)
EoAYIC? =
O OO,
© by @
o @ @ @ 1
© & @
DR ©
© ©

Prime p110 appears 46 times
c0000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
000000000000000000000000000002£9
which is the next prime after
2511 4+ 2510_

Closer look at the 119 primes

o o
& @ * S
(o> G
o (o) (o>
S G @
P90
I PO (5) D
O A : % .
O i OO
Ol A
G @
P O=2 D
Gy GO e
2 S
o Lagn o & &K
© (0>
SR G ORC
by &

Prime p110 appears 46 times

c0000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
000000000000000000000000000002£9

which is the next prime after

Next up
c9242492249292499249492449242492
24929249924949244924249224929249
92494924492424922492924992494924
492424922492924992494924492424e5
Several other factors exhibit such
a pattern.

ok at the 119 primes

Prime p110 appears 46 times

c0000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
000000000000000000000000000002£9

which is the next prime after

Next up

c9242492249292499249492449242492
24929249924949244924249224929249
92494924492424922492924992494924
492424922492924992494924492424e5

Several other factors exhibit such

a pattern.

Prime g

Choose .
3,5, or
more th:
to exact

119 primes

Prime p110 appears 46 times

c0000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
000000000000000000000000000002£9

which is the next prime after

Next up

c9242492249292499249492449242492
24929249924949244924249224929249
92494924492424922492924992494924
492424922492924992494924492424e5

Several other factors exhibit such

a pattern.

Prime generation

Choose a bit patte

3, b, or 7 bits, rep
more than 512 bit
to exactly 512 bit:

Prime p110 appears 46 times

c0000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
000000000000000000000000000002£9

which is the next prime after

Next up

c9242492249292499249492449242492
24929249924949244924249224929249
92494924492424922492924992494924
492424922492924992494924492424e5

Several other factors exhibit such

a pattern.

Prime generation

Choose a bit pattern of leng

3, 5, or 7 bits, repeat It to ¢
more than 512 bits, and trul
to exactly 512 bits.

Prime p110 appears 46 times

c0000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
000000000000000000000000000002£9

which is the next prime after

Next up

c9242492249292499249492449242492
24929249924949244924249224929249
92494924492424922492924992494924
492424922492924992494924492424e5

Several other factors exhibit such

a pattern.

Prime generation

Choose a bit pattern of length 1,

3, 5, or 7 bits, repeat It to cover
more than 512 bits, and truncate
to exactly 512 bits.

Prime p110 appears 46 times

c0000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
000000000000000000000000000002£9

which is the next prime after

Next up

c9242492249292499249492449242492
24929249924949244924249224929249
92494924492424922492924992494924
492424922492924992494924492424e5

Several other factors exhibit such

a pattern.

Prime generation

Choose a bit pattern of length 1,

3, 5, or 7 bits, repeat It to cover
more than 512 bits, and truncate
to exactly 512 bits.

For every 32-bit word, swap the
lower and upper 16 bits.

Prime p110 appears 46 times

c0000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
000000000000000000000000000002£9

which is the next prime after

Next up

c9242492249292499249492449242492
24929249924949244924249224929249
92494924492424922492924992494924
492424922492924992494924492424e5

Several other factors exhibit such

a pattern.

Prime generation

Choose a bit pattern of length 1,

3, 5, or 7 bits, repeat It to cover
more than 512 bits, and truncate
to exactly 512 bits.

For every 32-bit word, swap the
lower and upper 16 bits.

Fix the most significant two bits

to 11.

Prime pl110 appears 46 times Prime generation

c0000000000000000000000000000000 .
Choose a bit pattern of length 1,

00000000000000000000000000000000 . .
3, 5, or 7 bits, repeat It to cover

00000000000000000000000000000000 .
more than 512 bits, and truncate
to exactly 512 bits.

For every 32-bit word, swap the

000000000000000000000000000002£9
which is the next prime after

lower and upper 16 bits.
Next up Fix the most significant two bits
c9242492249292499249492449242492 to 11.
24929249924949244924249224929249 Find the next prime greater than
92494924492424922492924992494924 or equal to this number.

49242492249292499249492449242465
Several other factors exhibit such
a pattern.

110 appears 46 times

000000000000000000000000
000000000000000000000000
000000000000000000000000
0000000000000000000002£9

the next prime after
510_

249292499249492449242492
024949244924249224929249
492424922492924992494924
2492924992494924492424e5
other factors exhibit such

.

Prime generation

Choose a bit pattern of length 1,

3, 5, or 7 bits, repeat It to cover
more than 512 bits, and truncate
to exactly 512 bits.

For every 32-bit word, swap the

lower and upper 16 bits.

Fix the most significant two bits
to 11.

Find the next prime greater than
or equal to this number.

Factorin

Choose .
3,5, or
more th;
to exact
For ever
lower an
Fix the |
to 11.

Find the

or equal

rs 46 times
00000000000000
00000000000000
00000000000000
000000000002£9
orime after

49492449242492
24249224929249
92924992494924
49492449242465
ors exhibit such

Prime generation

Choose a
3,b,or7

oIt pattern of length 1,

DIts, repeat It to cover

more than 512 bits, and truncate
to exactly 512 bits.
For every 32-bit word, swap the

lower and upper 16 bits.

Fix the most significant two bits

to 11.

Find the next prime greater than

or equal to this number.

Factoring by trial

Choose a bit patte

3, 5, or 7 bits, rep
more than 512 bit
to exactly 512 bit:
For every 32-bit w
lower and upper 1
Fix the most signi
to 11.

Find the next prin
or equal to this nt

0000
0000
0000
029

2492
9249
4924
24eb
such

Prime generation

Choose a bit pattern of length 1,

3, 5, or 7 bits, repeat It to cover
more than 512 bits, and truncate
to exactly 512 bits.

For every 32-bit word, swap the

lower and upper 16 bits.

Fix the most significant two bits
to 11.

Find the next prime greater than
or equal to this number.

Factoring by trial division

Choose a bit pattern of leng

3, 5, or 7 bits, repeat It to ¢
more than 512 bits, and trul
to exactly 512 bits.

For every 32-bit word, swap
lower and upper 16 bits.

Fix the most significant two
to 11.

Find the next prime greater
or equal to this number.

Prime generation

Choose a bit pattern of length 1,

3, 5, or 7 bits, repeat It to cover
more than 512 bits, and truncate
to exactly 512 bits.

For every 32-bit word, swap the

lower and upper 16 bits.

Fix the most significant two bits
to 11.

Find the next prime greater than
or equal to this number.

Factoring by trial division

Choose a bit pattern of length 1,

3, 5, or 7 bits, repeat It to cover
more than 512 bits, and truncate
to exactly 512 bits.

For every 32-bit word, swap the

lower and upper 16 bits.

Fix the most significant two bits
to 11.

Find the next prime greater than
or equal to this number.

Prime generation

Choose a bit pattern of length 1,

3, 5, or 7 bits, repeat It to cover
more than 512 bits, and truncate
to exactly 512 bits.

For every 32-bit word, swap the

lower and upper 16 bits.

Fix the most significant two bits
to 11.

Find the next prime greater than
or equal to this number.

Factoring by trial division

Choose a bit pattern of length 1,

3, 5, or 7 bits, repeat It to cover
more than 512 bits, and truncate
to exactly 512 bits.

For every 32-bit word, swap the

lower and upper 16 bits.

Fix the most significant two bits
to 11.

Find the next prime greater than
or equal to this number.

Do this for any pattern:
0,1,001,010,011,100,101,110

00001,00010,00011,00100,00101,. ..

aneration

a bit pattern of length 1,

{ bits, repeat It to cover
an 512 bits, and truncate
ly 512 bits.

y 32-bit word, swap the

d upper 16 bits.

most significant two bits

- next prime greater than
to this number.

Factoring by trial division

Choose a bit pattern of length 1,

3, 5, or 7 bits, repeat It to cover
more than 512 bits, and truncate
to exactly 512 bits.

For every 32-bit word, swap the

lower and upper 16 bits.

Fix the most significant two bits
to 11.

Find the next prime greater than
or equal to this number.

Do this for any pattern:
0,1,001,010,011,100,101,110

00001,00010,00011,00100,00101,. ..

Comput
moduli,

rn of length 1,
eat It to cover
s, and truncate
ord, swap the

O bits.
ficant two bits

1e greater than
imber.

Factoring by trial division

Choose a bit pattern of length 1,

3, 5, or 7 bits, repeat It to cover
more than 512 bits, and truncate
to exactly 512 bits.

For every 32-bit word, swap the

lower and upper 16 bits.

Fix the most significant two bits
to 11.

Find the next prime greater than
or equal to this number.

Do this for any pattern:
0,1,001,010,011,100,101,110

00001,00010,00011,00100,00101,. ..

Computing GCDs
moduli, of which]

th 1,
over
ncate
the

bits

than

Factoring by trial division

Choose a bit pattern of length 1,

3, 5, or 7 bits, repeat It to cover
more than 512 bits, and truncate
to exactly 512 bits.

For every 32-bit word, swap the

lower and upper 16 bits.

Fix the most significant two bits
to 11.

Find the next prime greater than
or equal to this number.

Do this for any pattern:
0,1,001,010,011,100,101,110

00001,00010,00011,00100,00101,. ..

Computing GCDs factored 1
moduli, of which 18 were ne

Factoring by trial division

Choose a bit pattern of length 1,

3, 5, or 7 bits, repeat It to cover
more than 512 bits, and truncate
to exactly 512 bits.

For every 32-bit word, swap the

lower and upper 16 bits.

Fix the most significant two bits
to 11.

Find the next prime greater than
or equal to this number.

Do this for any pattern:
0,1,001,010,011,100,101,110

00001,00010,00011,00100,00101,. ..

Computing GCDs factored 105
moduli, of which 18 were new.

Factoring by trial division

Choose a bit pattern of length 1,

3, 5, or 7 bits, repeat It to cover
more than 512 bits, and truncate
to exactly 512 bits.

For every 32-bit word, swap the

lower and upper 16 bits.

Fix the most significant two bits
to 11.

Find the next prime greater than
or equal to this number.

Do this for any pattern:
0,1,001,010,011,100,101,110

00001,00010,00011,00100,00101,. ..

Computing GCDs factored 105
moduli, of which 18 were new.

Breaking RSA-1024

by “trial division” .
Factored 4 more keys using
patterns of length 9.

Factoring by trial division

Choose a bit pattern of length 1,

3, 5, or 7 bits, repeat It to cover
more than 512 bits, and truncate
to exactly 512 bits.

For every 32-bit word, swap the

lower and upper 16 bits.

Fix the most significant two bits
to 11.

Find the next prime greater than
or equal to this number.

Do this for any pattern:
0,1,001,010,011,100,101,110

00001,00010,00011,00100,00101,. ..

Computing GCDs factored 105
moduli, of which 18 were new.

Breaking RSA-1024

by “trial division” .
Factored 4 more keys using
patterns of length 9.

More factors by studying other
keys and using lattices.
“Factoring RSA keys from
certified smart cards:

Coppersmith in the wild”
(with D.J. Bernstein, Y.-A.

Chang, C.-M. Cheng, L.-P. Chou,
N. Heninger, N. van Someren)

nttp://smartfacts.cr.yp.to/

Computing GCDs factored 105
moduli, of which 18 were new.

g by trial division Bad RS/

a bit pattern of length 1, M. Nem
{ bits, repeat it to cover Breaking RSA-1024 D. Kline
an 512 bits, and truncate by “trial division™. All RSA
ly 512 bits. Factored 4 more keys using Infineon
v 32-bit word, swap the patterns of length 9. n mod 2
d upper 16 bits. More factors by studying other n mod1
most significant two bits keys and using lattices. n mod 3

“Factoring RSA keys from n mod9
' next prime greater than certified smart cards: n mod 3.

to this number.

for any pattern:
010,011,100,101,110

)010,00011,00100,00101,. ..

Coppersmith in the wild"
(with D.J. Bernstein, Y.-A.

Chang, C.-M. Cheng, L.-P. Chou,

N. Heninger, N. van Someren)

nttp://smartfacts.cr.yp.to/

division

rn of length 1,
eat It to cover
s, and truncate
ord, swap the

O bits.
ficant two bits

1e greater than
imber.

ttern:
)0,101,110

1,00100,00101,. ..

Computing GCDs factored 105
moduli, of which 18 were new.

Breaking RSA-1024

by “trial division” .
Factored 4 more keys using
patterns of length 9.

More factors by studying other
keys and using lattices.
“Factoring RSA keys from
certified smart cards:

Coppersmith in the wild”
(with D.J. Bernstein, Y.-A.

Chang, C.-M. Cheng, L.-P. Chou,

N. Heninger, N. van Someren)

nttp://smartfacts.cr.yp.to/

Bad RSA randomt

M. Nemec, M. Sy:
D. Klinec, V. Mat
All RSA keys gene
Infineon smart car
nmod2 =1

nmodll € {1,10
n mod 37 € {1, 10
n mod 97 € {1, 35
n mod 331 € {1, 3

th 1,
over
ncate
the

bits

than

0101,. ..

Computing GCDs factored 105
moduli, of which 18 were new.

Breaking RSA-1024

by “trial division” .
Factored 4 more keys using
patterns of length 9.

More factors by studying other
keys and using lattices.
“Factoring RSA keys from
certified smart cards:

Coppersmith in the wild"
(with D.J. Bernstein, Y.-A.

Chang, C.-M. Cheng, L.-P. Chou,

N. Heninger, N. van Someren)

nttp://smartfacts.cr.yp.to/

Bad RSA randomness 2017

M. Nemec, M. Sys, P. Sven
D. Klinec, V. Matyas

All RSA keys generated by s
Infineon smart cards satisfy
nmod2 =1

nmodll € {1, 10}

n mod 37 € {1, 10,37}

n mod 97 € {1, 35, 36, 61, 62
n mod 331 € {1,330}

Computing GCDs factored 105
moduli, of which 18 were new.

Breaking RSA-1024

by “trial division” .
Factored 4 more keys using
patterns of length 9.

More factors by studying other
keys and using lattices.
“Factoring RSA keys from
certified smart cards:

Coppersmith in the wild”
(with D.J. Bernstein, Y.-A.

Chang, C.-M. Cheng, L.-P. Chou,

N. Heninger, N. van Someren)

nttp://smartfacts.cr.yp.to/

Bad RSA randomness 2017 — ROCA

M. Nemec, M. Sys, P. Svenda,
D. Klinec, V. Matyas

All RSA keys generated by some
Infineon smart cards satisfy
nmod?2 =1

nmodll € {1,10}

n mod 37 € {1, 10, 37}

n mod 97 € {1, 35,36, 61,62,96}
n mod 331 € {1,330}

Computing GCDs factored 105
moduli, of which 18 were new.

Breaking RSA-1024

by “trial division” .
Factored 4 more keys using
patterns of length 9.

More factors by studying other
keys and using lattices.
“Factoring RSA keys from
certified smart cards:

Coppersmith in the wild”
(with D.J. Bernstein, Y.-A.

Chang, C.-M. Cheng, L.-P. Chou,

N. Heninger, N. van Someren)

nttp://smartfacts.cr.yp.to/

Bad RSA randomness 2017 — ROCA

M. Nemec, M. Sys, P. Svenda,
D. Klinec, V. Matyas

All RSA keys generated by some
Infineon smart cards satisfy
nmod?2 =1

nmodll € {1,10}

n mod 37 € {1, 10, 37}

n mod 97 € {1, 35,36, 61,62,96}
n mod 331 € {1,330}

Thesegive1-2-3-6-2=72
possibilities of n mod L, where

[=2-11-37-97 331, instead of
1-10-36-96-330 = 11404300

ng GCDs factored 105
of which 18 were new.

r RSA-1024
division” .

| 4 more keys using
of length 9.

“tors by studying other
| using lattices.

ng RSA keys from
smart cards:

mith in the wild”

J. Bernstein, Y.-A.

C.-M. Cheng, L.-P. Chou,

1ger, N. van Someren)
martfacts.cr.yp.to/

Bad RSA randomness 2017 — ROCA

M. Nemec, M. Sys, P. Svenda,
D. Klinec, V. Matyas

All RSA keys generated by some
Infineon smart cards satisfy
nmod2 =1

nmodll € {1, 10}

n mod 37 € {1, 10,37}

n mod 97 € {1, 35,36,61,62,96}
n mod 331 € {1,330}

Thesegive1l-2-3-6-2=72
possibilities of n mod L, where

[=2-11-37-97-331, instead of
1-10-36-96-330 = 11404300

Worse,

n mod 2
c {1,¢€
3942297

factored 105
|8 were new.

4

eys using
9.

udying other
tices.

ys from

ds:

e wild"

in, Y.-A.

ng, L.-P. Chou,
an Someren)

cr.yp.to/

Bad RSA randomness 2017 — ROCA

M. Nemec, M. Sys, P. Svenda,
D. Klinec, V. Matyas

All RSA keys generated by some
Infineon smart cards satisfy
nmod?2 =1

nmodll € {1,10}

n mod 37 € {1, 10,37}

n mod 97 € {1, 35, 36,61, 62,96}
n mod 331 € {1,330}

Thesegive1-2-3-6-2=72
possibilities of n mod L, where

[=2-11-37-97 331, instead of
1-10-36-96-330 = 11404300

Worse,

nmod?2-11-37 -
c {1,65537,487
8942297, 1436738

05

er

_hou,

Bad RSA randomness 2017 — ROCA

M. Nemec, M. Sys, P. Svenda,
D. Klinec, V. Matyas

All RSA keys generated by some
Infineon smart cards satisfy
nmod2 =1

nmodll € {1, 10}

n mod 37 € {1, 10, 37}

n mod 97 € {1, 35,36,61,62,96}
n mod 331 € {1,330}

Thesegive1l-2-3:-6-2=72
possibilities of n mod L, where

[=2-11-37-97-331, instead of
1-10-36-96-330 = 11404300

Worse,
nmod?2-11-37-97-331

c {1,65537,4878941,
8942297, 14367385, 2401603

Bad RSA randomness 2017 — ROCA

M. Nemec, M. Sys, P. Svenda,
D. Klinec, V. Matyas

All RSA keys generated by some
Infineon smart cards satisfy
nmod?2 =1

nmodll € {1,10}

n mod 37 € {1, 10,37}

n mod 97 € {1, 35,36, 61,62,96}
n mod 331 € {1,330}

Thesegive1-2-3:-6-2=72
possibilities of n mod L, where

[=2-11-37-97 331, instead of
1-10-36-96-330 = 11404300

Worse,
nmod?2-11-37-97 - 331

c {1,65537,4878941,
8942297, 14367385, 24016035 }

Bad RSA randomness 2017 — ROCA

M. Nemec, M. Sys, P. Svenda,
D. Klinec, V. Matyas

All RSA keys generated by some
Infineon smart cards satisfy
nmod?2 =1

nmodll € {1,10}

n mod 37 € {1, 10,37}

n mod 97 € {1, 35,36, 61,62,96}
n mod 331 € {1,330}

Thesegive1-2-3:-6-2=72
possibilities of n mod L, where

[=2-11-37-97 331, instead of
1-10-36-96-330 = 11404300

Worse,
nmod?2-11-37-97 - 331

c {1,65537,4878941,
8942297, 14367385, 24016035 }

n € {65537 mod L|i € Z}
and 65537 has order 6 mod L.

Bad RSA randomness 2017 — ROCA = Worse,
nmod?2-11-37-97-331

c {1,65537,4878941,
8942297, 14367385, 24016035 }

M. Nemec, M. Sys, P. Svenda,
D. Klinec, V. Matyas

All RSA keys generated by some
Infineon smart cards satisfy n c {65537i mod L|i € Z}
nmod?2 =1 and 65537 has order 6 mod L.
nmodll € {1,10}

n mod 37 € {1, 10,37}

n mod 97 € {1, 35,36, 61,62,96}
n mod 331 € {1,330}

If n = p-qg= 65537 mod L
then likely
p, g < {65537’ mod L|i € Z}.

Thesegive1-2-3:-6-2=72
possibilities of n mod L, where

[=2-11-37-97 331, instead of
1-10-36-96-330 = 11404300

Bad RSA randomness 2017 — ROCA = Worse,
nmod?2-11-37-97-331

c {1,65537,4878941,
8942297, 14367385, 24016035 }

M. Nemec, M. Sys, P. Svenda,
D. Klinec, V. Matyas

All RSA keys generated by some
Infineon smart cards satisfy n c {65537i mod L|i € Z}
nmod?2 =1 and 65537 has order 6 mod L.
nmodll € {1,10}

n mod 37 € {1, 10,37}

n mod 97 € {1, 35,36, 61,62,96}
n mod 331 € {1,330}

If n = p-qg= 65537 mod L
then likely
p, g < {65537’ mod L|i € Z}.

There are more congruences

Thesegive1-2-3:-6-2=72
possibilities of n mod L, where

[=2-11-37-97 331, instead of
1-10-36-96-330 = 11404300

where this holds.
Actually L = H€<702,£prime‘e'

A randomness 2017 — ROCA

ec, M. Sys, P. Svenda,
c, V. Matyas

keys generated by some
smart cards satisfy

=1

1 € 41,10}

7 €4{1,10,37}

7 €{1,35,36,61,62,96}
31 € {1,330}

vel-2-3:-6-2=72

ies of n mod L, where
1-37-97-331, instead of
6-96-330 = 11404800

Worse,
nmod?2-11-37-97-331

c {1,65537,4878941,
8942297, 14367385, 24016035 }

n € {65537 mod L|i € Z}
and 65537 has order 6 mod L.

If n = p-qg=65537 mod L
then likely
p, q € {65537i mod L|i € Z}.

There are more congruences

where this holds.
Actually L = H£<702,£prime£'

How do

logy, L ~
SO p =
where p
gcd{k, L
IS rando
Same fo

1ess 2017 — ROCA

5, P. Svenda,
yas

rated by some
ds satisty

;
37}

136,61, 62,96}
30}

02 =72

10d L, where

- 331, instead of
) = 11404800

Worse,
nmod2-11-37-97 331

e {1,65537,4878941,
8942297, 14367385, 24016035}

n € {65537 mod L|i € Z}
and 65537 has order 6 mod L.

If n = p-qg= 65537 mod L
then likely
p, g € {65537’ mod L|i € Z}.

There are more congruences

where this holds.
Actually L = H€<702,£prime‘e'

How do these turr

logr, L =~ 971 and
sop=p +k-L,

where p = p' mod
gcd{k, L} =1 anc
Is random so that
Same for gq.

— ROCA

1a,

ome

,96}

72

re

ead of
800

Worse,
nmod?2-11-37-97 331

e {1,65537, 4878941,
8942297, 14367385, 24016035}

n € {65537 mod L|i € Z}
and 65537 has order 6 mod L.

If n = p-qg=65537 mod L
then likely
P, q € {65537i mod L|i € Z}.

There are more congruences

where this holds.
Actually L = HZ<702,£prime£'

How do these turn into prin

logr L =~ 971 and logr, p=1
sop=p +k-L,

where p = p'mod L, and k
gcd{k, L} =1 and log, k ~
Is random so that p Is prime
Same for gq.

Worse,
nmod2-11-37-97 - 331

e {1,65537, 4878941,
8942297, 14367385, 24016035}

n € {65537 mod L|i € Z}
and 65537 has order 6 mod L.

If n = p-qg= 65537 mod L
then likely
p, g € {65537’ mod L|i € Z}.

There are more congruences

where this holds.
Actually L = H€<702,£prime‘e'

How do these turn into primes?

logr L = 971 and log, p = 1024,
sop=p +k-L,

where p = p'mod L, and k with
gcd{k,L} =1 and log, k =~ 53
Is random so that p Is prime.
Same for gq.

Worse,
nmod?2-11-37-97 - 331

c {1,65537,4878941,
8942297, 14367385, 24016035 }

n € {65537 mod L|i € Z}
and 65537 has order 6 mod L.

If n = p-qg= 65537 mod L
then likely
p, g € {65537’ mod L|i € Z}.

There are more congruences

where this holds.
Actually L = H€<702,£prime‘e'

How do these turn into primes?

logr L = 971 and log, p = 1024,
sop=p +k-L,

where p = p'mod L, and k with
gcd{k,L} =1 and log, k =~ 53
Is random so that p Is prime.
Same for gq.

Lenstra’s “Divisors in Residue
Classes’ finds prime factors of
the form p=u+ k- L
efficiently if L > n1/3.
Coppersmith, Howgrave-Graham,
and Nagaraj work for L > nl/4

logo L > 970 > 683 > 2048/3.

.11-37-97- 331
5537, 4878941,
14367385, 24016035}

537' mod L|i € Z}

37 has order 6 mod L.
. g = 65537 mod L
|y

55537 mod L|i € Z}.

€ more congruences
11s holds.

L = H£<702,£prime£'

How do these turn into primes?

logr L = 971 and log, p = 1024,
sop=p +k-L,

where p = p'mod L, and k with
gcd{k,L} =1 and log, k ~ 53
Is random so that p Is prime.
Same for gq.

Lenstra’s “Divisors in Residue
Classes’ finds prime factors of
the form p=u+ k- L
efficiently if L > nl/3.
Coppersmith, Howgrave-Graham,
and Nagaraj work for L > nl/4

logo L > 970 > 683 > 2048/3.

Full atta

Run Len
{65537

Each rut
there ar

P, eg.
{::1,::2

97 - 331
3941,
5, 24016035}

Lli € Z}
ler © mod L.

37' mod L

dL|i € Z}.

ngruences

702,4prime 2

How do these turn into primes?

logr L = 971 and log, p = 1024,
sop=p +k-L,

where p = p'mod L, and k with
gcd{k,L} =1 and log, k =~ 53
Is random so that p Is prime.
Same for gq.

Lenstra’'s “Divisors in Residue
Classes’ finds prime factors of
the form p=u+ k- L
efficiently if L > n1/3.

Coppersmith, Howgrave-Graham,

and Nagaraj work for L > nl/4
logo L > 970 > 683 > 2048/3.

Full attack

Run Lensta for all
{65537 mod L|i ¢
Each run is cheap
there are many op
P, e.g. 65537 mc
{::]., +2, +3, +4, .

How do these turn into primes?

logr L = 971 and log, p = 1024,
sop=p +k-L,

where p = p'mod L, and k with
gcd{k,L} =1 and log, k ~ 53
Is random so that p Is prime.
Same for gq.

Lenstra’'s “Divisors in Residue
Classes’ finds prime factors of
the form p=u+ k- L
efficiently if L > nl/3.

Coppersmith, Howgrave-Graham,

and Nagaraj work for L > nl/4
logo L > 970 > 683 > 2048/3.

Full attack

Run Lensta for all p/ €&
{65537 mod L|i € Z}.
Each run is cheap, but
there are many options for
P, e.g. 65537 mod23 &
{::1, 2. +3, +4 ..., 19,

How do these turn into primes?

logr L = 971 and log, p = 1024,
sop=p +k-L,

where p = p'mod L, and k with
gcd{k,L} =1 and log, k =~ 53
Is random so that p Is prime.
Same for gq.

Lenstra’s “Divisors in Residue
Classes’ finds prime factors of
the form p=u+ k- L
efficiently if L > n1/3.
Coppersmith, Howgrave-Graham,
and Nagaraj work for L > nl/4

logo L > 970 > 683 > 2048/3.

Full attack

Run Lensta for all p/ €&
{65537 mod L|i € Z}.

Each run is cheap, but

there are many options for
P, e.g. 65537’ mod23 &

{=

-1, S

-2,

-3, -

-4 ... -

-9, S

-10, -

111},

How do these turn into primes? Full attack

log, L =~ 971 and log, p = 1024, Run Lensta for all p/ &

sop=p +k-L, {65537i mod L\iEZ}.

where p = p'mod L, and k with Each run is cheap, but

gcd{k, L} =1 and log; k ~ 53 there are many options for

is random so that p is prime. P, e.g. 65537 mod23 €

Same for g. {+1, £2,£3,+4,...,+9,+10, £11}.
Lenstra’s "Divisors in Residue But L i1s much larger than needed.
Classes’ finds prime factors of So use L'|L which minimizes

the form p=u + k- L number of choices X runtime.

efficiently if L > n1/3.
Coppersmith, Howgrave-Graham,

and Nagaraj work for L > nl/4

logo L > 970 > 683 > 2048/3.

these turn into primes?

971 and log, p = 1024,
Y + k- L

= p'mod L, and k with
} =1 and log, k ~ 53
m so that p Is prime.

rg.

s “Divisors in Residue
finds prime factors of
p=u-+k-L
yif L > nl/3.

mith, Howgrave-Graham,

araj work for L > nl/4

1970 > 683 > 2048/3.

Full attack

Run Lensta for all p' €&
{65537 mod L|i € Z}.
Each run is cheap, but
there are many options for

P, e.g. 65537’ mod23 €
{::1, +2 +3 +4, ..., +9, +10, ::].1}.

But L is much larger than needed.
So use L'|L which minimizes
number of choices X runtime.

What w

It would
p as

p = 2r1
,D/ — 32
p/ — 373
p = 2r4
pl = 25
with r; |
reconstr
Note: 2

so this g
2.4.6.

| into primes?

log, p = 1024,

L, and k with
| logy, k =~ 53
p IS prime.

5 1N Residue

1e factors of

k- L
1/3

igrave-Graham,

for L > nl/4.
3 > 2048/3.

Full attack

Run Lensta for all p/ €&
{65537 mod L|i € Z}.

Each run is cheap, but

there are many options for

P, e.g. 65537 mod23 €

{::]., +2, +3 +4, ... +9, +10, ::11}.

But L is much larger than needed.
So use L'|L which minimizes
number of choices X runtime.

What went wrong

It would have beel
p as

p' =2 mod3
p' =32 mod5
p' =3B mod7
p' =24 modl1l
p' = 2" mod13
with r; random ar

reconstructed usin

Note: 2 and 3 are

so this gives
2-4-6-10-12 =

1es’

024,

vith
53

IS

of

ham,

1/4

Full attack

Run Lensta for all p/ €&
{65537 mod L|i € Z}.
Each run is cheap, but

there are many options for
P, e.g. 65537 mod23 €
{::1, +2 +3 +4, ... +9, +10, ::].1}.

But L is much larger than needed.
So use L'|L which minimizes
number of choices X runtime.

What went wrong here?

It would have been OK to c
p as

p' = 2" mod3
p' =32 mod5
p' =33 mod7
p' = 2" mod1l

p' = 2" mod 13

with r; random and p’

reconstructed using CRT.

Note: 2 and 3 are generator
so this gives

2.4.6-10-12 = 5760 opti

Full attack What went wrong here?

Run Lensta for all p/ & It would have been OK to choose
{65537 mod L|i € Z}. P as
Each run is cheap, but p' =2"1mod3
there are many options for p' =32 mod5
P, eg. 65537 mod23 € p' =33 mod7
[+1,42 43, +4,...,+9 410, +11}. P =2"4mod1l
pl =25 mod 13

But L is much larger than needed. with r; random and p'

,
>0 use L|L which minimizes reconstructed using CRT.

number of choices X runtime.
Note: 2 and 3 are generators,

so this gives
2-4-6-10-12 = 5760 options.

ck

sta for all p/ €

mod L|i € Z}.

1 1s cheap, but

> many options for

65537' mod 23 €

+3 +4, ..., +9 410, ::].1}.

much larger than needed.
'IL which minimizes

of choices x runtime.

What went wrong here?

It would have been OK to choose
p as

p' = 2" mod3
p' =32 mod5
p' =33 mod7
p' = 2" mod1l

p' = 25 mod 13

with r; random and p’

reconstructed using CRT.

Note: 2 and 3 are generators,
so this gives

2-4-6-10-12 = 5760 options.

It would
but wors
to choos
p = 2r1
p = 2r2
p =213
p = 2r4
p = 215
with r; |
reconstr
Note: 2
this give
2-4-3-

p €
7}
but
tions for

d23 €
.., 19, £10, +11}.

rer than needed.
minimizes

X runtime.

What went wrong here?

It would have been OK to choose
p as

p' =2 mod3
p' =32 mod5
p' =33 mod7
p' = 2" mod1l

p' = 2" mod13

with r; random and p’

reconstructed using CRT.

Note: 2 and 3 are generators,
so this gives

2-4-6-10-12 = 5760 options.

It would have OK'
but worse

to choose p’ as

p' = 2" mod3
p' =2 mod5
p' =23 mod7
pl =24 modl1l
p' =25 mod13
with r; random ar

reconstructed usin

Note: 2 i1s not alw

this gives only
2-4-3-10-12 =

10, +11}.

eeded.

€.

What went wrong here?

It would have been OK to choose

p as

p' = 2" moo
p' = 3"2 moc
p' = 3"3 moc
p' = 2" moo

p' = 25 moo

3
5
2
11
13

with r; random and p’

reconstructed using CRT.

Note: 2 and 3 are generators,

so this gives

2-4-6-10-12 = 5760 options.

It would have OK'ish
but worse

to choose p’ as

p' = 2" mod3
p' =2 mod5
p' =2 mod7
p' =2 mod1l
p' =25 mod 13

with r; random and p’

reconstructed using CRT.

Note: 2 Is not always a gen:

this gives only
2-4-3-10-12 = 2880 opti

What went wrong here?

It would have been OK to choose
p as

p' =2 mod3
p' =32 mod5
p' =33 mod7
p' = 2" mod1l

p' = 2" mod13

with r; random and p’

reconstructed using CRT.

Note: 2 and 3 are generators,
so this gives

2-4-6-10-12 = 5760 options.

It would have OK'ish
but worse

to choose p’ as

p' =21 mod3
p' =2 mod5
p' =23 mod7
p' =2 mod1l
p' = 2" mod13

with r; random and p’

reconstructed using CRT.

Note: 2 Is not always a generator,
this gives only

2-4-3-10-12 = 2380 options.

ant wrong here?

have been OK to choose

mod 3
mod 5
mod [
mod 11

mod 13
random and p’
ucted using CRT.

and 3 are generators,
|Ves
10 - 12 = 5760 options.

It would have OK'ish
but worse

to choose p’ as

p' =21 mod3
p' =2 mod5
p' =2 mod7
p' =2 mod1l

p' =25 mod 13

with r; random and p’

reconstructed using CRT.

Note: 2 Is not always a generator,
this gives only

2-4-3-10-12 = 23880 options.

It Is real
to repla
exponen
p' = 547

with r r

Note:

The ord:
modulo
are 2,4 (
are linke

Instead
this give
options.

here?

1 OK to choose

d p/
g CRT.

generators,

5760 options.

It would have OK'ish
but worse

to choose p’ as

p' = 2" mod3
p' =2 mod5
p' =23 mod7
p' =2 mod1l
p' = 2" mod13

with r; random and p

reconstructed using CRT.

Note: 2 Is not always a generator,

this gives only
2-4-3-10-12 = 2380 options.

It 1s really bad
to replace this by
exponentiation an
p' = 5477 " mod3
with r random.

Note:

The orders of 547
modulo 3,5,7,11, :
are 2,4.6,2, and 0,
are linked.

Instead of 2 -4 - 6
this gives lcm{2, 4
options.

hoose

Oons.

It would have OK'ish
but worse

to choose p’ as

p' =21 mod3
p' =2 mod5
p' =2 mod7
p' =2 mod1l

p' =25 mod 13

with r; random and p’

reconstructed using CRT.

Note: 2 Is not always a generator,

this gives only
2-4-3-10-12 = 23880 options.

It Is really bad

to replace this by a single
exponentiation and choose ;
p' =5477" mod3-5-7-11
with r random.

Note:

The orders of 5477

modulo 3,5,7,11, and 13
are 2,4,6,2, and 6, but the
are linked.

Instead of 2-4-6-2-6 =
this gives Icm{2,4,6,2,6} -
options.

It would have OK'ish
but worse

to choose p’ as

p' = 2" mod3
p' =2 mod5
p' =23 mod7
p' =2 mod1l
p' = 2" mod13

with r; random and p’

reconstructed using CRT.

Note: 2 Is not always a generator,

this gives only
2-4-3-10-12 = 2380 options.

It 1s really bad

to replace this by a single
exponentiation and choose p' as
p' =5477" mod3-5-7-11-13
with r random.

Note:

The orders of 5477

modulo 3,5,7,11, and 13

are 2,4,6,2, and 6, but the powers
are linked.

Instead of 2-4-6-2-6 = 576
this gives Icm{2,4,6,2,6} = 12
options.

