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The Certicom challenges
1997: Certicom announces several ECDLP prizes:

The Challenge is to compute the ECC private keys

from the given list of ECC public keys and associated

system parameters. This is the type of problem

facing an adversary who wishes to completely defeat

an elliptic curve cryptosystem.

Objectives stated by Certicom:

I Increase community's understanding of ECDLP di�culty.

I Con�rm theoretical comparisons of ECC and RSA.

I Help users select suitable key sizes.

I Compare ECDLP di�culty for F2m and Fp.

I Compare F2m ECDLP di�culty for random and Koblitz.

I Stimulate research in algorithmic number theory.
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The Certicom challenges, level 0: exercises
�Estimated number

Bits Name of machine days� Prize
79 ECCp-79 146 book
79 ECC2-79 352 book
89 ECCp-89 4360 book
89 ECC2-89 11278 book
97 ECC2K-95 8637 $5000
97 ECCp-97 71982 $5000
97 ECC2-97 180448 $5000

Certicom believes that it is feasible that the 79-bit

exercises could be solved in a matter of hours, the

89-bit exercises could be solved in a matter of days,

and the 97-bit exercises in a matter of weeks using a

network of 3000 computers.
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The Certicom challenges, level 1

�Estimated number
Bits Name of machine days� Prize
109 ECC2K-108 1300000 $10000
109 ECCp-109 9000000 $10000
109 ECC2-109 21000000 $10000
131 ECC2K-130 2700000000 $20000
131 ECCp-131 23000000000 $20000
131 ECC2-131 66000000000 $20000

The 109-bit Level I challenges are feasible using a

very large network of computers. The 131-bit Level I

challenges are expected to be infeasible against

realistic software and hardware attacks, unless of

course, a new algorithm for the ECDLP is discovered.
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The Certicom challenges, level 2

�Estimated number
Bits Name of machine days� Prize
163 ECC2K-163 320000000000000 $30000
163 ECCp-163 2300000000000000 $30000
163 ECC2-163 6200000000000000 $30000
191 ECCp-191 48000000000000000000 $40000
191 ECC2-191 100000000000000000000 $40000
239 ECC2K-238 92000000000000000000000000 $50000
239 ECCp-239 1400000000000000000000000000 $50000
239 ECC2-238 2100000000000000000000000000 $50000
359 ECCp-359 ≈ ∞ $100000

The Level II challenges are infeasible given today's

computer technology and knowledge.
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Broken challenges

1997: Baisley and Harley break ECCp-79.
1997: Harley et al. break ECC2-79.
1998: Harley et al. break ECCp-89.
1998: Harley et al. break ECC2-89.
1998: Harley et al. (1288 computers) break ECCp-97.
1998: Harley et al. (200 computers) break ECC2K-95.
1999: Harley et al. (740 computers) break ECC2-97.
2000: Harley et al. (9500 computers) break ECC2K-108.
2002: Monico et al. (10000 computers) break ECCp-109.
2004: Monico et al. (2600 computers) break ECC2-109.

Updated 2003 document cert_ecc_challenge.pdf still said
�109-bit Level I challenges are feasible using a very large
network . . . 131-bit Level I challenges are expected to be
infeasible� etc.
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The Certicom challenges ECC2-X

VAM1 research retreat in
Lausanne on SHARCS topics.

Decision to analyze the
Certicom challenges
ECC2K-130, ECC2-131,
ECC2K-163, ECC2-163.
Can we break ECC2K-130?
�Infeasible� sounds tempting.

Direct e�ects:

I Certicom backpedals. Withdraws �infeasible� statement.
Instead says that ECC2K-130 �may be within reach.�

I ECRYPT has several new research papers, starting with
paper at SHARCS �The Certicom challenges ECC2-X.�
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The target: ECC2K-130
The Koblitz curve y 2 + xy = x3 + 1 over
F2131 = F2[z ]/(z

131 + z13 + z2 + z + 1)
has 4` points, where ` is the prime
680564733841876926932320129493409985129 ≈ 2129.

Certicom generated two random points on the curve
and multiplied them by 4, obtaining the following points P ,Q:

x(P) = 05 1C99BFA6 F18DE467 C80C23B9 8C7994AA

y(P) = 04 2EA2D112 ECEC71FC F7E000D7 EFC978BD

x(Q) = 06 C997F3E7 F2C66A4A 5D2FDA13 756A37B1

y(Q) = 04 A38D1182 9D32D347 BD0C0F58 4D546E9A

The challenge:
Find an integer k ∈ {0, 1, . . . , `− 1} such that [k]P = Q.
Worthy target:

$ 20000 (but only CAD)128-bit curves have been proposed for real
(RFID, TinyTate).
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Arithmetic on ECC2K-130
Elements of the Koblitz curve: a special point P∞, and each
(x1, y1) ∈ F2131 × F2131 satisfying y 2

1
+ x1y1 = x3

1
+ 1.

How to add P1,P2:
I P1 + P∞ = P∞ + P1 = P1; (x1, y1) + (x1, y1 + x1) = P∞.
I If x1 6= 0 the double [2](x1, y1) = (x3, y3) is given by

x3 = λ2 + λ, y3 = λ(x1 + x3) + y1 + x3, where λ = x1 +
y1

x1
.

I If x1 6= x2 the sum (x1, y1) + (x2, y2) = (x3, y3) is given by

x3 = λ2+λ+x1+x2, y3 = λ(x1+x3)+y1+x3, where λ =
y1 + y2

x1 + x2
.

Cost: 1I (inversion), 2M (multiplications), 1S (squaring).
I For an overview of how to perform these operations in

other coordinate systems see the EFD:
http://hyperelliptic.org/EFD/

and upcoming talk.
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Koblitz curves � the Frobenius endomorphism

I In 1991 Koblitz pointed out that scalar multiplications
[m]P can be computed faster on curves

Ea : y 2 + xy = x3 + ax2 + 1,

where a is restricted to {0, 1}.
I The main observation is that if (x1, y1) ∈ Ea(F2n) then

also the point σ(P) = (x2
1
, y 2

1
) is in Ea(F2n) and these

points are related by

σ2(P) + [µ]σ(P) + [2]P = P∞,

where µ = 1 for a = 0 and µ = −1 for a = 1. The map σ
extends the Frobenius automorphism of F2n to Ea(F2n)
and is thus called the Frobenius endomorphism of Ea.
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Koblitz curves � usage of σ

I Koblitz, Meyer�Sta�elbach, and Solinas showed that in
the computation of [m]P the double-and-add method can
be replaced by a σ-and-add method. Instead of needing
log

2
m doublings the Frobenius-based method needs

log
2
m applications of σ.

I This means that instead of 1I+ 2M+ 1S per bit of m

only 2S are needed per bit of m.

I The cost per addition does not change for these curves.
I A NAF version reduces the number of additions to

log2m/3 on average without needing any

precomputations.
I Analogues of (binary) windowing methods exist in

Frobenius variants.
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The most important ECDL algorithms
No known index-calculus attack applies to ECC2K-130.
But can still use generic attacks that work in any group:

I The Pohlig�Hellman attack reduces the hardness of the
ECDLP to the hardness of the ECDLP in the largest
subgroup of prime order: in this case order `.

I The Baby-Step Giant-Step attack �nds the logarithm in√
` steps and

√
` storage by comparing Q − [jt]P (the

giant steps) to a sorted list of all [i ]P (the baby steps),
where 0 ≤ i , j ≤ d

√
`e and t = d

√
`e.

I Pollard's rho and kangaroo methods also use O(
√

`) steps
but require constant memory�much less expensive! The
kangaroo method would be faster if the logarithm were
known to lie in a short interval; for us rho is best.

Lots of slides on my homepage from recent course on ECDLP.
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Pollard's rho method
Make a pseudo-random walk in 〈P〉, where the next step
depends on current point: Pi+1 = f (Pi).

Birthday paradox: Randomly choosing from ` elements picks
one element twice after about

√
π`/2 draws.

The walk has now entered a cycle.
Cycle-�nding algorithm (e.g., Floyd) quickly detects this.

Assume that for each point we know ai , bi ∈ Z/`Z so that
Pi = [ai ]P + [bi ]Q. Then Pi = Pj means that

[ai ]P + [bi ]Q = [aj ]P + [bj ]Q so [bi − bj ]Q = [aj − ai ]P .

If bi 6= bj the ECDLP is solved: k = (aj − ai)/(bi − bj).

e.g. �Adding walk�: Start with P0 = P and put
f (Pi) = Pi + [cr ]P + [dr ]Q where r = h(Pi).
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A rho within a random walk on 1024 elements

Method is called rho method because of the shape.
15



Parallel collision search
Running Pollard's rho method on N computers gives speedup
of ≈

√
N from increased likelihood of �nding collision.

Want better way to spread computation across clients.
Want to �nd collisions between walks on di�erent machines,
without frequent synchronization!

Perform walks with di�erent starting points but same update
function on all computers. If same point is found on two
di�erent computers also the following steps will be the same.

Terminate each walk once it hits a distinguished point.
Attacker chooses de�nition of distinguished points;
can be more or less frequent. Do not wait for cycle.

Collect all distinguished points in central database.

Expect collision within O(
√

`/N) iterations. Speedup ≈ N.
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Short walks ending in distinguished points

Blue and orange paths found the same distinguished point!
17



Equivalence classes
P and −P have same x-coordinate. Search for x-coordinate
collision. Search space for collisions is only `/2; this gives
factor

√
2 speedup . . . provided that f (Pi) = f (−Pi).

Solution: f (Pi) = |Pi |+ [cr ]P + [dr ]Q where r = h(|Pi |).
De�ne |Pi | as, e.g., lexicographic minimum of Pi ,−Pi .

Problem: this walk can run into fruitless cycles!
If there are S di�erent steps [cr ]P + [dr ]Q then with
probability 1/(2S) the following happens for some step:

Pi+2 = Pi+1 + [cr ]P + [dr ]Q

= −(Pi + [cr ]P + [dr ]Q) + [cr ]P + [dr ]Q = −Pi ,

i.e. |Pi | = |Pi+2|. Get |Pi+3| = |Pi+1|, |Pi+4| = |Pi |, etc.
Can detect and �x, but requires attention.
See PKC 2011 paper for how to do this over Fp.
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Equivalence classes for Koblitz curves

More savings: P and σi(P) have x(σj(P)) = x(P)2
j

.

Reduce number of iterations by another factor
√
n by

considering equivalence classes under Frobenius and ±.

Need to ensure that the iteration function satis�es
f (Pi) = f (±σj(Pi)) for any j .

Could again de�ne adding walk starting from |Pi |.
Rede�ne |Pi | as canonical representative of class containing
Pi : e.g., lexicographic minimum of Pi , −Pi , σ(Pi), etc.

Iterations now involve many squarings,
but squarings are not so expensive in characteristic 2.
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Iteration functions for Koblitz curves
Harley and Gallant-Lambert-Vanstone observe that in normal
basis, x(P) and x(P)2

j

have same Hamming weight
HW(x(P)) and suggest to use

Pi+1 = Pi + σj(Pi),

as iteration function. Choice of j depends on HW(x(P)).
This ensures that the walk is well de�ned on classes since

f (±σm(Pi)) = ±σm(Pi) + σj(±σm(Pi))

= ±(σm(Pi) + σm(σj(Pi))) = ±σm(Pi+1).

I GLV suggest using j = hash(HW(x(P))), where the hash
function maps to [1, n].

I Harley uses a smaller set of exponents; for his attack on
ECC2K-108 he takes j ∈ {1, 2, 4, 5, 6, 7, 8}; computed as
(HW(x(P)) mod 7) + 2 and replacing 3 by 1.

20



Our choice of iteration function I
Restricting size of j matters � squarings are cheap but

I in bitslicing need to compute all powers (no branches
allowed);

I code size matters (in particular for Cell CPU);

I logic costs area for FPGA;

I having a large set doesn't actually gain much randomness
(see analysis coming up).

Having few coe�cients makes it possible to exclude short
fruitless cycles. To do so, compute the shortest vector in the

lattice
{
v :

∏
j(1 + σj)vj = 1

}
. Usually the shortest vector has

negative coe�cients (which cannot happen with the iteration);
shortest vector with positive coe�cients is somewhat longer.
For implementation it is better to have a continuous interval
of exponents, so shift the interval if shortest vector is short.
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Our choice of iteration function II
Our iteration function:

Pi+1 = Pi + σj(Pi),

where j = (HW(x(P))/2 mod 8) + 3, so
j ∈ {3, 4, 5, 6, 7, 8, 9, 10}. Shortest combination of these
powers is long. Note that HW(x(P)) is always even.

Iteration consists of

I computing the Hamming weight HW(x(P)) of the
normal-basis representation of x(P);

I checking for distinguished points (is HW(x(P)) ≤ 34?);

I computing j and P + σj(P).

This choice of iteration function avoids fruitless cycles �
Koblitz curves save factor of

√
2n and avoid problems dealing

with cycles.
22



Analysis of our choice of iteration function
For a perfectly random walk ≈

√
π`/2 iterations

are expected on average. Have ` ≈ 2131/4 for ECC2K-130.

A perfectly random walk on classes under ± and Frobenius
would reduce number of iterations by

√
2 · 131.

Loss of randomness from having only 8 choices of j .
Further loss from non-randomness of Hamming weights:
Hamming weights around 66 are much more likely than at the
edges; e�ect still noticeable after reduction to 8 choices.

Our heuristic analysis says that the total loss is 6.9993%.
(Very new �anti-collision� analysis: actually above 7%.)
This loss is justi�ed by the very fast iteration function.

Average number of iterations for our attack against
ECC2K-130:

√
π`/(2 · 2 · 131) · 1.069993 ≈ 260.9.
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Some highlights
I Detailed analysis of randomness of iteration function.
I Could increase randomness of the walk but then iteration

function gets slower. Optimized:
time per iteration × # iterations

I Do not remember multiset of j 's; instead recompute this
from seed when collision is found (cheaper, less storage).

I Comparative study of normal basis and polynomial basis
representation; new: optimal polynomial bases.

I For Cell processor (chip in PlayStation 3) �erce battle
between bitsliced and non-bitsliced implementation.
Result: much faster implementation! (Bitsliced won.)

I Assembly language for GPUs and qhasm version. Get
control over powerful beast.

I FPGA implementation of Shokrollahi multiplier: big
speed-up, useful also for constructive ECC.
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Faster implementations

500

750

1000

1500

2000

3000

4000

October 2009 March 2010 now

GTX 295

graphics card

FPGA

(RIVYERA

has 128!)

Cell in

PlayStation

Core 2 CPU

Number of cards or chips needed for 68 · 109 iterations/second.
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Running the attack
Is ECC2K-130 feasible for a serious attacker? Obviously.

Is ECC2K-130 feasible for a big public Internet project? Yes.
Is ECC2K-130 feasible for us? We think so.
To prove it we're running the attack.

Eight central servers receive points, pre-sort the points into
8192 RAM bu�ers, �ush the bu�ers to 8192 disk �les.

Periodically read each �le into RAM, sort, �nd collisions.
Also double-check random samples for validity.

Several sites contribute points, including several clusters. E.g.
test runs on �rst generation of PRACE clusters

http://www.prace-project.eu

Each packet is encrypted, authenticated, veri�ed, decrypted
using http://nacl.cace-project.eu; costs 16 bytes.
Total block cost: 1090-byte IP packet plus 66-byte ack.

26
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To prove it we're running the attack.

Eight central servers receive points, pre-sort the points into
8192 RAM bu�ers, �ush the bu�ers to 8192 disk �les.

Periodically read each �le into RAM, sort, �nd collisions.
Also double-check random samples for validity.

Several sites contribute points, including several clusters. E.g.
test runs on �rst generation of PRACE clusters

http://www.prace-project.eu
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Get more details, and watch our progress!

http://ecc-challenge.info

https://twitter.com/ECCchallenge

Papers and preprints:

I �The Certicom challenges ECC2-X� (SHARCS 2009)

I �ECC2K-130 on Cell CPUs� (AFRICACRYPT 2010)

I �Type-II optimal polynomial bases� (WAIFI 2010)

I �Breaking elliptic curve cryptosystems using
recon�gurable hardware� (FPL 2010)

I �ECC2K-130 on NVIDIA GPUs� (INDOCRYPT 2010)

I �Usable assembly language for GPUs�

I �Anti-collisions in Pollard's rho method�

I The whole attack in progress: �Breaking ECC2K-130�
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