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Main goal of this course:

We are the attackers.

We want to break ECC and RSA.

First need to understand ECC.

Main motivation for ECC:

Avoid index-calculus attacks

that plague finite-field DL.



Diffie-Hellman key exchange

Pick some generator P ,

i.e. some group element

(using additive notation here).

Alice’s
secret key a
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Bob’s
secret key b
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Alice’s
public key

aP
&&NNNNNNN

Bob’s
public key

b P
xxppppppp

{Alice;Bob}’s
shared secret

ab P

=
{Bob;Alice}’s
shared secret

b aP
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What does P look like &

how to compute P +Q?



The clock
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x
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//

This is the curve x2 + y2 = 1.

Warning:

This is not an elliptic curve.

“Elliptic curve” 6= “ellipse.”
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Examples of points on this curve:
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(0;−1) = “6:00”.
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(−1=2;−
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3=4) = “7:00”.

(
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1=2;
p

1=2) = “1:30”.

(3=5; 4=5). (−3=5; 4=5).

(3=5;−4=5). (−3=5;−4=5).

(4=5; 3=5). (−4=5; 3=5).

(4=5;−3=5). (−4=5;−3=5).

Many more.
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x2 + y2 = 1, parametrized by

x = sin¸, y = cos¸.
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Adding two points corresponds

to adding the angles ¸1 and ¸2.

Angles modulo 360◦ are a group,

so points on clock are a group.

Neutral element: angle ¸ = 0;

point (0; 1); “12:00”.

The point with ¸ = 180◦

has order 2 and equals 6:00.

3:00 and 9:00 have order 4.

Inverse of point with ¸

is point with −¸
since ¸+ (−¸) = 0.

There are many more points

where angle ¸ is not “nice.”
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neutral = (0; 1)
• P1 = (x1; y1)•�������

P2 = (x2; y2)•iiiiiii

P3 = (x3; y3)•PPPPPPP

Use Cartesian coordinates for

addition. Addition formula

for the clock x2 + y2 = 1:

sum (x1; y1) + (x2; y2) = (x3; y3)

= (x1y2 + y1x2; y1y2 − x1x2).

Note (x1; y1) + (−x1; y1) = (0; 1).

kP = P + P + · · ·+ P| {z }
k copies

for k ≥ 0.
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Clocks over finite fields
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Clock(F7) =˘
(x; y) ∈ F7 × F7 : x2 + y2 = 1

¯
.

Here F7 = {0; 1; 2; 3; 4; 5; 6}
= {0; 1; 2; 3;−3;−2;−1}
with +;−;× modulo 7.

E.g. 2 · 5 = 3 and 3=2 = 5 in F7.



>>> for x in range(7):

... for y in range(7):

... if (x*x+y*y) % 7 == 1:

... print (x,y)

...

(0, 1)

(0, 6)

(1, 0)

(2, 2)

(2, 5)

(5, 2)

(5, 5)

(6, 0)

>>>



>>> class F7:

... def __init__(self,x):

... self.int = x % 7

... def __str__(self):

... return str(self.int)

... __repr__ = __str__

...

>>> print F7(2)

2

>>> print F7(6)

6

>>> print F7(7)

0

>>> print F7(10)

3



>>> F7.__eq__ = lambda a,b: \

... a.int == b.int

>>>

>>> print F7(7) == F7(0)

True

>>> print F7(10) == F7(3)

True

>>> print F7(-3) == F7(4)

True

>>> print F7(0) == F7(1)

False

>>> print F7(0) == F7(2)

False

>>> print F7(0) == F7(3)

False



>>> F7.__add__ = lambda a,b: \

... F7(a.int + b.int)

>>> F7.__sub__ = lambda a,b: \

... F7(a.int - b.int)

>>> F7.__mul__ = lambda a,b: \

... F7(a.int * b.int)

>>>

>>> print F7(2) + F7(5)

0

>>> print F7(2) - F7(5)

4

>>> print F7(2) * F7(5)

3

>>>



Larger example: Clock(F1000003).

p = 1000003

class Fp:

...

def clockadd(P1,P2):

x1,y1 = P1

x2,y2 = P2

x3 = x1*y2+y1*x2

y3 = y1*y2-x1*x2

return x3,y3



>>> P = (Fp(1000),Fp(2))

>>> P2 = clockadd(P,P)

>>> print P2

(4000, 7)

>>> P3 = clockadd(P2,P)

>>> print P3

(15000, 26)

>>> P4 = clockadd(P3,P)

>>> P5 = clockadd(P4,P)

>>> P6 = clockadd(P5,P)

>>> print P6

(780000, 1351)

>>> print clockadd(P3,P3)

(780000, 1351)

>>>



>>> def scalarmult(n,P):

... if n == 0: \

... return (Fp(0),Fp(1))

... if n == 1: return P

... Q = scalarmult(n//2,P)

... Q = clockadd(Q,Q)

... if n % 2: Q = clockadd(P,Q)

... return Q

...

>>> n = oursixdigitsecret

>>> scalarmult(n,P)

(947472, 736284)

>>>

Can you figure out our secret n?



Clock cryptography

The “Clock Diffie–Hellman

protocol”:

Standardize large prime p &

base point (x; y) ∈ Clock(Fp).

Alice chooses big secret a,

computes her public key a(x; y).

Bob chooses big secret b,

computes his public key b (x; y).

Alice computes a(b (x; y)).

Bob computes b (a(x; y)).

They use this shared secret

to encrypt with AES-GCM etc.
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secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key
a(X; Y )

&&NNNNNN

Bob’s
public key
b (X; Y )

xxpppppp

{Alice;Bob}’s
shared secret
ab (X; Y )

=
{Bob;Alice}’s
shared secret
b a(X; Y )
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Bob’s
secret key b
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��
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public key
a(X; Y )

&&NNNNNN

Bob’s
public key
b (X; Y )

xxpppppp

{Alice;Bob}’s
shared secret
ab (X; Y )

=
{Bob;Alice}’s
shared secret
b a(X; Y )

Warning #1:

Many p are unsafe!

Warning #2:

Clocks aren’t elliptic!

To match RSA-3072 security

need p ≈ 21536.



Warning #3:

Attacker sees more than

public keys a(x; y) and b (x; y).

Attacker sees how much time

Alice uses to compute a(b (x; y)).

Often attacker can see time for

each operation performed by

Alice, not just total time.

This reveals secret scalar a.

Break by timing attacks, e.g.,

2011 Brumley–Tuveri.



Warning #3:

Attacker sees more than

public keys a(x; y) and b (x; y).

Attacker sees how much time

Alice uses to compute a(b (x; y)).

Often attacker can see time for

each operation performed by

Alice, not just total time.

This reveals secret scalar a.

Break by timing attacks, e.g.,

2011 Brumley–Tuveri.

Fix: constant-time code,

performing same operations

no matter what scalar is.



Exercise

How many multiplications

do you need to compute

(x1y2 + y1x2; y1y2 − x1x2)?

How many multiplications

do you need to double a point,

i.e. to compute

(x1y1 + y1x1; y1y1 − x1x1)?

How can you optimize the

computation if squarings are

cheaper than multiplications?

Assume S < M < 2S.



Addition on an Edwards curve

Change the curve on which Alice

and Bob work.

y

x

OO

//

neutral = (0; 1)
•

P1 = (x1; y1)•����
P2 = (x2; y2)•fffff
P3 = (x3; y3)•[[[[[[

x2 + y2 = 1− 30x2y2.

Sum of (x1; y1) and (x2; y2) is

((x1y2+y1x2)=(1−30x1x2y1y2),

(y1y2−x1x2)=(1+30x1x2y1y2)).



The clock again, for comparison:

y

x

OO

//

neutral = (0; 1)
• P1 = (x1; y1)•�������

P2 = (x2; y2)•iiiiiii

P3 = (x3; y3)•PPPPPPP

x2 + y2 = 1.

Sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2,

y1y2 − x1x2).



“Hey, there were divisions

in the Edwards addition law!

What if the denominators are 0?”

Answer: They aren’t!

If xi = 0 or yi = 0 then

1± 30x1x2y1y2 = 1 6= 0.

If x2 + y2 = 1− 30x2y2

then 30x2y2 < 1

so
√

30 |xy| < 1.
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“Hey, there were divisions

in the Edwards addition law!

What if the denominators are 0?”

Answer: They aren’t!

If xi = 0 or yi = 0 then

1± 30x1x2y1y2 = 1 6= 0.

If x2 + y2 = 1− 30x2y2

then 30x2y2 < 1

so
√

30 |xy| < 1.

If x2
1 + y2

1 = 1− 30x2
1y

2
1

and x2
2 + y2

2 = 1− 30x2
2y

2
2

then
√

30 |x1y1| < 1

and
√

30 |x2y2| < 1

so 30 |x1y1x2y2| < 1

so 1± 30x1x2y1y2 > 0.



The Edwards addition law

(x1; y1) + (x2; y2) =

((x1y2+y1x2)=(1−30x1x2y1y2),

(y1y2−x1x2)=(1+30x1x2y1y2))

is a group law for the curve

x2 + y2 = 1− 30x2y2.

Some calculation required:

addition result is on curve;

addition law is associative.

Other parts of proof are easy:

addition law is commutative;

(0; 1) is neutral element;

(x1; y1) + (−x1; y1) = (0; 1).



Edwards curves mod p

Choose an odd prime p.

Choose a non-square d ∈ Fp.

{(x; y) ∈ Fp × Fp :

x2 + y2 = 1 + dx2y2}
is a “complete Edwards curve”.

Roughly p+ 1 pairs (x; y).

def edwardsadd(P1,P2):

x1,y1 = P1

x2,y2 = P2

x3 = (x1*y2+y1*x2)/ \

(1+d*x1*x2*y1*y2)

y3 = (y1*y2-x1*x2)/ \

(1-d*x1*x2*y1*y2)

return x3,y3



Denominators are never 0.

But need different proof;

“x2 + y2 > 0” doesn’t work.
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Denominators are never 0.

But need different proof;

“x2 + y2 > 0” doesn’t work.

Answer: Can prove that

the denominators are never 0.

Addition law is complete.

This proof relies on

choosing non-square d.

If we instead choose square d:

curve is still elliptic, and

addition seems to work,

but there are failure cases,

often exploitable by attackers.

Safe code is more complicated.



Edwards curves are cool



ECDSA

Users can sign messages

using Edwards curves.

Take a point P on an Edwards

curve modulo a prime p > 2.

ECDSA signer needs to know

the order of P .

There are only finitely many other

points; about p in total.

Adding P to itself will eventually

reach (0; 1); let ‘ be the smallest

integer > 0 with ‘P = (0; 1).

This ‘ is the order of P .



The signature scheme has as

system parameters a curve E; a

base point P ; and a hash function

h with output length at least

blog2 ‘c+ 1.

Alice’s secret key is an integer a

and her public key is PA = aP .

To sign message m,

Alice computes h(m);

picks random k;

computes R = kP = (x1; y1);

puts r ≡ y1 mod ‘; computes

s ≡ k−1(h(m) + r · a) mod ‘.

The signature on m is (r; s).



Anybody can verify signature

given m and (r; s):

Compute w1 ≡ s−1h(m) mod ‘

and w2 ≡ s−1 · r mod ‘.

Check whether the y-coordinate

of w1P +w2PA equals r modulo ‘

and if so, accept signature.

Alice’s signatures are valid:

w1P +w2PA =

(s−1h(m))P + (s−1 · r)PA =

(s−1(h(m) + ra))P = kP

and so the y-coordinate of this

expression equals r,

the y-coordinate of kP .



Attacker’s view on signatures

Anybody can produce an R = kP .

Alice’s private key is only used in

s ≡ k−1(h(m) + r · a) mod ‘.

Can fake signatures if one can

break the DLP, i.e., if one can

compute a from PA.

Most of this course deals with

methods for breaking DLPs.

Sometimes attacks are easier: : :



If k is known for some m; (r; s)

then a ≡ (sk− h(m))=r mod ‘.

If two signatures m1; (r; s1) and

m2; (r; s2) have the same value

for r: assume k1 = k2; observe

s1 − s2 = k−1
1 (h(m1) + ra −

(h(m2) + ra)); compute k =

(s1 − s2)=(h(m1) − h(m2)).

Continue as above.

If bits of many k’s are known

(biased PRNG) can attack

s ≡ k−1(h(m) + r · a) mod ‘

as hidden number problem

using lattice basis reduction.



Malicious signer

Alice can set up her public key so

that two messages of her choice

share the same signature,

i.e., she can claim to have

signed m1 or m2 at will:

R = (x1; y1) and −R = (−x1; y1)

have the same y-coordinate.

Thus, (r; s) fits R = kP ,

s ≡ k−1(h(m1) + ra) mod ‘ and

−R = (−k)P ,

s ≡ −k−1(h(m2) + ra) mod ‘ if

a ≡ −(h(m1)+h(m2))=2r mod ‘.



Malicious signer

Alice can set up her public key so

that two messages of her choice

share the same signature,

i.e., she can claim to have

signed m1 or m2 at will:

R = (x1; y1) and −R = (−x1; y1)

have the same y-coordinate.

Thus, (r; s) fits R = kP ,

s ≡ k−1(h(m1) + ra) mod ‘ and

−R = (−k)P ,

s ≡ −k−1(h(m2) + ra) mod ‘ if

a ≡ −(h(m1)+h(m2))=2r mod ‘.

(Easy tweak: include bit of x1.)



More elliptic curves

Edwards curves are elliptic.

Easiest way to understand

elliptic curves is Edwards.

Geometrically, all elliptic curves

are Edwards curves.

Algebraically,

more elliptic curves exist

(not always point of order 4).

Every odd-char curve can be

expressed as Weierstrass curve

v2 = u3 + a2u
2 + a4u+ a6.

Warning: “Weierstrass” has

different meaning in char 2.



Addition on Weierstrass curve

v2 = u3 + u2 + u+ 1

•
P1

•P2

•−(P1 + P2)
99999999999999999999 •P1 + P2

u
//

vOO

Slope – = (v2 − v1)=(u2 − u1).

Note that u1 6= u2.



Doubling on Weierstrass curve

v2 = u3 − u

•
P1

•
−2P1

lllllllllllllllllllll

• 2P1

u
//

vOO

Slope – = (3u2
1 − 1)=(2v1).



In most cases

(u1; v1) + (u2; v2) =

(u3; v3) where (u3; v3) =

(–2−u1−u2; –(u1−u3)−v1):

u1 6= u2, “addition” (alert!):

– = (v2 − v1)=(u2 − u1).

Total cost 1I + 2M + 1S.

(u1; v1) = (u2; v2) and v1 6= 0,

“doubling” (alert!):

– = (3u2
1 + 2a2u1 + a4)=(2v1).

Total cost 1I + 2M + 2S.

Also handle some exceptions:

(u1; v1) = (u2;−v2); ∞ as input.

Messy to implement and test.



Birational equivalence

Starting from point (x; y)

on x2 + y2 = 1 + dx2y2:

Define A = 2(1 + d)=(1− d),

B = 4=(1− d);

u = (1 + y)=(B(1− y)),

v = u=x = (1 + y)=(Bx(1− y)).

(Skip a few exceptional points.)

Then (u; v) is a point on

a Weierstrass curve:

v2 = u3 + (A=B)u2 + (1=B2)u.

Easily invert this map:

x = u=v, y = (Bu− 1)=(Bu+ 1).



Attacker can transform Edwards

curve to Weierstrass curve and

vice versa; n(x; y) 7→ n(u; v).

⇒ Same discrete-log security!

Can choose curve representation

so that implementation of attack

is faster/easier.

System designer can choose curve

representation so that protocol

runs fastest; no need to worry

about security degradation.



Elliptic-curve groups

P1

P2

−P1 − P2

P1 + P2

2P1

−2P1



Elliptic-curve groups

P1

P2

−P1 − P2

P1 + P2

2P1

−2P1

Following algorithms will need a

unique representative per point.

For that Weierstrass curves are

the speed leader.



The discrete-logarithm problem

Define p = 1000003 and

consider the Weierstrass curve

y2 = x3 − x over Fp.

This curve has



The discrete-logarithm problem

Define p = 1000003 and

consider the Weierstrass curve

y2 = x3 − x over Fp.

This curve has

1000004 = 22 · 532 · 89

points and P = (101384; 614510)

is a point of order 2 · 532 · 89.



The discrete-logarithm problem

Define p = 1000003 and

consider the Weierstrass curve

y2 = x3 − x over Fp.

This curve has

1000004 = 22 · 532 · 89

points and P = (101384; 614510)

is a point of order 2 · 532 · 89.

In general, point counting over Fp
runs in time polynomial in log p.

Number of points in

[p+ 1− 2
√
p; p+ 1 + 2

√
p].

The group is isomorphic to

Z=n × Z=m, where n | m and

n | (p− 1).



Can we find an integer

n ∈ {1; 2; 3; : : : ; 500001}
such that nP =

(670366; 740819)?

This point was generated as

a multiple of P ; could also be

outside cyclic group.

Could find n by brute force.

Is there a faster way?



Understanding brute force

Can compute successively

1P = (101384; 614510),

2P = (102361; 628914),

3P = (77571; 87643),

4P = (650289; 31313),

500001P = −P .

500002P =∞.

At some point we’ll find n

with nP = (670366; 740819).

Maximum cost of computation:

≤ 500001 additions of P ;

≤ 500001 nanoseconds on a CPU

that does 1 ADD/nanosecond.



This is negligible work

for p ≈ 220.

But users can

standardize a larger p,

making the attack slower.

Attack cost scales linearly:

≈ 250 ADDs for p ≈ 250,

≈ 2100 ADDs for p ≈ 2100, etc.

(Not exactly linearly:

cost of ADDs grows with p.

But this is a minor effect.)



Computation has a good chance

of finishing earlier.

Chance scales linearly:

1=2 chance of 1=2 cost;

1=10 chance of 1=10 cost; etc.

“So users should choose large n.”



Computation has a good chance

of finishing earlier.

Chance scales linearly:

1=2 chance of 1=2 cost;

1=10 chance of 1=10 cost; etc.

“So users should choose large n.”

That’s pointless. We can apply

“random self-reduction”:

choose random r, say 69961;

compute rP = (593450; 987590);

compute (r + n)P as

(593450; 987590)+(670366; 740819);

compute discrete log;

subtract r mod 500002; obtain n.



Computation can be parallelized.

One low-cost chip can run

many parallel searches.

Example, 26 e: one chip,

210 cores on the chip,

each 230 ADDs/second?

Maybe; see SHARCS workshops

for detailed cost analyses.

Attacker can run

many parallel chips.

Example, 230 e: 224 chips,

so 234 cores,

so 264 ADDs/second,

so 289 ADDs/year.



Multiple targets and giant steps

Computation can be applied

to many targets at once.

Given 100 DL targets n1P ,

n2P , : : : , n100P :

Can find all of n1; n2; : : : ; n100

with ≤ 500002 ADDs.

Simplest approach: First build

a sorted table containing

n1P , : : : , n100P .

Then check table for

1P , 2P , etc.



Interesting consequence #1:

Solving all 100 DL problems

isn’t much harder than

solving one DL problem.

Interesting consequence #2:

Solving at least one

out of 100 DL problems

is much easier than

solving one DL problem.

When did this computation

find its first ni?



Interesting consequence #1:

Solving all 100 DL problems

isn’t much harder than

solving one DL problem.

Interesting consequence #2:

Solving at least one

out of 100 DL problems

is much easier than

solving one DL problem.

When did this computation

find its first ni?

Typically ≈ 500002=100 mults.



Can use random self-reduction

to turn a single target

into multiple targets.

Let ‘ be the order of P .

Given nP :

Choose random r1; r2; : : : ; r100.

Compute r1P + nP ,

r2P + nP , etc.

Solve these 100 DL problems.

Typically ≈ ‘=100 mults

to find at least one

ri + n mod ‘,

immediately revealing n.



Also spent some ADDs

to compute each riP :

≈ lg p ADDs for each i.

Faster: Choose ri = ir1

with r1 ≈ ‘=100.

Compute r1P ;

r1P + nP ;

2r1P + nP ;

3r1P + nP ; etc.

Just 1 ADD for each new i.

≈ 100 + lg ‘+ ‘=100 ADDs

to find n given nP .



Faster: Increase 100 to ≈
√
‘.

Only ≈ 2
√
‘ ADDs

to solve one DL problem!

“Shanks baby-step-giant-step

discrete-logarithm algorithm.”

Example: p = 1000003; ‘ =

500002, P = (101384; 614510),

Q = nP = (670366; 740819).

Compute 708P=(393230; 421116).

Then compute 707 targets:

708P +Q = (342867; 153817),

2 ·708P +nP = (430321; 994742),

3 ·708P +nP = (423151; 635197),

: : : , 706 · 708P + nP =

(534170; 450849).



Build a sorted table of targets:

600·708P+Q = (799978; 929249),

27 ·708P +Q = (785344; 831127),

219·708P+Q = (425475; 793466),

: : :

242·708P+Q = (262804; 347755),

: : :

317·708P+Q = (599785; 189116).

Look up P , 2P , 3P , etc. in table.

620P = (950652; 688508); find

596 ·708P+Q = (950652; 688508)

in the table of targets;

so 620 = 596·708+n mod 500002;

deduce n = 78654.



Factors of the group order

P has order 2 · 532 · 89.

Given Q = nP , find n = logP Q:

R = (532 · 89)P has order 2, and

S = (532 · 89)Q is multiple of R.

Compute n1 = logR S ≡ n mod 2.

R = (2 · 53 · 89)P has order 53,

and

S = (2 · 53 · 89)Q is multiple of R.

Compute

n2 = logR S ≡ n mod 53.

This is a DLP in a group

of size 53.



T = (2 · 89)(Q− n2P ) is also

a multiple of R, i.e., has order 53.

Compute

n3 = logR T ≡ n mod 53.

Now n2 + 53n3 ≡ n mod 532.

R = (2 · 532)P has order 89, and

S = (2 · 532)Q is multiple of R.

Compute

n4 = logR S ≡ n mod 89.

Use Chinese Remainder Theorem

n ≡ n1 mod 2,

n ≡ n2 + 53n3 mod 532,

n ≡ n4 mod 89,

to determine n modulo 2 · 532 · 89.



This “Pohlig-Hellman method”

converts an order-ab DL into

an order-a DL, an order-b DL,

and a few scalar multiplications.

Here (532 · 89)P = (1; 0) and

(532 · 89)Q =∞, thus n1 = 0.

(2 · 53 · 89)P = (539296; 488875),

(2 · 53 · 89)Q = (782288; 572333).

A search quickly finds n2 = 2.

(2 ·89)(Q−2P ) =∞, thus n3 = 0

and n2 + 53n3 = 2.



(2 · 532)P = (877560; 947848) and

(2 · 532)Q = (822491; 118220).

Compute n4 = 67,

e.g. using BSGS.

Use Chinese Remainder Theorem

n ≡ 0 mod 2,

n ≡ 2 mod 532,

n ≡ 67 mod 89,

to determine n = 78654.

Pohlig-Hellman method reduces

security of discrete logarithm

problem in group generated by P

to security of largest prime order

subgroup.



The rho method

Simplified, non-parallel rho:

Make a pseudo-random walk

in the group 〈P 〉,
where the next step depends

on current point: Wi+1 = f(Wi).

Birthday paradox:

Randomly choosing from ‘

elements picks one element twice

after about
p
ı‘=2 draws.

The walk now enters a cycle.

Cycle-finding algorithm

(e.g., Floyd) quickly detects this.





























































Assume that for each point

we know ai; bi ∈ Z=‘Z

so that Wi = aiP + biQ.

Then Wi = Wj means that

aiP + biQ = ajP + bjQ

so (bi − bj)Q = (aj − ai)P .

If bi 6= bj the DLP is solved:

n = (aj − ai)=(bi − bj).



Assume that for each point

we know ai; bi ∈ Z=‘Z

so that Wi = aiP + biQ.

Then Wi = Wj means that

aiP + biQ = ajP + bjQ

so (bi − bj)Q = (aj − ai)P .

If bi 6= bj the DLP is solved:

n = (aj − ai)=(bi − bj).

e.g. f(Wi) = a(Wi)P + b(Wi)Q,

starting from some initial

combination W0 = a0P + b0Q.

If any Wi and Wj collide then

Wi+1 = Wj+1, Wi+2 = Wj+2,

etc.



If functions a(W ) and b(W ) are

random modulo ‘, iterations

perform a random walk in 〈P 〉.
If a and b are chosen such that

f(Wi) = f(−Wi) then the walk

is defined on equivalence classes

under ±.

There are only d‘=2e different

classes. This reduces the average

number of iterations by a factor

of almost exactly
√

2.

In general, Pollard’s rho method

can be combined with any easily

computed group automorphism of

small order.



Parallel collision search

Running Pollard’s rho method on

N computers gives speedup of

≈
√
N from increased likelihood

of finding collision.

Want better way to spread

computation across clients. Want

to find collisions between walks

on different machines, without

frequent synchronization!

Better method due to van

Oorschot and Wiener (1999).

Declare some subset of 〈P 〉 to

be distinguished points.



Parallel rho: Perform many walks

with different starting points

but same update function f .

If two different walks

find the same point then

their subsequent steps will match.

Terminate each walk once it hits

a distinguished point and report

the point along with ai and bi to

server.

Server receives, stores, and sorts

all distinguished points.

Two walks reaching same

distinguished point give collision.

This collision solves the DLP.













Attacker chooses frequency and

definition of distinguished points.

Tradeoffs are possible:

If distinguished points are rare, a

small number of very long walks

will be performed. This reduces

the number of distinguished

points sent to the server but

increases the delay before a

collision is recognized.

If distinguished points are

frequent, many shorter walks will

be performed.

In any case do not wait for cycle.

Total # of iterations unchanged.





Additive walks

Generic rho method requires two

scalar multiplications for each

iteration.

Could replace by double-scalar

multiplication; could further

merge the 2-scalar multiplications

across several parallel iterations.



Additive walks

Generic rho method requires two

scalar multiplications for each

iteration.

Could replace by double-scalar

multiplication; could further

merge the 2-scalar multiplications

across several parallel iterations.

More efficient: use additive walk:

Start with W0 = a0P and put

f(Wi) = Wi + cjP + djQ

where j = h(Wi).



Pollard’s initial proposal:

Use x(Wi) mod 3 as h

and update:

Wi+1 =8<:Wi + P for x(Wi) mod 3 = 0
2Wi for x(Wi) mod 3 = 1
Wi +Q for x(Wi) mod 3 = 2

Easy to update ai and bi.

(ai+1; bi+1) =8<: (ai + 1; bi) for x(Wi) mod 3 = 0
(2ai; 2bi) for x(Wi) mod 3 = 1
(ai; bi + 1) for x(Wi) mod 3 = 2



Additive walk requires only one

addition per iteration.

h maps from 〈P 〉 to

{0; 1; : : : ; r − 1}, and

Rj = cjP + djQ are

precomputed for each

j ∈ {0; 1; : : : ; r − 1}.

Easy coefficient update:

Wi = aiP + biQ,

where ai and bi are defined

recursively as follows:

ai+1 = ai + ch(Wi)
and

bi+1 = bi + dh(Wi)
.



Additive walks have

disadvantages:

The walks are noticeably

nonrandom; this means they need

more iterations than the generic

rho method to find a collision.

This effect disappears as r grows,

but but then the precomputed

table R0; : : : ; Rr−1 does not fit

into fast memory. This depends

on the platform, e.g. trouble for

GPUs.

More trouble with adding walks

later.



Randomness of adding walks

Let h(W ) = i with probability pi.

Fix a point T , and let W and

W ′ be two independent uniform

random points.

Let W 6= W ′ both map to T .

This event occurs if



Randomness of adding walks

Let h(W ) = i with probability pi.

Fix a point T , and let W and

W ′ be two independent uniform

random points.

Let W 6= W ′ both map to T .

This event occurs if

simultaneously for i 6= j:

T = W + Ri = W ′ + Rj ;

h(W ) = i; h(W ′) = j.

These conditions have probability

1=‘2, pi, and pj respectively.



Summing over all (i; j)

gives the overall probability“P
i 6=j pipj

”
=‘2 =“P

i;j pipj −
P
i p

2
i

”
=‘2 =`

1−
P
i p

2
i

´
=‘2.

This means that the probability

of an immediate collision from W

and W ′ is
`
1−

P
i p

2
i

´
=‘, where

we added over the ‘ choices of T .

In the simple case that all the pi
are 1=r, the difference from the

optimal
p
ı‘=2 iterations is a

factor of

1=
p

1− 1=r ≈ 1 + 1=(2r).



Various heuristics leading to

standard
p

1− 1=r formula

in different ways:

1981 Brent–Pollard;

2001 Teske;

2009 ECC2K-130 paper,

eprint 2009/541.



Various heuristics leading to

standard
p

1− 1=r formula

in different ways:

1981 Brent–Pollard;

2001 Teske;

2009 ECC2K-130 paper,

eprint 2009/541.

2010 Bernstein–Lange:

Standard formula is wrong!

There is a further slowdown

from higher-order anti-collisions:

e.g. W +Ri +Rk 6= W ′+Rj +Rl
if Ri + Rk = Rj + Rl.

≈ 1% slowdown for ECC2K-130.



Eliminating storage

Usual description: each walk

keeps track of ai and bi
with Wi = aiP + biQ.

This requires each client to

implement arithmetic modulo ‘

or at least keep track of

how often each Rj is used.

For distinguished points

these values are

transmitted to server (bandwidth)

which stores them as

e.g. (Wi; ai; bi) (space).



2009 ECC2K-130 paper:

Remember where you started.

If Wi = Wj is the collision of

distinguished points,

can recompute these walks

with ai; bi; aj , and bj ;

walk is deterministic!

Server stores 245 distinguished

points; only needs to know

coefficients for 2 of them.

Our setup: Each walk remembers

seed; server stores distinguished

point and seed.

Saves time, bandwidth, space.



Negation and rho

W = (x; y) and −W = (x;−y)

have same x-coordinate.

Search for x-coordinate collision.

Search space for collisions is

only d‘=2e; this gives factor
√

2

speedup : : : if f(Wi) = f(−Wi).

To ensure f(Wi) = f(−Wi):

Define j = h(| Wi |) and

f(Wi) =| Wi | +cjP + djQ,

with, e.g., | Wi | the lexicographic

minimum of Wi;−Wi.

This negation speedup

is textbook material.



Problem: this walk can

run into fruitless cycles!

Example: If | Wi+1 |= −Wi+1

and h(| Wi+1 |) = j = h(| Wi |)
then Wi+2 = f(Wi+1) =

−Wi+1 + cjP + djQ =

−(| Wi | +cjP + djQ) + cjP +

djQ = − | Wi | so | Wi+2 |=| Wi |
so Wi+3 = Wi+1

so Wi+4 = Wi+2 etc.

If h maps to r different values

then expect this example to occur

with probability 1=(2r)

at each step.

Known issue, not quite textbook.



Eliminating fruitless cycles

Issue of fruitless cycles is known

and several fixes are proposed.

See appendix of full version ePrint

2011/003 for even more details

and historical comments.

Summary: most of them

got it wrong.



Eliminating fruitless cycles

Issue of fruitless cycles is known

and several fixes are proposed.

See appendix of full version ePrint

2011/003 for even more details

and historical comments.

Summary: most of them

got it wrong.

So what to do?

Choose a big r, e.g. r = 2048.

1=(2r) = 1=4096 small;

cycles infrequent.



Define | (x; y) | to mean

(x; y) for y ∈ {0; 2; 4; : : : ; p− 1}
or

(x;−y) for y ∈ {1; 3; 5; : : : ; p− 2}.

Precompute points

R0; R1; : : : ; Rr−1 as known

random multiples of P .



Define | (x; y) | to mean

(x; y) for y ∈ {0; 2; 4; : : : ; p− 1}
or

(x;−y) for y ∈ {1; 3; 5; : : : ; p− 2}.

Precompute points

R0; R1; : : : ; Rr−1 as known

random multiples of P .

Can do full scalar multiplication in

inversion-free coordinates!

Start each walk at a point

W0 =| b0Q |,
where b0 is chosen randomly.

Compute W1;W2; : : : as

Wi+1 =| Wi + Rh(Wi)
|.



Occasionally , every w iterations,

check for fruitless cycles

of length 2.

For those cases change the

definition of Wi as follows:

Compute Wi−1 and check

whether Wi−1 = Wi−3.

If Wi−1 6= Wi−3, put Wi = Wi−1.

If Wi−1 = Wi−3, put

Wi =| 2 min{Wi−1;Wi−2} |,
where min means

lexicographic minimum.

Doubling the point

makes it escape the cycle.



Cycles of length 4, 6, or 12

occur far less frequently.

Cycles of length 4, or 6

are detected when checking

for cycles of length 12;

so skip individual ones.

Same way of escape:

define Wi =

| 2min{Wi−1;Wi−2;Wi−3;Wi−4;

Wi−5;Wi−6;Wi−7;Wi−8;

Wi−9;Wi−10;Wi−11;Wi−12} |
if trapped

and Wi = Wi−1 otherwise.



Do not store all these points!

When checking for cycle,

store only potential entry point

Wi−13 (one coordinate, for

comparison) and the

smallest point encountered since

(to escape).

For large DLP

look for larger cycles;

in general, look for

fruitless cycles of even lengths

up to ≈ (log ‘)=(log r).



How to choose w?

Fruitless cycles of length 2 appear

with probability ≈ 1=(2r).

These cycles persist

until detected.

After w iterations,

probability of cycle ≈ w=(2r),

wastes ≈ w=2 iterations

(on average) if it does appear.

Do not choose w

as small as possible!

If a cycle has not appeared then

the check wastes an iteration.



The overall loss is approximately

1 +w2=(4r) iterations out of w.

To minimize the quotient

1=w +w=(4r) we take w ≈ 2
√
r.

Cycles of length 2c appear with

probability ≈ 1=rc,

optimal checking frequency is

≈ 1=rc=2.

Loss rapidly disappears

as c increases.

Can use lcm of cycle lengths

to check.



Concrete example: 112-bit DLP

Use r = 2048. Check for 2-cycles

every 48 iterations.

Check for larger cycles much less

frequently.

Unify the checks for 4-cycles and

6-cycles into a check for 12-cycles

every 49152 iterations.

Choice of r has big impact!

r = 512 calls for checking

for 2-cycles every 24 iterations.

In general, negation overhead

≈ doubles when table size

is reduced by factor of 4.



Bernstein, Lange, Schwabe

(PKC 2011):

Our software solves

random ECDL on the same curve

(with no precomputation)

in 35.6 PS3 years on average.

For comparison:

Bos–Kaihara–Kleinjung–Lenstra–

Montgomery software

uses 65 PS3 years on average.
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For comparison:
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uses 65 PS3 years on average.

First big speedup:

We use the negation map.

Second speedup: Fast arithmetic.



Why are we confident this works?

We only have 1 PlayStation-3,

not 200 used in their record.

Don’t want to wait for 36 years

to show that we actually compute

the right thing.



Why are we confident this works?

We only have 1 PlayStation-3,

not 200 used in their record.

Don’t want to wait for 36 years

to show that we actually compute

the right thing.

Can produced scaled versions:

Use same prime field

(so that we can compare the field

arithmetic) and same curve shape

y2 = x3 − 3x+ b

but vary b to get curves with

small subgroups.



This produces other curves, and

many of those have smaller order

subgroups.

Specify DLP in subgroup of size

250, or 255, or 260 and show that

the actual running time matches

the expectation.

And that DLP is correct.

We used same property for a

point to be distinguished as in

big attack; probability is 2−20.

Need to watch out that walks

do not run into rho-type cycles

(artefact of small group order).

We aborted overlong walks.



New record

Announced 29 Nov 2016,

most work by Ruben Niederhagen

(@cryptocephaly on twitter).

Elliptic curve over F2127 ,

DLP in subgroup of order 2117:35.

Used parallel Pollard rho,

DP criterion: 30 top bits equal 0.

Expectedp
ı2117:35=4=230 ∼ 379 821 956

DPs, but ended up needing

968 531 433.

Computations ran on 64 to 576

FPGAs in parallel.



DLs in intervals

Want to use knowledge

that DL is in a

small interval [a; b],

much smaller than ‘.

We can use this in baby-step

giant-step algorithm.

How to use this in a

memory-less algorithm?



Standard interval method:

Pollard’s kangaroo method.

Pollard’s kangaroos do small

jumps around the interval.
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Standard interval method:

Pollard’s kangaroo method.

Pollard’s kangaroos do small

jumps around the interval.

Real kangaroos sleep

(at least outside Australia).



Kangaroo method

in Australia

Main actor:



The tame kangaroo

starts at a known

multiple of P , e.g. bP .



The tame kangaroo jumps.

Jumps are determined

by current position.
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The tame kangaroo jumps.

Jumps are determined

by current position.

Average jump distance

is
√
b− a.



The tame kangaroo stops

after a fixed number of jumps

(about
√
b− a many).

The tame kangaroo installs a trap

and waits.



The wild kangaroo

starts at point Q.

Follows the same instructions for

jumps.



But we don’t know where

the starting point Q is.

Know Q = nP with n ∈ [a; b].

Hope that the paths of the tame

and wild kangaroo intersect.

Similar to the rho method the

kangaroos will hop on the same

path from that point onwards.

Eventually the wild kangaroo falls

into the trap.

(Or disappears in the distance if

paths have not intersected.

Start a fresh one

from Q+ P;Q+ 2P; : : :.)



Same story in math

Kangaroo = sequence Xi ∈ 〈P 〉.
Starting point X0 = s0P .

Distance d0 = 0.

Step set: S = {s1P; : : : ; sLP},
with si on average

s = ˛
√
b− a.

Hash function

H : 〈P 〉 → {1; 2; : : : ; L}.
Update function

di+1 = di + sH(Xi)
; i = 0; 1; 2; : : :,

Xi+1= Xi + sH(Xi)
P; i = 0; 1; 2; : : :.



Tame kangaroo starts at

X0 = bP ,

wild kangaroo starts at

X ′0 = Q = nP .

Trap: distance dN ,

endpoint XN = (b+ dN)P .

Picture credit:

Christine van Vredendaal.



Parallel kangaroo method

Use an entire herd

of tame kangaroos,

all starting

around ((b− a)=2)P : : :



: : : and define certain spots as

distinguished points

Also start a herd of

wild kangaroos around Q.

Hope that one wild and

one tame kangaroo

meet at one distinguished point.



Pairings

Let (G1;+); (G2;+) and (GT ; ·)
be groups of prime order ‘ and let

e : G1 × G2 → GT
be a map satisfying

e(P +Q;R′) = e(P;R′)e(Q;R′);

e(P;R′ + S′) = e(P;R′)e(P; S′):

Request further that e is

non-degenerate in the first

argument, i.e., if for some P

e(P;R′) = 1 for all R′ ∈ G2,

then P is the identity in G1

Such an e is called a bilinear map

or pairing.



Consequences of pairings

Assume that G1 = G2,

in particular e(P; P ) 6= 1:

Then for all triples

(P1; P2; P3) ∈ 〈P 〉3

one can decide in time polynomial

in log ‘ whether

logP (P3) = logP (P1) logP (P2)

by comparing

e(P1; P2) and e(P; P3).

This means that the decisional

Diffie-Hellman problem is easy.



The DL system G1 is at most as

secure as the system GT .

Even if G1 6= G2 one can

transfer the DLP in G1

to a DLP in GT ,

provided one can find an element

P ′ ∈ G2 such that the map

P → e(P; P ′) is injective.

Pairings are interesting attack

tool if DLP in GT is easier

to solve; e.g. if GT has index

calculus attacks.



We want to define pairings

G1 × G2 → GT
preserving the group structure.

The pairings we will use

map to the multiplicative group of

a finite extension field Fqk .

More precisely, GT ⊂ Fqk , order ‘.

To embed the points of order ‘

into Fqk there need to be ‘-th

roots of unity are in F∗
qk

.

The embedding degree k satisfies

k is minimal with ‘ | qk − 1.



E is supersingular if

for | E(Fq) |= q + 1− t, q = pr,

it holds that t ≡ 0 mod p.

Otherwise it is ordinary.

Example:

y2 + y = x3 + a4x+ a6 over F2r

is supersingular:

Each (x; y) point also gives

(x; y + 1) 6= (x; y).

All points come in pairs,

except for ∞,

so | E(F2r ) |= 1+even,

so t ≡ 0 mod 2.



Embedding degrees

Let E be supersingular and

q = p ≥ 5, i.e p > 2
√
p.

Hasse’s Theorem states

| t |≤ 2
√
p.

E supersingular implies

t ≡ 0 mod p, so t = 0 and

| E(Fp) |= p+ 1:

Obviously

(p+ 1) | p2 − 1 = (p+ 1)(p− 1)

so k ≤ 2 for supersingular curves

over prime fields.



Distortion maps

For supersingular curves there

exist maps

ffi : E(Fq)→ E(Fqk)

i.e. maps G1 → G2, giving

ẽ(P; P ) 6= 1 for ẽ(P; P ) =

e(P; ffi(P )):

Such a map is called a

distortion map.

These maps are important since

the only pairings we know how to

compute are variants of

Weil pairing and Tate pairing

which have e(P; P ) = 1.



Examples:

y2 = x3 + a4x,

for p ≡ 3 (mod 4).

Distortion map

(x; y) 7→ (−x;
√
−1y).

y2 = x3 +a6, for p ≡ 2 (mod 3).

Distortion map (x; y) 7→ (jx; y)

with j3 = 1; j 6= 1.

In both cases, #E(Fp) = p + 1,

so k = 2.



Example from Tuesday:

p = 1000003 ≡ 3 mod 4 and

y2 = x3 − x over Fp.

Has 1000004 = p+ 1 points.

P = (101384; 614510) is a point

of order 500002.

nP = (670366; 740819).

Construct Fp2 as Fp(i).

ffi(P ) = (898619; 614510i).

Invoke magma and compute

e(P; ffi(P )) = 387265 + 276048i;

e(Q; ffi(P )) = 609466 + 807033i.

Solve with index calculus to get

n = 78654.

(Btw. this is the clock).



Summary of pairings

Menezes, Okamoto, and Vanstone

for E supersingular:

For p = 2 have k ≤ 4.

For p = 3 we k ≤ 6

Over Fp, p ≥ 5 have k ≤ 2.

These bounds are attained.

Not only supersingular curves:

MNT curves are non-supersingular

curves with small k.

Other examples constructed for

pairing-based cryptography –

but small k unlikely to occur for

random curve.



Summary of other attacks

Definition of embedding degree

does not cover all attacks.

For Fpn watch out that pairing

can map to Fpkm with m < n.

Watch out for this when selecting

curves over Fpn .

Anomalous curves:

If E=Fp has #E(Fp) = p

then transfer E(Fp) to (Fp;+).

Very easy DLP.

Not a problem for Koblitz curves,

attack applies to

order-p subgroup.



Weil descent:

Maps DLP in E over Fpmn

to DLP on variety J over Fpn .

J has larger dimension; elements

represented as polynomials of low

degree. ⇒ index calculus.

This is efficient if dimension of J

is not too big.

Particularly nice to compute

with J if it is the Jacobian of a

hyperelliptic curve C.

For genus g get complexity

Õ(p
2− 2

g+1 ) with the factor

base described before, since

polynomials have degree <= g.


