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Yes. The exponent vectors
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Plausible conjecture: Q sieve can
separate the odd prime divisors
of any n, not just 611.

Given n and parameter y:

Try to completely factor i(n + i)
fori € {1,2,3,...,y°}
into products of primes < y.
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Plausible conjecture: Q sieve can
separate the odd prime divisors
of any n, not just 611.

Given n and parameter y:

Try to completely factor i(n + i)
fori e {1,2,3,...,y°}
into products of primes < y.
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How large does y have to be
for this to find a square?

Uniform random integer in [1, n]
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Plausible conjecture:

Q sieve succeeds
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(—11 +

(3
= (112 -

e s2 =

Unsurpri
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The Q(1/14) sieve

factors 611 as follows:

Form a square

as product of (i + 25/ )(i + v/14j)
for several pairs (/,J):

(=11 + 3-25)(—11 + 3/14)

(34 25)(3 + /14)
= (112 — 164/14)?.
Compute

s = (—11+43-25)- (3 +25),
t=112 — 16 - 25,
gcd{611,s — t} = 13.

Why does this wol

Answer: Have ring
Z|\14] — Z/611,
since 252 = 14 in

Apply ring morphi
(—11+3-25)(—1

(3 +25)(3-
— (112 — 16 - 25)"
i.e. s2=1tinZ/t

Unsurprising to fir



> of

)00}

The Q(1/14) sieve

factors 611 as follows:

Form a square

as product of (i + 25/ )(i + v/14j)
for several pairs (/,J):

(=11 + 3-25)(—11 + 31/14)

(34 25)(3 + /14)
= (112 — 164/14)?.
Compute

s = (—1143-25)- (3 + 25),
t=112 — 16 - 25,
gcd{611,s — t} = 13.

Why does this work?

Answer: Have ring morphisr

Z[\V14] — Z/611, V14 — 2
since 25° = 14 in Z/611.

Apply ring morphism to squ
(—11+4+3-25)(—-11+3-25
(3 + 25)(3 + 25)

— (112 — 16 - 25)? in Z/611

i.e. s°=1t>in Z/611.

Unsurprising to find factor.



The Q(1/14) sieve

factors 611 as follows:

Form a square

as product of (i + 25/ )(i + v/14j)
for several pairs (/,J):

(=11 + 3-25)(—11 + 31/14)

(34 25)(3 + /14)
= (112 — 164/14)?.
Compute

s = (—11+43-25)- (3 +25),
t=112 — 16 - 25,
gcd{611,s — t} = 13.

Why does this work?

Answer: Have ring morphism

Z[\/14] — Z/611, \/14 s 25,
since 25° = 14 in Z/611.

Apply ring morphism to square:
(—11+4+3-25)(—11+ 3 - 25)
(34 25)(3 + 25)

— (112 — 16 - 25)? in Z/611.

i.e. s°=1t>in Z/611.

Unsurprising to find factor.



/14) sieve

)11 as follows:

square

ct of (i +25/)(i + v/14))
al pairs (i, ):

3.25)(—11 + 3v/14)

)+ 25)(3 + /14)
- 161/14)°.

1+3-25)-(3+25),
— 16 - 25,
s —t} = 13.

Why does this work?

Answer: Have ring morphism

Z[\/14] — Z/611, \/14 s 25,
since 25° = 14 in Z/611.

Apply ring morphism to square:

(=114 3-25)(—11 + 3 - 25)
(34 25)(3 + 25)
= (112 — 16 - 25)% in Z/611.

i.e. s°=1t2in Z/611.

Unsurprising to find factor.
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25j)(i +v/14/)
J):

1+ 31/14)
FV/14)

) - (3 + 25),

13.

Why does this work?

Answer: Have ring morphism

Z[\/14] — Z/611, \/14 s 25,
since 25° = 14 in Z/611.

Apply ring morphism to square:

(—11 +3-25)(—11 + 3 - 25)
(34 25)(3 + 25)
= (112 — 16 - 25)? in Z/611.

i.e. s°=1t>in Z/611.

Unsurprising to find factor.

Generalize from (>
to (f, m) with irre
meZ, f(m)En

Write d = deg f,
f=Ffx94. - +

Cantake fy=1+
out larger f 4 allow

petter parameter ¢

Pick r € C, root ¢
Then f4r is a roo
monic g = ff]_lf(

Q(r)«O«Z|f 4r]



Why does this work?

Answer: Have ring morphism

Z[\/14] — Z/611, \/14 s 25,

since 25° = 14 in Z/611.

Apply ring morphism to square:

(=114 3-25)(—11 + 3 - 25)
(34 25)(3 + 25)
= (112 — 16 - 25)% in Z/611.

i.e. s°=1t>in Z/611.

Unsurprising to find factor.

Generalize from (x? — 14, 2°
to (f, m) with irred f € Z|>
meZ, f(m)enZ

Write d = deg f,
f=fgx9+-+ fixt + fo

Can take f; =1 for simplici
out larger f, allows

better parameter selection.

Pick r € C, root of f.
Then f4r is a root of
monic g = fg_lf(x/fd) C

Q(r) O« 2Z[f yr]Ld 2



Why does this work?

Answer: Have ring morphism

Z[\/14] — Z/611, \/14 s 25,
since 25° = 14 in Z/611.

Apply ring morphism to square:

(=11 +3-25)(—11 + 3 - 25)
(34 25)(3 + 25)
= (112 — 16 - 25)% in Z/611.

i.e. s°=1t>in Z/611.

Unsurprising to find factor.

Generalize from (x? — 14, 25)
to (f, m) with irred f € Z|x],
meZ, f(m)enZ

Write d = deg f,
f = fax94 -+ f1xt + fox".

Can take fy =1 for simplicity,
out larger f 4 allows

better parameter selection.

Pick r € C, root of f.
Then f4r is a root of

monic g = f§ 1 f (x/fg) € Z[x].

fderdm

Q(r)«OZ|[f yr] »Z/n



os this work?

Have ring morphism
— Z/611, v/14 — 25,
> =14 in Z/611.

ng morphism to square:

3-25)(—11+ 3 - 25)
)+ 25)(3 + 25)
- 16 - 25)? in Z/611.

- t2 in Z/611.

sing to find factor.

Generalize from (x? — 14, 25)
to (f, m) with irred f € Z|x],
meZ f(m)enZ

Write d = deg f,
f=fax94 -+ fixt + foxO.

Can take f4 =1 for simplicity,
out larger f 4 allows
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Pick r € C, root of f.

Then f4r is a root of
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Write d = deg f,
f=fax94 -+ fixt + foxO.

Can take f4y =1 for simplicity,
out larger f 4 allows

better parameter selection.

Pick r € C, root of f.

Then f4r is a root of
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fderdm
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Generalize from (x? — 14, 25)
to (f, m) with irred f € Z|x],
meZ f(m)enZ

Write d = deg f,
f=fax94 -+ fixt + foxO.

Can take f4y =1 for simplicity,
out larger f 4 allows

better parameter selection.

Pick r € C, root of f.
Then f4r is a root of

monic g = f§ 1 f (x/fg) € Z[x]

fderdm

Q(r)«O«Z|f yr] »Z/n

Build square in Q(r) from
congruences (i —jm)(i —j
with iZ+jZ =2Z and j > |

Could replace i — jx by
higher-deg irred in Z|x];
quadratics seem fairly small

for some number fields.
But let's not bother.

Say we have a square

[T jyesCi—jm)(i—jr)

in Q(r); now what?



Generalize from (x? — 14, 25)
to (f, m) with irred f € Z|x],
meZ, f(m)enZ

Write d = deg f,
f=fax94 -+ fixt + fox0.

Can take 5 =1 for simplicity,
out larger f 4 allows

better parameter selection.

Pick r € C, root of f.
Then f4r is a root of

monic g = f§ 1 f (x/fg) € Z[x].

fderdm

Q(r)«O«Z|f yr] »Z/n

Build square in Q(r) from
congruences (i —jm)(i —jr)
with iZ+4+jZ =Z and j > 0.

Could replace i — j x by
higher-deg irred in Z|x];
quadratics seem fairly small

for some number fields.
But let's not bother.

Say we have a square

[T jyesG—im)(i —jr)
in Q(r); now what?



ze from (x? — 14, 25)
) with irred f € Z|x],
f(m)enZ

— deg f,
d—l—---—l—f1X1—|—f()XO.

> f4 = 1 for simplicity,
er 4 allows
arameter selection.

- C, root of f.

r iIs a root of
— 3V (x/fq) € ZIx]

fderdm

DZ|f 4r] »Z/n

Build square in Q(r) from
congruences (i — jm)(i —jr)
with iZ+4+jZ =2Z and j > 0.

Could replace i — jx by
higher-deg irred in Z|x];
quadratics seem fairly small

for some number fields.
But let's not bother.

Say we have a square

[T jyesCi—jm)(i—jr)

in Q(r); now what?

[0 —J
IS @ Squ:
ring of 1
Multiply
butting

compute

[0 =



2 — 14, 25)
d f € Z]x],
Z

f1X1 -+ foXO.

or simplicity,
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x/fq) € Z|x].

fderdm
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Build square in Q(r) from

congruences (i — jm)(i —jr)
with iZ+jZ =2Z and j > 0.

Could replace i — jx by

higher-deg irred in Z|x];

quadratics seem fair
for some number fie

But let's not bother.

y small
ds.

Say we have a square

[T jyesG—im)(i —jr)

in Q(r); now what?

[T = m)(i —jr
Is a square in O,
ring of integers of

Multiply by g'(f4r
butting square roc

compute r with r
[0 — jm)(i — jr
Then apply the rir
o :Z|fgr]l — Z/n
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In Z/n have ¢(r)
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Build square in Q(r) from
congruences (i — jm)(i —jr)
with iZ+4+jZ =Z and j > 0.

Could replace i — jx by
higher-deg irred in Z|x];
quadratics seem fairly small

for some number fields.
But let's not bother.

Say we have a square

[T jyesC—jm)(i —jr)

in Q(r); now what?

TG —jm)(i —jr)f3
Is a square in O,
ring of integers of Q(r).

Multiply by g’ (f4r)?,
outting square root into Z|[f

compute r with r* = g'(f4r
TG —jm)(i —jr)f3.
Then apply the ring morphis
o : Z[fyr] — Z/n taking

fqr to fym. Compute gcd{
o(r) — g (fgm) [1(i —jm)i
In Z/n have ¢(r)? =

g (fgm)*TT(i —jm)2f3.



Build square in Q(r) from
congruences (i —jm)(i —jr)
with iZ+4+jZ =Z and j > 0.

Could replace i — j x by
higher-deg irred in Z|x];
quadratics seem fairly small

for some number fields.
But let's not bother.

Say we have a square

[T jyesG—im)(i —jr)

in Q(r); now what?

MG —jm)(i —jr)f3
Is a square in O,

ring of integers of Q(r).

Multiply by g'(f4r)?,
outting square root into Z[f 4r]:

compute r with r* = g'(fgr)?
TG —jm)(i —jr)f3.

Then app

o Z[fyr

y the ring morphism
— Z/n taking

fqr to fym. Compute gcd{n,
p(r) —g(fgm) 10 —jm)fq}.
In Z/n have ¢(r)? =

g (fam)*TT(i —jm)f3.



uare in Q(r) from
wces (i —jm)(i —jr)
+jZ=2Zand j > 0.

place i — jx by
eg irred in Z|x];
cs seem fairly small

» number fields.
> not bother.

1ave a square
(i —gm)(i—jr)
now what?

TG —jm)(i —jr)f;
Is a square in O,
ring of integers of Q(r).

Multiply by g'(f4r)?,

compute r with r* = g'(fyr)?
TG —jm)(i —jr)f3.

Then apply the ring morphism
o : Z[fyr] — Z/n taking

fqr to fym. Compute gcd{n,

p(r) —g(fgm) 10 —jm)fq}.

In Z/n have ¢(r)? =

g(fgm)*TI(i —jm)*f3.

outting square root into Z[f 4r]:

How to
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r) from
m)(i —jr)
and j > 0.
Jx by

Z[x|;

1irly small

1elds.
er.

are
i=jr)

TG —jm)(i —jr)f
Is a square in O,

ring of integers of Q(r).

Multiply by g’(fqr)?,
outting square root into Z[f 4r]:

compute r with r2 = g/(f4r)?:
TG —jm)(i —jr)f3.

Then app

o Z[fyr

y the ring morphism
— Z/n taking

fqr to fym. Compute gcd{n,

p(r) —g(fgm) 10 —jm)fq}.

In Z/n have ¢(r)? =

g (fgm)*TT(i —jm)*f3.

How to find squar
of congruences (i

Start with congrue
e.g., y> pairs (i,j

Look for y-smootl
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TG —jm)(i —jr)f;
Is a square in O,
ring of integers of Q(r).

Multiply by g'(f4r)?,

compute r with r* = g'(fyr)?
TG —jm)(i —jr)f3.

Then apply the ring morphism
o : Z[fqr] — Z/n taking

fqr to fym. Compute gcd{n,

p(r) —g(fgm) 10 —jm)fq}.

In Z/n have ¢(r)? =

g (fgm)*TT(i —jm)2f3.

outting square root into Z[f 4r]:

How to find square product
of congruences (i —jm)(/ -

Start with congruences for,
e.g., y> pairs (i, )).

Look for y-smooth congruer
y-smooth / — ym and

y-smooth fynorm(i — jr) =
fai®+ -+ foj 9= joF (i/]
Norm covers all d roots r.

Here “y-smooth”™ means
“has no prime divisor > y."

Find enough smooth congru
Perform linear algebra on
exponent vectors mod 2.



TG —jm)(i —jr)f
Is a square in O,

ring of integers of Q(r).

Multiply by g’(fqr)?,
outting square root into Z[f 4r]:

compute r with r2 = g/(f4r)?:
TG —jm)(i —jr)f3.

Then app

o Z[fyr

y the ring morphism
— Z/n taking

fqr to fym. Compute gcd{n,

p(r) —g(fgm) 10 —jm)fq}.

In Z/n have ¢(r)? =

g (fgm)*TT(i —jm)*f3.

How to find square product
of congruences (i —jm)(i —jr)?

Start with congruences for,
e.g., y> pairs (i, ]).

Look for y-smooth congruences:
y-smooth 1 — ym and

y-smooth f norm(i — jr) =
Fai+ -+ foj = jOF (i)
Norm covers all d roots r.

Here “y-smooth” means
“has no prime divisor > y."

Find enough smooth congruences.
Perform linear algebra on
exponent vectors mod 2.



m)(i —jr)fczi
re in O,
ntegers of Q(r).

by &' (far)?,

square root into Z[f 4r]:

' rowith r? = g/(fgr)?
m)(i —jr)f3.

ply the ring morphism

r| — Z/n taking
4m. Compute gcd{n,

' (fagm) [1(i —jm)fq}.

have @(r)? =
“TTG — jm)*f3.

How to find square product
of congruences (i — jm)(i —jr)?

Start with congruences for,
e.g., y> pairs (i, )).

Look for y-smooth congruences:
y-smooth 1 — ym and

y-smooth f norm(i — jr) =
fai®+ -+ foj 7 = jor (i /).
Norm covers all d roots r.

Here “y-smooth”™ means
“has no prime divisor > y."

Find enough smooth congruences.

Perform linear algebra on
exponent vectors mod 2.
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Enumer:
For eacl
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Start with congruences for,
e.g., y> pairs (i, }).

Look for y-smooth congruences:

y-smooth 1 — ym and
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How to find square product

of congruences (i — jm)(i —jr)?

Start with congruences for,
e.g., y> pairs (i, )).

Look for y-smooth congruences:

y-smooth / — ym and

y-smooth f norm(i — jr) =
fai®+ -+ foj 7 = jof (i /).

Norm covers al
Here “y-smoot

f]”

d roots r.
means

“has no prime divisor > y."

Find enough smooth congruences.

Perform linear algebra on

exponent vectors mod 2.

Polynomial selection

Many f's possible for n.
How to find f that
minimizes NFS time?

General strategy:
Enumerate many f's.

For each f, estimate time u:
information about f arithme
distribution of j9¢87 (i /}),
distribution of smooth numt




How to find square product

of congruences (i —jm)(i —jr)?

Start with congruences for,
e.g., y> pairs (i, ]).

Look for y-smooth congruences:

y-smooth /1 — ym and

y-smooth f norm(i — jr) =
Fai® -+ o] = J9F (i)

Norm covers al
Here “y-smoot

n”

d roots r.
means

“has no prime divisor > y."

Find enough smooth congruences.

Perform linear algebra on

exponent vectors mod 2.

Polynomial selection

Many f's possible for n.
How to find f that
minimizes NFS time?

General strategy:

Enumerate many f's.

For each f, estimate time using
information about f arithmetic,
distribution of j9¢87 (i /}),
distribution of smooth numbers.
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Polynomial selection

Many f's possible for n.
How to find f that
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General strategy:

Enumerate many f's.

For each f, estimate time using
information about f arithmetic,
distribution of j9¢87 (i /}),

distribution of smooth numbers.

L et's res

(x —m)

Take m
Expand
n = fgn
Can use

Have fr5
Typically
are on s

(1993 B



e product
—jm)(i —jr)?

nces for,
).

1 congruences:
and
i—jr)=
=jf(i/i).
roots r.
means

sor > y."

th congruences.

sbra on
mod 2.

Polynomial selection

Many f's possible for n.
How to find f that
minimizes NFS time?

General strategy:

Enumerate many f's.

For each f, estimate time using
information about f arithmetic,
distribution of j9¢87 (i /}),

distribution of smooth numbers.

Let's restrict atter
(x — m)(f5x5 + f

Take m near nl/6

Expand n in base
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Can use negative «

Have f5 & nl/o
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Polynomial selection

Many f's possible for n.
How to find f that
minimizes NFS time?

General strategy:

Enumerate many f's.

For each f, estimate time using
information about f arithmetic,
distribution of j9¢87 (i /}),

distribution of smooth numbers.

Let's restrict attention to f (
(x — m)(fsx + fax* 4+ -+

Take m near nl/®

Expand n In base m:
n=fem>+fam*+ - +1
Can use negative coefficient

Have f5 & nl/e

Typically all the f;'s

are on scale of nl/6.

(1993 Buhler Lenstra Pomel



Polynomial selection

Many f's possible for n.
How to find f that
minimizes NFS time?

General strategy:

Enumerate many f's.

For each f, estimate time using
information about f arithmetic,
distribution of j9¢87 (i /}),

distribution of smooth numbers.

Let's restrict attention to f(x) =
(x — m)(fsx® + fax* + - + fo).

Take m near nl/®

Expand n in base m:
n=fsm>+fom*+ ..+ 1.
Can use negative coefficients.

Have f5 & nl/o

Typically all the f;'s

are on scale of nl/6.

(1993 Buhler Lenstra Pomerance)
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Let's restrict attention to f(x) =

(x — m)(fsx® + f4x* + - + o).

Take m near nl/®

Expand n in base m:
n=fsm>+ fam*+-- +fo.
Can use negative coefficients.

Have f5 & nl/e

Typically all the f;'s
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f's.
ite time using
f arithmetic,

(i f)).

yoth numbers.

Let's restrict attention to f(x) =

(x — m)(fsx® + fax* + - + fo).

Take m near nl/®

Expand n in base m:
n=fsm>+fom*+ ..+ 1.
Can use negative coefficients.

Have f5 & nl/6

Typically all the f;'s

are on scale of nl/6.

(1993 Buhler Lenstra Pomerance)
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tic,

)EFS.

Let's restrict attention to f(x) =

(x — m)(fsx® + f4x* + - + o).

Take m near nl/®

Expand n in base m:
n=fsm>+ fam*+-- +fo.
Can use negative coefficients.

Have f5 & nl/e

Typically all the f;'s

are on scale of nl/6.

(1993 Buhler Lenstra Pomerance)

To reduce f values by factol

Enumerate many possibilitie
for m near B0-25,1/6

Have f5 & B—125,1/6
f4,f3,f2,f1,f0 could be
as large as B0-25,1/6

Hope that they are smaller,
on scale of B—12541/6

Conjecturally this happens

within roughly B’ trials.
Then (i —jm)(f5i®> + - +
is on scale of B~1R%n2/6
for 1, on scale of R.
Several more ways; depends



Let's restrict attention to f(x) =

(x — m)(fsx® + fax* + - + fo).
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137, 151, 157, 181, 191, 199 etc.

These divisors include

70 of the 168 primes < 103;
156 of the 1229 primes < 10%:
206 of the 9592 primes < 10°;
470 of the 78498 primes < 10°;

etc.




nerally: Choose z.
e gcd{c, S} where S =

)02 — p4) - (pz — p2z).

“does z have to be
imes < y to divide 57

> conjecture: yl/2+o(l)

(1) mults mod c.
Consider first collision in
), pomod p, . . ..

dp=p; modp
mod p = py, mod p

j—i)ZN][i,o0]lN]j, 00].

The p—1 method

51 _ 2232792560

divisors

3,5, 7,11, 13, 17, 19, 23, 29, 31,
37,41, 43, 53, 61, 67, 71, 73, 79,

— 1 has prime

89, 97, 103, 109, 113, 127, 131,
137, 151, 157, 1381, 191, 199 etc.

These divisors include
70 of the 168 primes < 103;

156 of t
296 of t

ne 1229

ne 9592

srimes < 104

srimes < 10°;

470 of the 78498 primes < 10°;

etc.

An odd

divides 2
iff order
multiplic
divides ¢

Many w.
2327925

Why so
Answer:
= lem{1
=2%. 3
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} where § =
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ve to be
to divide S?

re: y1/2+o(1);

. mod c.

first collision in
), ...
od p

>, mod p

[/, 00] N[}, o0].

The p—1 method

51 _ 2232792560

divisors

3,5, 7,11, 13, 17, 19, 23, 29, 31,

— 1 has prime

37, 41, 43, 53, 61, 67, 71, 73, 79,
89, 97, 103, 109, 113, 127, 131,
137, 151, 157, 181, 191, 199 etc.

These divisors include
70 of the 168 primes < 103;

156 of t
296 of t

ne 1229

ne 9592

srimes < 10%:
srimes < 10°;

470 of the 78498 primes < 10°:

etc.

An odd prime p
divides 2232792560

Iff order of 2 in th
multiplicative grol
divides s = 23279

Many ways for thi
232792560 has 96

Why so many?

Answer: s = 2327
=lcm{1, 2,3, 4,5,
=2%.32.5.7.1:
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j, 00].

The p—1 method

51 _ 2232792560

divisors

3,5, 7,11, 13, 17, 19, 23, 29, 31,
37,41, 43, 53, 61, 67, 71, 73, 79,

— 1 has prime

89, 97, 103, 109, 113, 127, 131,
137, 151, 157, 131, 191, 199 etc.

These divisors include
70 of the 168 primes < 103;

156 of t
296 of t

ne 1229

ne 9592

srimes < 10%:
srimes < 10°:

470 of the 78498 primes < 10°:

etc.

An odd prime p
divides 2232792560 1

Iff order of 2 in the
multiplicative group F,
divides s = 232792560.

Many ways for this to happe
232792560 has 960 divisors.

Why so many?

Answer: s = 232792560
=lcm{1,2,3,4,5,...,20}
=2%.32.5.7-11-13-17 -



The p—1 method
51 _ 2232792560

— 1 has prime
divisors

3,5, 7,11, 13, 17, 19, 23, 29, 31,

37, 41, 43, 53, 61, 67, 71, 73, 79,
89, 97, 103, 109, 113, 127, 131,
137, 151, 157, 181, 191, 199 etc.

These divisors include

70 of the 168 primes < 103;
156 of the 1229 primes < 10%:
206 of the 9592 primes < 10°;

470 of the 78498 primes < 10°:
etc.

An odd prime p
divides 2232792560 1

Iff order of 2 in the
multiplicative group F7
divides s = 232792560.

Many ways for this to happen:
232792560 has 960 divisors.

Why so many?

Answer: s = 232792560
=lcm{1,2,3,4,5,...,20}
=2%.32.5.7.11-13-17-19.



1 method

232792560 1 has prime

11, 13, 17, 19, 23, 29, 31,

13, 53, 61, 67, 71, 73, 79,
103, 109, 113, 127, 131,
, 157, 181, 191, 199 etc.

visors include

e 168 primes < 103;

e 1229 primes < 10%;
e 9592 primes < 10°;
he 78498 primes < 106

An odd prime p
divides 2232792560 1

Iff order of 2 in the
multiplicative group F,
divides s = 232792560.

Many ways for this to happen:
232792560 has 960 divisors.

Why so many?
Answer: s = 232792560
=lcm{1,2,3,4,5,..., 20}

—924.32.5.7.11-13-17 - 10.

Can con
using 41
(Side no

Ring ope

This cor
22 =2
712 _ »6
$55. H11C
3552,
2568321.21
2909345.
2363738§
»1454953
»1163962:



- 1 has prime

, 19, 23, 29, 31,

67, 71, 73, 79,
113, 127, 131,
[, 191, 199 etc.

ude

1es < 103;
rimes < 10%:
rimes < 10°:
orimes < 10°;

An odd prime p
iff order of 2 in the
multiplicative group F}

divides s = 232792560.

Many ways for this to happen:
232792560 has 960 divisors.

Why so many?
Answer: s = 232792560
=lcm{1,2,3,4,5,..., 20}

—924.32.5.7.11-13-17 - 10.

Can compute 2232
using 41 ring oper
(Side note: 41 is

Ring operation: 0.

This computation:
22 =2.2; 23 = 2
212 _ 96.96. 913 _
255; 2110; 2111; 222,
13552. 57104. »1420¢
256831,1.21136’68.22271
290934,5; 21818,690; 9
23637383; 27274766;
214549535; ~2909907
2116396280; 2232792



Ime

9, 31,

3, 79,
131,
) etc.

An odd prime p
iff order of 2 in the
multiplicative group F},

divides s = 232792560.

Many ways for this to happen:
232792560 has 960 divisors.

Why so many?
Answer: s = 232792560
=lcm{1,2,3,4,5, ..., 20}

—924.32.5.7.11-13-17 - 10.

Can compute 2232792500 __ 1
using 41 ring operations.
(Side note: 41 is not minim

Ring operation: 0, 1, +,

This computation: 1; 2 =1
22=12.2;2>=22.2;20 =

212 _ 96.96. 913 _ 912.5. 526
255.9110. 5111. 5222. 5444 8¢
235é2. 27i04. 2i4208.,22841,6. )
2568311.21136,68.22273,36.24546,72.
2909345.21818%90.218i8691.25
23637385; 2727476é; 2727476%; >

214549535. 529099070. 55819314
2116396280. 5232792560. 523279



An odd prime p
iff order of 2 in the
multiplicative group F}

divides s = 232792560.

Many ways for this to happen:
232792560 has 960 divisors.

Why so many?
Answer: s = 232792560
=1lcm{l,2,3,4,5,..., 20}

—924.32.5.7.11-13-17 - 10.

Can compute 2232792500 __ 1
using 41 ring operations.
(Side note: 41 is not minimal.)

Ring operation: 0, 1, +,

This computation: 1; 2 =14 1;

22 =12.2;23=22.2; 20 =23.23;
212 _ 96.96. 913 _ 912.5. 526. 927. 554,
255; 2110; 2111; 2222; 2444; 2888; 21776;
23552. 57104. 714208. 528416. 528417

256834,1.2113668.22273'36.24546'72.29093,44.
290934,5. 21818,690. 218’18691. 2?;637382.,
23637381,%. 27274766. 2727476%. 21454951,%4.
21454953%. 2290990%0. 258198i40. |
2116396286; 223279256,50; 2232792;360 1



prime p
2232792560 1
of 2 In the
ative group F7
= 232792560.

ays for this to happen:
60 has 960 divisors.

many?’
s = 232792560
,2,3,4,5,...,20}

> .5.7-11-13-17-19.

Can compute 2232792500 __ 1
using 41 ring operations.
(Side note: 41 is not minimal.)

Ring operation: 0, 1, 4+, —, -.

This computation: 1; 2 =1+ 1;

22 =12.2;23=22.2; 20 =23.23;
212 _ 96.96. 913 _ 912.5. 526. 527. 554,
255; 2110; 2111; 2222; 2444; 2888; 21776;
13552. 57104. 514208. 528416. 5238417
2568311.21136,68.22273,36.24546,72.29093,44.
290934’5; 21818'690; 218,18691; 2é637382;'

23637383. 27274766. 27274767. 214549534.

214549535. 529099070. 558195140.
2116396280; 2232792560; 2232792560 _ 1

Given pc
can com
using 41
Notatior

e.g. Cc=
227

254

MO

MO«

299 Mo

2110 oo

22327925



— 1

e

p Fj
2560.

s to happen:
0 divisors.

92560
..,20)

[ - 13-17-19.

Can compute 2232792500 __ 1

using 41 ring operations.
(Side note: 41 is not minimal.)

Ring operation: 0, 1, 4+, —, -.

This computation: 1; 2 =14 1;

22 =12.2;23=22.2; 20 =23.23
212 _ 96.96. 913 _ 912.5. 526. 927. 554,
255; 2110; 2111; 2222; 2444; 2888; 21776;
13552. 57104. »14208. 528416. 528417
256834,1.2113668.22273'36.24546'72.29093,44.
290934,5. 21818,690. 218’18691. 2?;637382.,
23637381,%. 27274766. 2727476%. 21454951,%4.
21454953%. 2290990%0. 258198i40. |
2116396286; 223279256,50; 2232792;360 1

Given positive inte

can compute 232

using 41 operatior

Notation: a mod £

e.g. ¢=3597231:

227
254

MOC
MOQ

2°° mod ¢ = 1871

2110 mo

C

c = 134~
c = 134~
— 935¢
c = 1871
— 145¢&

2232792560 __ 1 mod



N

19.

Can compute 2232792500 __ 1
using 41 ring operations.
(Side note: 41 is not minimal.)

Ring operation: 0, 1, +,

This computation: 1; 2 =1+ 1;
22 =12.2;23=12%2.2,20=23.23,

212 _ 26_26. 213 _ 212_2. 226. 227. 254.
255. 2110. 2111. 2222. 2444 . 2888. 21776.

23552. 57104. 514208. 528416. 528417
256834;2113668;2227336;2454672;2909344;
~909345. 51818690. »1818691. 53637382.

23637383. 27274766. 27274767. 214549534.

214549535. 529099070. 558195140.
2116396280; 2232792560; 2232792560 _ 1

Given positive integer n,
can compute 232192500 __ 1
using 41 operations in Z/c.

Notation: amodb=a — b|

e.g. ¢c=38b97231219: ...
22" mod ¢ = 134217728:
294 mod ¢ = 134217728° m

— 935663516
229 mod ¢ = 1871327032;
2110 mod ¢ = 18713270324 r
— 1458876811 .
2232192560 _1 mod c= 56260




Can compute 2232792500 __ 1
using 41 ring operations.
(Side note: 41 is not minimal.)

Ring operation: 0, 1, +,

This computation: 1; 2 =1+ 1;
22 =12.2;23=22.2; 20 =23.23;

212 _ 26_26. 213 _ 212.2. 226. 227. 254.
295 2110. 2111. 2222. 2444 . 2888. 21776.

23552. 57104. »14208. 528416. 528417
256834;2113668;2227336;2454672;2909344;
~909345. 11818690. »1818691. 53637352.

23637383. 27274766. 27274767. 214549534.

214549535. 529099070. 558195140.
2116396280; 2232792560; 2232792560 _ 1

Given positive integer n,

2232792560

can compute — I modc

using 41 operations in Z/c.
Notation: amodb=a — b|a/b|.

e.g. ¢ =8b97231219: ...
22" mod ¢ = 134217728:
254 mod ¢ = 1342177282 mod n
— 935663516;
229 mod ¢ = 1871327032;
2110 mod ¢ = 18713270322 mod ¢
— 1458876811; .. .;
2232792560 _1 mod c= 5626089344




Can compute 2232792500 __ 1
using 41 ring operations.
(Side note: 41 is not minimal.)

Ring operation: 0, 1, +,

This computation: 1; 2 =1+ 1;
22 =12.2;23=22.2; 20 =23.23;

212 _ 26_26. 213 _ 212.2. 226. 227. 254.
295 2110. 2111. 2222. 2444 . 2888. 21776.

23552. 57104. »14208. 528416. 528417
256834;2113668;2227336;2454672;2909344;
~909345. 11818690. »1818691. 53637352.

23637383. 27274766. 27274767. 214549534.

214549535. 529099070. 558195140.
2116396280; 2232792560; 2232792560 _ 1

Given positive integer n,

2232792560

can compute — I modc

using 41 operations in Z/c.
Notation: amodb=a — b|a/b|.

e.g. ¢ =8b97231219: ...
22" mod ¢ = 134217728:
254 mod ¢ = 1342177282 mod n
— 935663516;
229 mod ¢ = 1871327032;
2110 mod ¢ = 18713270322 mod ¢
— 1458876811; .. .;
2232792560 _1 mod c= 5626089344

Easy extra computation (Euclid):
gcd{5626089344, c} = 991.



ring operations.
te: 41 is not minimal.)

>ration: 0, 1, +, —, -.

nputation: 1; 2 =1+ 1;
2; 23 =22.2; 20 =23.23,

_26. 213 _ 212_2. 226. 227. 294
. 9111. »222. 5444. »888. 7 1776.

104 . 214208. 228416. 228417.
.13668.2227336.2454672.2909344.
21818690. 21818691. 23637382.

. 27274766. 27274767. 214549534.

. 229099070. 558198140
30. £232792560. 5232792560 _ 1

Given positive integer n,

2232792560

can compute — 1 modc

using 41 operations in Z/c.
Notation: amodb=a — b|a/b|.

e.g. ¢ =8b97231219: ...
22" mod ¢ = 134217728:
2%% mod ¢ = 1342177282 mod n
= 935663516;
22 mod ¢ = 1871327032;
2110 mod ¢ = 18713270322 mod ¢
— 1458876811; . ..:

2232792560 _1 mod c= 5626089344

Easy extra computation (Euclid):
gcd{5626089344, c} = 991.

This p -
quickly 1
Main wc

Could in
c's divisi
The 167
would h:

Not clea
Dividing
is faster
The p—
only 70
trial divi



792560 1

ations.

10t minimal.)

’1’ l’
1;2=1+1,
3_2; 26:23_23;

212.2. 226. 227. 254.
. 2444 . 2888. 21776.

3 228416. 228417.
336;2454672;2909344;
!1818691. 23637382.

27274767. 214549534.

). »53198140.
560. 1232792560 _ 1

Given positive integer n,

2232792560

can compute — I modc

using 41 operations in Z/c.
Notation: amodb=a — b|a/b|.

e.g. ¢ =8b97231219: ...
22" mod ¢ = 134217728:
2%% mod ¢ = 1342177282 mod n
— 935663516;
229 mod ¢ = 1871327032;
2110 mod ¢ = 18713270322 mod ¢
— 1458876811; . ..:

2232792560 _1 mod c=5626089344.

Easy extra computation (Euclid):
gcd{5626089344, c} = 991.

This p— 1 metho

quickly factored c
Main work: 27 sq

Could instead hav

c's divisibility by 2
The 167th trial dr
would have found

Not clear which m
Dividing by small
Is faster than squs
The p—1 methoc
only 70 of the prir
trial division finds



al.)

+ 1,
23_:23.

227.254.
38; 21776;

28417 .
.2909344
637382.

14549534 .

0.
2560__1_

Given positive integer n,
can compute 2232792560 _ 1 mod ¢

using 41 operations in Z/c.
Notation: amodb=a — b|a/b|.

e.g. ¢c=8b97231219: ...
227 mod ¢ = 134217728;
2% mod ¢ = 1342177282 mod n
= 935663516;
mod ¢ = 1871327032;
2110 mod ¢ = 18713270322 mod ¢
— 14588763811; ...;

255

2232792560 _1 mod c= 5626089344

Easy extra computation (Euclid):
gcd{5626089344, c} = 991.

This p — 1 method (1974 P
quickly factored ¢ = 859723
Main work: 27 squarings mc

Could instead have checked
c's divisibility by 2,3,5, .. ..
The 167th trial division

would have found divisor 99

Not clear which method is &
Dividing by small p

Is faster than squaring mod
The p— 1 method finds
only 70 of the primes < 100
trial division finds all 168 pr



Given positive integer n,
can compute 2232792560 _ 1 mod ¢
using 41 operations in Z/c.

Notation: amod b= a — b|a/b].

e.g. ¢ =8b97231219: ...
227 mod ¢ = 134217728;
2°4 mod ¢ = 1342177282 mod n
= 935663516;
mod ¢ = 13871327032:
2110 mod ¢ = 18713270322 mod ¢
— 1458876311; .. .;

255

2232792560 _1 mod c=5626089344.

Easy extra computation (Euclid):
gcd{5626089344, c} = 991.

This p — 1 method (1974 Pollard)
quickly factored ¢ = 8597231219.
Main work: 27 squarings mod c.

Could instead have checked
c's divisibility by 2,3,5,. ...
The 167th trial division
would have found divisor 991.

Not clear which method is better.
Dividing by small p

Is faster than squaring mod c.
The p—1 method finds

only 70 of the primes < 1000;
trial division finds all 168 primes.



sitive integer n,
pute 2232792500 _ 1 mod ¢

operations in Z/c.
;. amodb=a — bla/b|.

8507231219: ...

1 c= 134217728:;

{c= 1342177282 mod n
— 935663516

i c = 1871327032

| ¢ = 18713270322 mod ¢
— 1458876811; .. .;

0 _1 mod c= 5626089344

ra computation (Euclid):
6089344, c} = 991.

This p — 1 method (1974 Pollard)
quickly factored ¢ = 8597231219.
Main work: 27 squarings mod c.

Could instead have checked
c's divisibility by 2,3,5, .. ..
The 167th trial division
would have found divisor 991.

Not clear which method is better.
Dividing by small p

is faster than squaring mod c.
The p—1 method finds

only 70 of the primes < 1000;
trial division finds all 168 primes.

Scale ur
s = lcm:
using 13
find 231

Is a squz
faster th

Or

s = lem:
using 14
find 180

Is a squ:
faster th

Extra be
no need



ger n,

92560 __ q mod ¢

sin Z/c.
y=a — bla/b|.

19: ...
17728:
177282 mod n
63516;
327032;
3270322 mod ¢
376811; .. .;

c=5626039344.

tation (Euclid):
ch = 991.

This p—1 met

nod (1974 Pollard)

quickly factorec
Main work: 27

Could instead h

c = 8597231219.
squarings mod c.

ave checked

c's divisibility by 2,3,5,. ...

The 167th tnal

division

would have found divisor 991.

Not clear which method i1s better.

Dividing by small p

Is faster than squaring mod c.
The p— 1 method finds

only 70 of the primes < 1000;

trial division fin

ds all 168 primes.

Scale up to larger
s =1lcm{1, 2, 3,4,
using 136 squaring
find 2317 of the p

Is a squaring mod
faster than 17 tria

Or

s =1lecm{1, 2, 3,4,
using 1438 squarir
find 180121 of the

Is a squaring mod
faster than 125 tri

Extra benefit:
no need to store t



od n

nod ¢

39344.

clid);

This p — 1 method (1974 Pollard)
quickly factored ¢ = 8597231219.
Main work: 27 squarings mod c.

Could instead have checked
c's divisibility by 2,3,5, .. ..
The 167th trial division
would have found divisor 991.

Not clear which method is better.
Dividing by small p

is faster than squaring mod c.
The p—1 method finds

only 70 of the primes < 1000;
trial division finds all 168 primes.

Scale up to larger exponent
s=1cm{1,2,3,4,5,..., 100
using 136 squarings mod ¢

find 2317 of the primes < 1i

Is a squaring mod ¢
faster than 17 trial divisions

Or

s=1lcm{1,2,3,4,5,..., 100
using 1438 squarings mod ¢
find 180121 of the primes <

Is a squaring mod ¢
faster than 125 trial division

Extra benefit:
no need to store the primes.



This p — 1 method (1974 Pollard)
quickly factored ¢ = 8597231219.
Main work: 27 squarings mod c.

Could instead have checked
c's divisibility by 2,3,5,. ...
The 167th trial division
would have found divisor 991.

Not clear which method is better.
Dividing by small p

Is faster than squaring mod c.
The p—1 method finds

only 70 of the primes < 1000;
trial division finds all 168 primes.

Scale up to larger exponent
s=1cm{1,2,3,4,5,..., 100}:
using 136 squarings mod ¢
find 2317 of the primes < 10°.

Is a squaring mod ¢
faster than 17 trial divisions?

Or

s =lecm{1,2,3,4,5,...,1000}:
using 1438 squarings mod ¢
find 180121 of the primes < 107

Is a squaring mod ¢
faster than 125 trial divisions?

Extra benefit:
no need to store the primes.



-1 method (1974 Pollard)

actored ¢ = 8597231219.
rk: 27 squarings mod c.

stead have checked
bility by 2, 3,5, ....
th trial division

ave found divisor 991.

r which method Is better.
by small p

than squaring mod c.

1 method finds

of the primes < 1000;
sion finds all 168 primes.

Scale up to larger exponent
s=1cm{1,2,3,4,5,..., 100}
using 136 squarings mod ¢
find 2317 of the primes < 10°.

Is a squaring mod ¢
faster than 17 trial divisions?

Or
s=1lcm{1,2,3,4,5,..., 1000}:
using 1438 squarings mod ¢

find 180121 of the primes < 107.

Is a squaring mod ¢
faster than 125 trial divisions?

Extra benefit:
no need to store the primes.

Plausible

order of
So unifo
divides
with pro

(1.4...-
produce

Similar 1
finds far



1 (1974 Pollard)
= 8597231219.
larings mod c.

e checked
,3,5,.. ..
/1slon
divisor 991.

ethod iIs better.

p
ring mod c.

| finds
nes < 1000:;
all 168 primes.

Scale up to larger exponent
s=1cm{1,2,3,4,5,..., 100}:
using 136 squarings mod ¢
find 2317 of the primes < 10°.

Is a squaring mod ¢
faster than 17 trial divisions?

Or
s=1cm{1,2,3,4,5,..., 1000}:
using 1438 squarings mod ¢

find 180121 of the primes < 107

Is a squaring mod ¢
faster than 125 trial divisions?

Extra benefit:
no need to store the primes.

Plausible conjectu

exp \/(% + o(1))l¢

then p—1 divides
for H/ K1) pri
Same if p—1 is re¢

order of 2 in F;.

So uniform randor
divides 2|Cm{1,2 ..... /

with probability 1,

produce olem{1,2,...

Similar time spent
finds far fewer prir



ollard)
1219.
d C.

etter.

Imes.

Scale up to larger exponent
s=1cm{1,2,3,4,5,..., 100}
using 136 squarings mod ¢
find 2317 of the primes < 10°.

Is a squaring mod ¢
faster than 17 trial divisions?

Or
s=1lcm{1,2,3,4,5,..., 1000}:
using 1438 squarings mod ¢

find 180121 of the primes < 107.

Is a squaring mod ¢
faster than 125 trial divisions?

Extra benefit:
no need to store the primes.

Plausible conjecture: if K is
exp \/(% + 0(1))log H log lo
then p—1 divides lcm{1, 2, .
for H/KHO(l) primes p < f
Same if p — 1 is replaced by

order of 2 in F:;.

So uniform random prime p
divides 2|Cm{1,2 ..... K} 1
with probability 1/K1+(1),

(1.4... 4 o(1))K squarings
oroduce 2|Cm{1,2 ..... K} 1m

Similar time spent on trial d
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(1982 Williams)

Define (X,Y) € Q x Q as the
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is divisible by
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Proof: p=3 (mod 4), so
(4/543i/5)P =4/5—3i/5 and
so (p+1)(3/5,4/5) = (0, 1)
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Given an integer c,

compute 523279200 X mod ¢
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Given an integer c,

compute 523279200 X mod ¢
and compute gcd with c,
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Many p’s not found by Fj
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and p+ 1 divides 232792560
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(4/5+3i/5)P =4/5—3i/5 and
so (p+1)(3/5,4/5) = (0,1)

in the group Clock(F))

so 232792560(3/5,4/5) = (0, 1).

The elliptic-curve method

Stage 1: Point P on E over Z/c,
compute R = sP for

S = |cm{2,3 ..... Bl}.

Stage 2: Small primes
B <aq, ..., gk < b2

compute R; = g;R.

If order of P on E/F),

(same curve, reduce mod p;)

divides sq;, then
R; = (0,1) (using Edwards).

Compute ged{c, || v(R;)}.



1 Integer c,

3 523279256OX mod ¢
pute gcd with c,

o factor c.

s not found by F
d by Clock(Fp).

not a square mod p
1 divides 232792560
2792560 ¥ mod p=0.

)=3 (mod 4), so
i /5)P = 4/5 — 3i /5 and

1)(3/5,4/5) = (0, 1)
oup Clock(Fp)

)2560(3/5, 4/5) = (0, 1).

The elliptic-curve method

Stage 1. Point P on E over Z/c,

compute R = sP for
S = |cm{2, 3,..., Bl}.

Stage 2: Small primes
B1<aq, ..., gk < b2

compute R; = g R.

If order of P on E/Fp,

(same curve, reduce mod p;)

divides sq;, then
R; = (0,1) (using Edwards).

Compute gecd{c, || v(R;)}.

Good ne
All prim
reasonat

Order of
cp+1
If a curv

Plausible
expy/ (2
then, for
a uniforr
has char
Find p u
< Bf—ko(
Time su



0X mod c
with ¢,

d by F7
<(Fp).
are mod p

232792560
nod p = 0.

od 4), so

/5 —3i/5 and
5)=(0,1)
(Fp)

,4/5) = (0,1).

The elliptic-curve method

Stage 1. Point P on E over Z/c,

compute R = sP for
S = |cm{2, 3,..., Bl}.

Stage 2: Small primes
B <aq, ..., gk < b2

compute R; = g;R.

If order of P on E/F),

(same curve, reduce mod p;)
divides sqg;, then

R; = (0,1) (using Edwards).

Compute ged{c, || y(R;)}-

Good news (for th
All primes < H fo

reasonable numbe

Order of elliptic-c

clp+1-2,pp
If a curve fails, try

Plausible conjectu

exp \/(% + o(1))l¢

then, for each prir

a uniform random
has chance > 1/5

Find p using, < B

< BerO(l) squarin

Time subexponent



and

0,1).

The elliptic-curve method

Stage 1. Point P on E over Z/c,

compute R = sP for
S = |cm{2, 3,..., Bl}.

Stage 2: Small primes

compute R; = g R.

If order of P on E/Fp,

(same curve, reduce mod p;)

divides sq;, then
R; = (0,1) (using Edwards).

Compute ged{c, || y(R;)}.

Good news (for the attacker
All primes < H found after
reasonable number of curve:s

Order of elliptic-curve grougp

clp+1-2/pp+1+2y
If a curve fails, try another.

Plausible conjecture: if By |

exp \/(% + 0(1))log H log lo
then, for each prime p < H,

a uniform random curve mo
1+0(1)

has chance > 1/B; to
Find p using, < B%+O(1) cur
< BerO(l) squarings.

Time subexponential in H.



The elliptic-curve method

Stage 1. Point P on E over Z/c,

compute R = sP for
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All primes < H found after
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Good news (for the attacker):
All primes < H found after
reasonable number of curves.
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Plausible conjecture: if By is
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Prime pl110 appears 46 times Prime generation

c0000000000000000000000000000000 .
Choose a bit pattern of length 1,

00000000000000000000000000000000 . .
3, 5, or 7 bits, repeat It to cover

00000000000000000000000000000000 .
more than 512 bits, and truncate
to exactly 512 bits.

For every 32-bit word, swap the

000000000000000000000000000002£9
which is the next prime after

lower and upper 16 bits.
Next up Fix the most significant two bits
c9242492249292499249492449242492 to 11.
24929249924949244924249224929249 Find the next prime greater than
92494924492424922492924992494924 or equal to this number.

49242492249292499249492449242465
Several other factors exhibit such
a pattern.




110 appears 46 times

000000000000000000000000
000000000000000000000000
000000000000000000000000
0000000000000000000002£9

the next prime after
510_

249292499249492449242492
024949244924249224929249
492424922492924992494924
2492924992494924492424e5
other factors exhibit such

.

Prime generation

Choose a bit pattern of length 1,

3, 5, or 7 bits, repeat It to cover
more than 512 bits, and truncate
to exactly 512 bits.

For every 32-bit word, swap the

lower and upper 16 bits.

Fix the most significant two bits
to 11.

Find the next prime greater than
or equal to this number.

Factorin

Choose .
3,5, or
more th;
to exact
For ever
lower an
Fix the |
to 11.

Find the

or equal



rs 46 times
00000000000000
00000000000000
00000000000000
000000000002£9
orime after

49492449242492
24249224929249
92924992494924
49492449242465
ors exhibit such

Prime generation

Choose a
3,b,or7

oIt pattern of length 1,

DIts, repeat It to cover

more than 512 bits, and truncate
to exactly 512 bits.
For every 32-bit word, swap the

lower and upper 16 bits.

Fix the most significant two bits

to 11.

Find the next prime greater than

or equal to this number.

Factoring by trial

Choose a bit patte

3, 5, or 7 bits, rep
more than 512 bit
to exactly 512 bit:
For every 32-bit w
lower and upper 1
Fix the most signi
to 11.

Find the next prin
or equal to this nt



0000
0000
0000
029

2492
9249
4924
24eb
such

Prime generation

Choose a bit pattern of length 1,

3, 5, or 7 bits, repeat It to cover
more than 512 bits, and truncate
to exactly 512 bits.

For every 32-bit word, swap the

lower and upper 16 bits.

Fix the most significant two bits
to 11.

Find the next prime greater than
or equal to this number.

Factoring by trial division
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3, 5, or 7 bits, repeat It to ¢
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Prime generation

Choose a bit pattern of length 1,

3, 5, or 7 bits, repeat It to cover
more than 512 bits, and truncate
to exactly 512 bits.

For every 32-bit word, swap the

lower and upper 16 bits.

Fix the most significant two bits
to 11.

Find the next prime greater than
or equal to this number.

Factoring by trial division

Choose a bit pattern of length 1,

3, 5, or 7 bits, repeat It to cover
more than 512 bits, and truncate
to exactly 512 bits.

For every 32-bit word, swap the

lower and upper 16 bits.

Fix the most significant two bits
to 11.

Find the next prime greater than
or equal to this number.

Do this for any pattern:
0,1,001,010,011,100,101,110

00001,00010,00011,00100,00101,. ..
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Choose a bit pattern of length 1,

3, 5, or 7 bits, repeat It to cover
more than 512 bits, and truncate
to exactly 512 bits.

For every 32-bit word, swap the

lower and upper 16 bits.

Fix the most significant two bits
to 11.

Find the next prime greater than
or equal to this number.

Do this for any pattern:
0,1,001,010,011,100,101,110

00001,00010,00011,00100,00101,. ..
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Do this for any pattern:
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00001,00010,00011,00100,00101,. ..
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Choose a bit pattern of length 1,

3, 5, or 7 bits, repeat It to cover
more than 512 bits, and truncate
to exactly 512 bits.

For every 32-bit word, swap the

lower and upper 16 bits.

Fix the most significant two bits
to 11.

Find the next prime greater than
or equal to this number.

Do this for any pattern:
0,1,001,010,011,100,101,110

00001,00010,00011,00100,00101,. ..

Computing GCDs factored 105
moduli, of which 18 were new.

Breaking RSA-1024

by “trial division” .
Factored 4 more keys using
patterns of length 9.

More factors by studying other
keys and using lattices.
“Factoring RSA keys from
certified smart cards:

Coppersmith in the wild”
(with D.J. Bernstein, Y.-A.

Chang, C.-M. Cheng, L.-P. Chou,
N. Heninger, N. van Someren)

nttp://smartfacts.cr.yp.to/
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All RSA keys generated by some
Infineon smart cards satisfy
nmod2 =1

nmodll € {1, 10}

n mod 37 € {1, 10,37}
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Infineon smart cards satisfy
nmod?2 =1

nmodll € {1,10}
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1-10-36-96-330 = 11404300

Worse,

nmod?2-11-37 -
c {1,65537,487
8942297, 1436738
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M. Nemec, M. Sys, P. Svenda,
D. Klinec, V. Matyas

All RSA keys generated by some
Infineon smart cards satisfy
nmod2 =1

nmodll € {1, 10}

n mod 37 € {1, 10, 37}

n mod 97 € {1, 35,36,61,62,96}
n mod 331 € {1,330}

Thesegive1l-2-3:-6-2=72
possibilities of n mod L, where

[ =2-11-37-97-331, instead of
1-10-36-96-330 = 11404300

Worse,
nmod?2-11-37-97-331

c {1,65537,4878941,
8942297, 14367385, 2401603
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All RSA keys generated by some
Infineon smart cards satisfy
nmod?2 =1

nmodll € {1,10}

n mod 37 € {1, 10,37}

n mod 97 € {1, 35,36, 61,62,96}
n mod 331 € {1,330}

Thesegive1-2-3:-6-2=72
possibilities of n mod L, where

[ =2-11-37-97 331, instead of
1-10-36-96-330 = 11404300

Worse,
nmod?2-11-37-97 - 331

c {1,65537,4878941,
8942297, 14367385, 24016035 }
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All RSA keys generated by some
Infineon smart cards satisfy
nmod?2 =1

nmodll € {1,10}

n mod 37 € {1, 10,37}

n mod 97 € {1, 35,36, 61,62,96}
n mod 331 € {1,330}

Thesegive1-2-3:-6-2=72
possibilities of n mod L, where

[ =2-11-37-97 331, instead of
1-10-36-96-330 = 11404300

Worse,
nmod?2-11-37-97 - 331

c {1,65537,4878941,
8942297, 14367385, 24016035 }

n € {65537 mod L|i € Z}
and 65537 has order 6 mod L.
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All RSA keys generated by some
Infineon smart cards satisfy n c {65537i mod L|i € Z}
nmod?2 =1 and 65537 has order 6 mod L.
nmodll € {1,10}

n mod 37 € {1, 10,37}

n mod 97 € {1, 35,36, 61,62,96}
n mod 331 € {1,330}

If n = p-qg= 65537 mod L
then likely
p, g < {65537’ mod L|i € Z}.

Thesegive1-2-3:-6-2=72
possibilities of n mod L, where

[ =2-11-37-97 331, instead of
1-10-36-96-330 = 11404300
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nmod?2-11-37-97-331

c {1,65537,4878941,
8942297, 14367385, 24016035 }

M. Nemec, M. Sys, P. Svenda,
D. Klinec, V. Matyas

All RSA keys generated by some
Infineon smart cards satisfy n c {65537i mod L|i € Z}
nmod?2 =1 and 65537 has order 6 mod L.
nmodll € {1,10}

n mod 37 € {1, 10,37}

n mod 97 € {1, 35,36, 61,62,96}
n mod 331 € {1,330}

If n = p-qg= 65537 mod L
then likely
p, g < {65537’ mod L|i € Z}.

There are more congruences

Thesegive1-2-3:-6-2=72
possibilities of n mod L, where

[ =2-11-37-97 331, instead of
1-10-36-96-330 = 11404300

where this holds.
Actually L = H€<702,£prime‘e'
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n € {65537 mod L|i € Z}
and 65537 has order 6 mod L.

If n = p-qg=65537 mod L
then likely
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There are more congruences

where this holds.
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and 65537 has order 6 mod L.

If n = p-qg= 65537 mod L
then likely
p, g € {65537’ mod L|i € Z}.

There are more congruences

where this holds.
Actually L = H€<702,£prime‘e'
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logr, L =~ 971 and
sop=p +k-L,
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Is random so that
Same for gq.
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Worse,
nmod?2-11-37-97 331

e {1,65537, 4878941,
8942297, 14367385, 24016035}

n € {65537 mod L|i € Z}
and 65537 has order 6 mod L.

If n = p-qg=65537 mod L
then likely
P, q € {65537i mod L|i € Z}.

There are more congruences

where this holds.
Actually L = HZ<702,£prime£'

How do these turn into prin

logr L =~ 971 and logr, p=1
sop=p +k-L,

where p = p'mod L, and k
gcd{k, L} =1 and log, k ~
Is random so that p Is prime
Same for gq.



Worse,
nmod2-11-37-97 - 331

e {1,65537, 4878941,
8942297, 14367385, 24016035}

n € {65537 mod L|i € Z}
and 65537 has order 6 mod L.

If n = p-qg= 65537 mod L
then likely
p, g € {65537’ mod L|i € Z}.

There are more congruences

where this holds.
Actually L = H€<702,£prime‘e'

How do these turn into primes?

logr L = 971 and log, p = 1024,
sop=p +k-L,

where p = p'mod L, and k with
gcd{k,L} =1 and log, k =~ 53
Is random so that p Is prime.
Same for gq.



Worse,
nmod?2-11-37-97 - 331

c {1,65537,4878941,
8942297, 14367385, 24016035 }

n € {65537 mod L|i € Z}
and 65537 has order 6 mod L.

If n = p-qg= 65537 mod L
then likely
p, g € {65537’ mod L|i € Z}.

There are more congruences

where this holds.
Actually L = H€<702,£prime‘e'

How do these turn into primes?

logr L = 971 and log, p = 1024,
sop=p +k-L,

where p = p'mod L, and k with
gcd{k,L} =1 and log, k =~ 53
Is random so that p Is prime.
Same for gq.

Lenstra’s “Divisors in Residue
Classes’ finds prime factors of
the form p=u+ k- L
efficiently if L > n1/3.
Coppersmith, Howgrave-Graham,
and Nagaraj work for L > nl/4

logo L > 970 > 683 > 2048/3.
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How do these turn into primes?

logr L = 971 and log, p = 1024,
sop=p +k-L,

where p = p'mod L, and k with
gcd{k,L} =1 and log, k ~ 53
Is random so that p Is prime.
Same for gq.

Lenstra’s “Divisors in Residue
Classes’ finds prime factors of
the form p=u+ k- L
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logr L = 971 and log, p = 1024,
sop=p +k-L,

where p = p'mod L, and k with
gcd{k,L} =1 and log, k =~ 53
Is random so that p Is prime.
Same for gq.
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efficiently if L > nl/3.
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Full attack

Run Lensta for all p/ €&
{65537 mod L|i € Z}.
Each run is cheap, but
there are many options for
P, e.g. 65537 mod23 &
{::1, 2. +3, +4 ..., 19,




How do these turn into primes?

logr L = 971 and log, p = 1024,
sop=p +k-L,

where p = p'mod L, and k with
gcd{k,L} =1 and log, k =~ 53
Is random so that p Is prime.
Same for gq.

Lenstra’s “Divisors in Residue
Classes’ finds prime factors of
the form p=u+ k- L
efficiently if L > n1/3.
Coppersmith, Howgrave-Graham,
and Nagaraj work for L > nl/4
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Full attack
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How do these turn into primes? Full attack

log, L =~ 971 and log, p = 1024, Run Lensta for all p/ &

sop=p +k-L, {65537i mod L\iEZ}.

where p = p'mod L, and k with Each run is cheap, but

gcd{k, L} =1 and log; k ~ 53 there are many options for

is random so that p is prime. P, e.g. 65537 mod23 €

Same for g. {+1, £2,£3,+4,...,+9,+10, £11}.
Lenstra’s "Divisors in Residue But L i1s much larger than needed.
Classes’ finds prime factors of So use L'|L which minimizes

the form p=u + k- L number of choices X runtime.
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Full attack
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Full attack

Run Lensta for all p/ €&
{65537 mod L|i € Z}.

Each run is cheap, but

there are many options for

P, e.g. 65537 mod23 €

{::]., +2, +3 +4, ... +9, +10, ::11}.
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Full attack

Run Lensta for all p/ €&
{65537 mod L|i € Z}.
Each run is cheap, but

there are many options for
P, e.g. 65537 mod23 €
{::1, +2 +3 +4, ... +9, +10, ::].1}.

But L is much larger than needed.
So use L'|L which minimizes
number of choices X runtime.

What went wrong here?

It would have been OK to c
p as

p' = 2" mod3
p' =32 mod5
p' =33 mod7
p' = 2" mod1l

p' = 2" mod 13

with r; random and p’

reconstructed using CRT.

Note: 2 and 3 are generator
so this gives

2.4.6-10-12 = 5760 opti



Full attack What went wrong here?

Run Lensta for all p/ & It would have been OK to choose
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It would have been OK to choose
p as

p' =2 mod3
p' =32 mod5
p' =33 mod7
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p' = 2" mod13

with r; random and p’

reconstructed using CRT.
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so this gives
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so this gives

2-4-6-10-12 = 5760 options.
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but worse
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p' = 2" mod3
p' =2 mod5
p' =2 mod7
p' =2 mod1l
p' =25 mod 13

with r; random and p’

reconstructed using CRT.

Note: 2 Is not always a gen:
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What went wrong here?

It would have been OK to choose
p as

p' =2 mod3
p' =32 mod5
p' =33 mod7
p' = 2" mod1l

p' = 2" mod13

with r; random and p’

reconstructed using CRT.

Note: 2 and 3 are generators,
so this gives

2-4-6-10-12 = 5760 options.

It would have OK'ish
but worse

to choose p’ as

p' =21 mod3
p' =2 mod5
p' =23 mod7
p' =2 mod1l
p' = 2" mod13

with r; random and p’

reconstructed using CRT.

Note: 2 Is not always a generator,
this gives only

2-4-3-10-12 = 2380 options.
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5760 options.

It would have OK'ish
but worse

to choose p’ as

p' = 2" mod3
p' =2 mod5
p' =23 mod7
p' =2 mod1l
p' = 2" mod13

with r; random and p

reconstructed using CRT.

Note: 2 Is not always a generator,

this gives only
2-4-3-10-12 = 2380 options.

It 1s really bad
to replace this by
exponentiation an
p' = 5477 " mod3
with r random.

Note:

The orders of 547
modulo 3,5,7,11, :
are 2,4.6,2, and 0,
are linked.

Instead of 2 -4 - 6
this gives lcm{2, 4
options.
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It would have OK'ish
but worse

to choose p’ as

p' =21 mod3
p' =2 mod5
p' =2 mod7
p' =2 mod1l

p' =25 mod 13

with r; random and p’

reconstructed using CRT.

Note: 2 Is not always a generator,

this gives only
2-4-3-10-12 = 23880 options.

It Is really bad

to replace this by a single
exponentiation and choose ;
p' =5477" mod3-5-7-11
with r random.

Note:

The orders of 5477

modulo 3,5,7,11, and 13
are 2,4,6,2, and 6, but the
are linked.

Instead of 2-4-6-2-6 =
this gives Icm{2,4,6,2,6} -
options.



It would have OK'ish
but worse

to choose p’ as

p' = 2" mod3
p' =2 mod5
p' =23 mod7
p' =2 mod1l
p' = 2" mod13

with r; random and p’

reconstructed using CRT.

Note: 2 Is not always a generator,

this gives only
2-4-3-10-12 = 2380 options.

It 1s really bad

to replace this by a single
exponentiation and choose p' as
p' =5477" mod3-5-7-11-13
with r random.

Note:

The orders of 5477

modulo 3,5,7,11, and 13

are 2,4,6,2, and 6, but the powers
are linked.

Instead of 2-4-6-2-6 = 576
this gives Icm{2,4,6,2,6} = 12
options.



