NTRU Prime

Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Christine van Vredendaal

21 June 2018

NTRU History

- Introduced by Hoffstein-Pipher-Silverman in 1998.
- Security related to lattice problems; pre-version cryptanalyzed with LLL by Coppersmith and Shamir.
- System parameters (p, q), p prime, integer q, gcd(3, q) = 1.
- All computations done in ring $R = \mathbf{Z}[x]/(x^p 1)$.

NTRU History

- Introduced by Hoffstein-Pipher-Silverman in 1998.
- Security related to lattice problems; pre-version cryptanalyzed with LLL by Coppersmith and Shamir.
- System parameters (p, q), p prime, integer q, gcd(3, q) = 1.
- All computations done in ring $R = \mathbf{Z}[x]/(x^p 1)$.
- Private key: $f, g \in R$ sparse with coefficients in $\{-1, 0, 1\}$. Additional requirement: f must be invertible in R modulo q.
- Public key $h = 3g/f \mod q$.
- Can see this as lattice with basis matrix

$$B = \left(\begin{array}{cc} q I_p & 0 \\ H & I_p \end{array}\right),$$

where H corresponds to multiplication by h/3 modulo $x^p - 1$.

 \bullet (g, f) is a short vector in the lattice as result of

$$(k, f)B = (kq + f \cdot h/3, f) = (g, f)$$

for some polynomial k (from fh/3 = g - kq).

Original NTRU

- System parameters (p, q), p prime, integer q, gcd(p, q) = 1.
- All computations done in ring $R = \mathbf{Z}[x]/(x^p 1)$, some use additional reduction modulo q, ring denoted by R_q .

Original NTRU

- System parameters (p, q), p prime, integer q, gcd(p, q) = 1.
- All computations done in ring $R = \mathbf{Z}[x]/(x^p 1)$, some use additional reduction modulo q, ring denoted by R_q .
- Private key: $f,g \in R$ with coefficients in $\{-1,0,1\}$, almost all coefficients are zero (small fixed number are nonzero). Additional requirement: f must be invertible in R modulo q and modulo q.
- Public key $h = 3g/f \mod q$.

Original NTRU

- System parameters (p, q), p prime, integer q, gcd(p, q) = 1.
- All computations done in ring $R = \mathbf{Z}[x]/(x^p 1)$, some use additional reduction modulo q, ring denoted by R_q .
- Private key: $f,g \in R$ with coefficients in $\{-1,0,1\}$, almost all coefficients are zero (small fixed number are nonzero). Additional requirement: f must be invertible in R modulo q and modulo q.
- Public key $h = 3g/f \mod q$.
- Encryption of message $m \in R$, coefficients in $\{-1, 0, 1\}$: Pick random, sparse $r \in R$, same sample space as f; compute:

$$c = r \cdot h + m \mod q$$
.

• Decryption of $c \in R_a$: Compute

$$a = f \cdot c = f(rh + m) \equiv f(3rg/f + m) \equiv 3rg + fm \mod q$$

move all coefficients to [-q/2, q/2]. If everything is small enough then a equals 3rg + fm in R and $m = a/f \mod 3$.

Why we don't stick with original NTRU.

• Decryption of $c \in R_q$: Compute

$$a = f \cdot c = f(rh + m) \equiv f(3rg/f + m) \equiv 3rg + fm \mod q,$$

move all coefficients to [-q/2, q/2]. If everything is small enough then a equals 3rg + fm in \mathcal{R} and $m = a/f \mod 3$.

• Decryption of $c \in R_q$: Compute

$$a = f \cdot c = f(rh + m) \equiv f(3rg/f + m) \equiv 3rg + fm \mod q,$$

move all coefficients to [-q/2, q/2]. If everything is small enough then a equals 3rg + fm in \mathcal{R} and $m = a/f \mod 3$.

Let

$$L(d,t) = \{F \in \mathcal{R} | F \text{ has } d \text{ coefficients equal to } 1$$

and $t \text{ coefficients equal to } -1, \text{ all others } 0\}.$

- ullet Then $f \in L(d_f,d_f-1)$, $r \in L(d_r,d_r)$, and $g \in L(d_g,d_g)$ with $d_r < d_g$.
- Then 3rg + fm has coefficients of size at most

$$3 \cdot 2d_r + 2d_f - 1$$

• Decryption of $c \in R_q$: Compute

$$a = f \cdot c = f(rh + m) \equiv f(3rg/f + m) \equiv 3rg + fm \mod q$$

move all coefficients to [-q/2, q/2]. If everything is small enough then a equals 3rg + fm in \mathcal{R} and $m = a/f \mod 3$.

Let

$$L(d,t) = \{F \in \mathcal{R} | F \text{ has } d \text{ coefficients equal to } 1$$

and $t \text{ coefficients equal to } -1, \text{ all others } 0\}.$

- Then $f \in L(d_f, d_f 1)$, $r \in L(d_r, d_r)$, and $g \in L(d_g, d_g)$ with $d_r < d_g$.
- Then 3rg + fm has coefficients of size at most

$$3 \cdot 2d_r + 2d_f - 1$$

which is larger than q/2 for typical parameters. Such large coefficients are highly unlikely – but annoying for applications and guarantees.

• Decryption of $c \in R_q$: Compute

$$a = f \cdot c = f(rh + m) \equiv f(3rg/f + m) \equiv 3rg + fm \mod q,$$

move all coefficients to [-q/2, q/2]. If everything is small enough then a equals 3rg + fm in \mathcal{R} and $m = a/f \mod 3$.

Let

and
$$t$$
 coefficients equal to -1 , all others 0 }.

• Then $f \in L(d_f, d_f - 1)$, $r \in L(d_r, d_r)$, and $g \in L(d_g, d_g)$ with $d_r < d_g$.

 $L(d,t) = \{F \in \mathcal{R} | F \text{ has } d \text{ coefficients equal to } 1$

• Then 3rg + fm has coefficients of size at most

$$3 \cdot 2d_r + 2d_f - 1$$

which is larger than q/2 for typical parameters. Such large coefficients are highly unlikely – but annoying for applications and guarantees.

• Security decreases with large q; reduction is important.

Reason 2: Evaluation-at-1 attack

- Ciphertext equals c = rh + m and $r \in L(d_r, d_r)$, so r(1) = 0 and $g \in L(d_g, d_g)$, so h(1) = g(1)/f(1) = 0.
- This implies

$$c(1) = r(1)h(1) + m(1) = m(1)$$

which gives information about m, in particular if |m(1)| is large.

Reason 2: Evaluation-at-1 attack

- Ciphertext equals c = rh + m and $r \in L(d_r, d_r)$, so r(1) = 0 and $g \in L(d_g, d_g)$, so h(1) = g(1)/f(1) = 0.
- This implies

$$c(1) = r(1)h(1) + m(1) = m(1)$$

which gives information about m, in particular if |m(1)| is large.

• For other choices of r and h, such as $L(d_r, d_r - 1)$ or such, one knows r(1) and h is public, so evaluation at 1 leaks m(1).

Reason 2: Evaluation-at-1 attack

- Ciphertext equals c = rh + m and $r \in L(d_r, d_r)$, so r(1) = 0 and $g \in L(d_g, d_g)$, so h(1) = g(1)/f(1) = 0.
- This implies

$$c(1) = r(1)h(1) + m(1) = m(1)$$

which gives information about m, in particular if |m(1)| is large.

- For other choices of r and h, such as $L(d_r, d_r 1)$ or such, one knows r(1) and h is public, so evaluation at 1 leaks m(1).
- Original NTRU rejects extreme messages this is dealt with by randomizing m via a padding (not mentioned so far).
- Could also replace $x^p 1$ by $\Phi_p = (x^p 1)/(x 1)$ to avoid attack.

Reason 3: Mappings to subrings

- Consider $R_q = (\mathbf{Z}/q)[x]/(x^p 1)$.
- Can possibly get more information on m from homomorphism $\psi:R_q\to T$, for some ring T.
- Typical choice in original NTRU: q = 2048 leads to natural ring maps from $(\mathbf{Z}/2048)[x]/(x^p 1)$ to
 - $(\mathbf{Z}/2)[x]/(x^p-1)$,
 - $(\mathbf{Z}/4)[x]/(x^p-1),$
 - $(\mathbf{Z}/8)[x]/(x^p-1)$, etc.

Reason 3: Mappings to subrings

- Consider $R_q = (\mathbf{Z}/q)[x]/(x^p 1)$.
- Can possibly get more information on m from homomorphism $\psi: R_q \to T$, for some ring T.
- Typical choice in original NTRU: q = 2048 leads to natural ring maps from $(\mathbf{Z}/2048)[x]/(x^p 1)$ to
 - $(\mathbf{Z}/2)[x]/(x^p-1),$
 - $(\mathbf{Z}/4)[x]/(x^p-1),$
 - $(\mathbf{Z}/8)[x]/(x^p-1)$, etc.
- Unclear whether these can be exploited to get information on *m*.
- Maybe, complicated. [Silverman-Smart-Vercauteren '04]
- If you pick bad rings, then yes. [Eisenträger-Hallgren-Lauter '14, Elias-Lauter-Ozman-Stange '15, Chen-Lauter-Stange '16, Castryck-Iliashenko-Vercauteren '16]

Reasons 4 and 5

- Rings of original NTRU also have
 - ▶ a large proper subfield (used in attack by [Bauch-Bernstein-Lange-de Valence-van Vredendaal '17], attack by [Albrecht-Bai-Ducas '16], and attack in Bernstein's 2014 blogpost).
 - many easily computable automorphisms (usable to find a fundamental basis of short units which is used in [Campbell-Groves-Shepherd '14] and subsequently [Cramer-Ducas-Peikert-Regev '15, Cramer-Ducas-Wesolowski '17, Alice's talk]).

Reasons 4 and 5

- Rings of original NTRU also have
 - ▶ a large proper subfield (used in attack by [Bauch-Bernstein-Lange-de Valence-van Vredendaal '17], attack by [Albrecht-Bai-Ducas '16], and attack in Bernstein's 2014 blogpost).
 - many easily computable automorphisms (usable to find a fundamental basis of short units which is used in [Campbell-Groves-Shepherd '14] and subsequently [Cramer-Ducas-Peikert-Regev '15, Cramer-Ducas-Wesolowski '17, Alice's talk]).
- Whether paranoia, or valid panic; what can we do about it?

NTRU Prime ring

 Differences from original NTRU: prime degree, large Galois group, inert modulus.

NTRU Prime ring

- Differences from original NTRU: prime degree, large Galois group, inert modulus.
- Choose monic irreducible polynomial $P \in \mathbf{Z}[x]$.
- Choose prime q such that P is irreducible modulo q; this means that q is inert in $\mathcal{R} = \mathbf{Z}[x]/P$ and $(\mathbf{Z}/q)[x]/P$ is a field.

NTRU Prime ring

- Differences from original NTRU: prime degree, large Galois group, inert modulus.
- Choose monic irreducible polynomial $P \in \mathbf{Z}[x]$.
- Choose prime q such that P is irreducible modulo q; this means that q is inert in $\mathcal{R} = \mathbf{Z}[x]/P$ and $(\mathbf{Z}/q)[x]/P$ is a field.
- Further choose P of prime degree p with large Galois group.
- Specifically, set $P = x^p x 1$. This has Galois group S_p of size p!.
- NTRU Prime works over the NTRU Prime field

$$\mathcal{R}/q = (\mathbf{Z}/q)[x]/(x^p - x - 1).$$

NTRU Prime: added defenses

Prime degree, large Galois group, inert modulus.

NTRU Prime: added defenses

Prime degree, large Galois group, inert modulus.

- → Only subfields of $\mathbf{Q}[x]/P$ are itself and \mathbf{Q} . Avoids structures used by, e.g., multiquad attack.
- → Large Galois group means no easy to compute automorphisms. Roots of *P* live in degree-*p*! extension. Avoids structures used by Campbell–Groves–Shepherd attack (obtaining short unit basis). No hopping between units, so no easy way to extend from some small unit to a fundamental system of short units.
- → No ring homomorphism to smaller nonzero rings. Avoids structures used by Chen-Lauter-Stange attack.

NTRU Prime: added defenses

Prime degree, large Galois group, inert modulus.

- → Only subfields of $\mathbf{Q}[x]/P$ are itself and \mathbf{Q} . Avoids structures used by, e.g., multiquad attack.
- → Large Galois group means no easy to compute automorphisms. Roots of *P* live in degree-*p*! extension. Avoids structures used by Campbell–Groves–Shepherd attack (obtaining short unit basis). No hopping between units, so no easy way to extend from some small unit to a fundamental system of short units.
- → No ring homomorphism to smaller nonzero rings. Avoids structures used by Chen-Lauter-Stange attack.

Irreducibility also avoids the evaluation-at-1 attack which simplifies padding.

Streamlined NTRU Prime: private and public key

- System parameters (p, q, t), p, q prime, $q \ge 32t + 1$.
- Pick g small in R

$$g = g_0 + \dots + g_{p-1}x^{p-1}$$
 with $g_i \in \{-1, 0, 1\}$

No weight restriction on g, only size restriction on coefficients; g required to be invertible in $\mathcal{R}/3$.

• Pick t-small $f \in \mathcal{R}$

$$f = f_0 + \dots + f_{p-1}x^{p-1}$$
 with $f_i \in \{-1, 0, 1\}$ and $\sum |f_i| = 2t$

Since \mathcal{R}/q is a field, f is invertible.

- Compute public key h = g/(3f) in \mathcal{R}/q .
- Private key is f and $1/g \in \mathcal{R}/3$.

Streamlined NTRU Prime: private and public key

- System parameters (p, q, t), p, q prime, $q \ge 32t + 1$.
- Pick g small in \mathcal{R}

$$g = g_0 + \dots + g_{p-1}x^{p-1}$$
 with $g_i \in \{-1, 0, 1\}$

No weight restriction on g, only size restriction on coefficients; g required to be invertible in $\mathcal{R}/3$.

• Pick t-small $f \in \mathcal{R}$

$$f = f_0 + \dots + f_{p-1}x^{p-1}$$
 with $f_i \in \{-1, 0, 1\}$ and $\sum |f_i| = 2t$

Since \mathcal{R}/q is a field, f is invertible.

- Compute public key h = g/(3f) in \mathcal{R}/g .
- Private key is f and $1/g \in \mathcal{R}/3$.
- Difference from original NTRU: more key options, 3 in denominator.

Streamlined NTRU Prime: KEM/DEM

- Streamlined NTRU Prime is a Key Encapsulation Mechanism (KEM).
- Combine with Data Encapsulation Mechanism (DEM) to send messages.

Streamlined NTRU Prime: KEM/DEM

- Streamlined NTRU Prime is a Key Encapsulation Mechanism (KEM).
- Combine with Data Encapsulation Mechanism (DEM) to send messages.

KEM:

- Alice looks up Bob's public key h.
- Picks *t*-small $r \in \mathcal{R}$ (i.e., $r_i \in \{-1, 0, 1\}, \sum_{i} |r_i| = 2t$).
- Computes hr in \mathcal{R}/q , lifts coefficients to $\mathbf{Z} \cap [-(q-1)/2, (q-1)/2]$.

Streamlined NTRU Prime: KEM/DEM

- Streamlined NTRU Prime is a Key Encapsulation Mechanism (KEM).
- Combine with Data Encapsulation Mechanism (DEM) to send messages.

KEM:

- Alice looks up Bob's public key h.
- Picks *t*-small $r \in \mathcal{R}$ (i.e., $r_i \in \{-1, 0, 1\}, \sum |r_i| = 2t$).
- Computes hr in \mathcal{R}/q , lifts coefficients to $\mathbf{Z} \cap [-(q-1)/2, (q-1)/2]$.
- Rounds each coefficient to the nearest multiple of 3 to get c.
- Computes hash(r) = (C|K).
- Sends (C|c), uses session key K for DEM.

Rounding hr saves bandwidth and adds same entropy as adding ternary m.

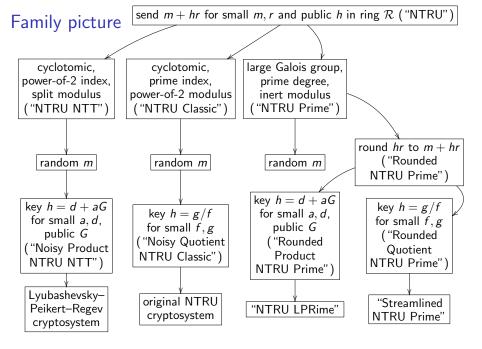
Streamlined NTRU Prime: decapsulation

Bob decrypts (C|c):

- Reminder h = g/(3f) in \mathcal{R}/q .
- Computes 3fc = 3f(hr + m) = gr + 3fm in \mathcal{R}/q , lifts coefficients to $\mathbf{Z} \cap [-(q-1)/2, (q-1)/2]$.
- Reduces the coefficients modulo 3 to get $a = gr \in \mathcal{R}/3$.
- Computes $r' = a/g \in \mathcal{R}/3$, lifts r' to \mathcal{R} .
- Computes hash(r') = (C'|K') and c' as rounding of hr'.
- Verifies that c' = c and C' = C.

If all checks verify, K = K' is the session key between Alice and Bob and can be used in a data encapsulation mechanism (DEM).

Choosing $q \ge 32t+1$ means no decryption failures, so r=r' and verification works unless (C|c) was incorrectly generated or tempered with.



Streamlined NTRU Prime: Security

• What we know so far:

	Original NTRU	Common R-LWE	Streamlined NTRU Prime
Polynomial P	$x^{p} - 1$	$x^{p} + 1$	$x^{p} - x - 1$
Degree p	prime	power of 2	prime
Modulus q	2 ^d	prime	prime
# factors of P in \mathcal{R}/q	> 1	р	1
# proper subfields	> 1	many	1
Every <i>m</i> encryptable	X	√	✓
No decryption failures	X	X	✓

Streamlined NTRU Prime: Security

What we know so far:

	Original NTRU	Common R-LWE	Streamlined NTRU Prime
Polynomial P	$x^{p} - 1$	$x^{p} + 1$	$x^{p} - x - 1$
Degree p	prime	power of 2	prime
Modulus q	2 ^d	prime	prime
$\#$ factors of P in \mathcal{R}/q	> 1	р	1
# proper subfields	> 1	many	1
Every <i>m</i> encryptable	X	√	✓
No decryption failures	X	X	✓

Streamlined NTRU Prime: Security

What we know so far:

	Original NTRU	Common R-LWE	Streamlined NTRU Prime
Polynomial P	$x^{p} - 1$	$x^{p} + 1$	$x^{p} - x - 1$
Degree p	prime	power of 2	prime
Modulus q	2 ^d	prime	prime
$\#$ factors of P in \mathcal{R}/q	> 1	р	1
# proper subfields	> 1	many	1
Every <i>m</i> encryptable	X	✓	✓
No decryption failures	X	X	✓

- Because of the last 2 √'s the analysis is simpler than that of original NTRU.
- But is it still fast?

Polynomial Multiplication

- Main bottleneck is polynomial multiplication
- Classic choices of $x^p 1$ and $x^n + 1$ have very fast reduction.
- NTRU uses $x^p 1$ for p prime and $q = 2^N$.
- Most R-LWE systems use $x^n + 1$, with $n = 2^t$; q prime. Typical implementations use the number-theoretic transform (NTT). This requires q to be "NTT-friendly", i.e., $x^n + 1$ splits into linear factors modulo q, so $q \equiv 1 \mod 2n$;
 - e.g. n = 1024 and $q = 6 \cdot 2048 + 1$.
- Complete factorization of $x^n + 1$ modulo q is also used in search-to-decision problem reductions.
- Obvious benefit: NTT is fast.
- Not so obvious downside: NTT friendly combinations are rare likely to overshoot security targets in some direction.

Multiplication for NTRU Prime

- How to compute efficiently in $\mathbf{Z}[x]/(x^p-x-1)$?
- Reduction is not too bad, but no special tricks for multiplication.
- Multiplication algorithms considered:
 - refined Karatsuba,
 - arbitrary degree variant of Karatsuba (3–7 levels).

Multiplication for NTRU Prime

- How to compute efficiently in $\mathbf{Z}[x]/(x^p-x-1)$?
- Reduction is not too bad, but no special tricks for multiplication.
- Multiplication algorithms considered:
 - refined Karatsuba,
 - ▶ arbitrary degree variant of Karatsuba (3–7 levels).
- Best operation count obtained so far for 768 × 768:
 - ▶ Toom-6 from 768×768 to 128×128 .
 - ▶ 5-level refined Karatsuba from 128×128 to 4×4 .
- Best speed obtained so far for 768×768 :
 - ▶ 5-level refined Karatsuba from 768×768 to 24×24 .
 - ▶ Half precision: twice as many entries in vectors.

Vectorization

Vectorization

Karatsuba

 $\,\blacktriangleright\,$ cut polynomials into smaller parts; independent operations on the parts

Vectorization

- Karatsuba
 - cut polynomials into smaller parts; independent operations on the parts

- Vectorization
 - vectorize across independent multiplications

Odlyzko's meet-in-the-middle attack on NTRU

• Idea: split the possibilities for f in two parts

$$h = (f_1 + f_2)^{-1}g$$

 $f_1 \cdot h = g - f_2 \cdot h$.

• If there was no g: collision search in $f_1 \cdot h$ and $-f_2 \cdot h$

Odlyzko's meet-in-the-middle attack on NTRU

• Idea: split the possibilities for f in two parts

$$h = (f_1 + f_2)^{-1}g$$

 $f_1 \cdot h = g - f_2 \cdot h$.

- If there was no g: collision search in $f_1 \cdot h$ and $-f_2 \cdot h$
- Solution: look for collisions in $c(f_1 \cdot h)$ and $c(-f_2 \cdot h)$ with

$$c(a_0 + a_1x + \dots + a_{p-1}x^{p-1}) = (\mathbf{1}(a_0 > 0), \dots, \mathbf{1}(a_{p-1} > 0))$$

using that g is small and thus +g often does not change the sign.

- If $c(f_1 \cdot h) = c(-f_2 \cdot h)$ check whether $h(f_1 + f_2)$ is in $L(d_g, d_g)$. For NTRU Prime check whether $h(f_1 + f_2)$ is small.
- Basically runs in squareroot of size of search space.

Attackable rotations

target is valid.

• In NTRU, x^if is simply a rotation of f, so it has the same coefficients, just at different positions. This means, x^if also gives a solution in the mitm attack: $hx^if = x^ig$ has same sparsity etc., increasing the number of targets.

Decryption using x^if works the same as with f for NTRU, so each

Attackable rotations

- In NTRU, xⁱf is simply a rotation of f, so it has the same coefficients, just at different positions. This means, xⁱf also gives a solution in the mitm attack: hxⁱf = xⁱg has same sparsity etc., increasing the number of targets.
 Decryption using xⁱf works the same as with f for NTRU, so each target is valid.
- In NTRU Prime $P=x^p-x-1$, so reduction modulo P changes density and weight, e.g.

$$(x^4 - x^2 + 1) \cdot x \equiv (x+1) - x^3 + x = x^3 + 2x + 1 \mod (x^5 - x - 1).$$

- For small i up to $p-1-\deg(f)$ have shifted (valid) target.
- Very unlikely that any $x^i f$ for large i produces viable keys; first reduction occurs on average at i = p/(2t).

Security against Odlyzko's meet-in-the-middle attack

• Number of choices for f is

$$\binom{p}{2t} 2^{2t}$$

because f is t-small, signs of those 2t coefficients are random.

Security against Odlyzko's meet-in-the-middle attack

Number of choices for f is

$$\binom{p}{2t} 2^{2t}$$

because f is t-small, signs of those 2t coefficients are random.

- We (over-)estimate number of viable rotations by p-t.
- Running time / memory mitm against Streamlined NTRU Prime

$$L = \frac{\sqrt{\binom{p}{2t}2^{2t}}}{\sqrt{2(p-t)}}.$$

Security against Odlyzko's meet-in-the-middle attack

Number of choices for f is

$$\binom{p}{2t} 2^{2t}$$

because f is t-small, signs of those 2t coefficients are random.

- We (over-)estimate number of viable rotations by p-t.
- Running time / memory mitm against Streamlined NTRU Prime

$$L = \frac{\sqrt{\binom{p}{2t}2^{2t}}}{\sqrt{2(p-t)}}.$$

• Memory requirement can be reduced by [van Vredendaal ANTS 2016].

Security against lattice attacks

Lattice attack setup is same as for NTRU.

- Recall h = g/(3f) in \mathcal{R}/q .
- This implies that for $k \in \mathcal{R}$: $f \cdot 3h + k \cdot q = g$.
- Streamlined NTRU Prime lattice

$$\begin{pmatrix} k & f \end{pmatrix} \begin{pmatrix} qI & 0 \\ H & I \end{pmatrix} = \begin{pmatrix} g & f \end{pmatrix}.$$

Security against lattice attacks

Lattice attack setup is same as for NTRU.

- Recall h = g/(3f) in \mathcal{R}/q .
- This implies that for $k \in \mathcal{R}$: $f \cdot 3h + k \cdot q = g$.
- Streamlined NTRU Prime lattice

$$\begin{pmatrix} k & f \end{pmatrix} \begin{pmatrix} qI & 0 \\ H & I \end{pmatrix} = \begin{pmatrix} g & f \end{pmatrix}.$$

- Keypair (g, f) is a short vector in this lattice.
- Asymptotically sieving works in $2^{0.292 \cdot d + o(d)}$ using $2^{0.208 \cdot d + o(d)}$ memory in dimension d.
- Crossover point between sieving and enumeration is still unclear.
- Memory is more an issue than time.

Hybrid attack

Howgrave-Graham combines lattice basis reduction and meet-in-the-middle attack.

• Idea: reduce submatrix of the Streamlined NTRU Prime lattice, then perform mitm on the rest.

Hybrid attack

Howgrave-Graham combines lattice basis reduction and meet-in-the-middle attack.

- Idea: reduce submatrix of the Streamlined NTRU Prime lattice, then perform mitm on the rest.
- Use BKZ on submatrix B to get B':

$$C \cdot \begin{pmatrix} qI & 0 \\ H & I \end{pmatrix} = \begin{pmatrix} qI_w & 0 & 0 \\ * & B' & 0 \\ * & * & I_{w'} \end{pmatrix}.$$

- Guess options for last w' coordinates of f, using collision search (as before).
- If the Hermite factor of B' is small enough, then a rounding algorithm can detect collision of halfguesses.

Security against the hybrid attack

• Balance the costs of the BKZ and mitm phase.

Security against the hybrid attack

- Balance the costs of the BKZ and mitm phase.
- Hoffstein, Pipher, Schanck, Silverman, Whyte, and Zhang [HPSWZ15] published simplfied analysis tool.
- Compute BKZ costs with Chen-Nguyen simulator.
- Estimate the mitm costs by estimating the size of the projected space [HPSWZ15].

Security against the hybrid attack

- Balance the costs of the BKZ and mitm phase.
- Hoffstein, Pipher, Schanck, Silverman, Whyte, and Zhang [HPSWZ15] published simplfied analysis tool.
- Compute BKZ costs with Chen-Nguyen simulator.
- Estimate the mitm costs by estimating the size of the projected space [HPSWZ15].
- For detailed formulas and justifications, see our paper https://eprint.iacr.org/2016/461 and NIST submission https://ntruprime.cr.yp.to.

Streamlined NTRU Prime Security: parameters

- We investigated security against the strongest known attacks; meet-in-the-middle (mitm), hybrid attack of BKZ and mitm, algebraic attacks, and sieving.
- Streamlined NTRU Prime 4591⁷⁶¹ and NTRU LPRime 4591⁷⁶¹ both use p = 761 and q = 4591.
- The resulting sizes and Haswell speeds show that reducing the attack surface has very low cost:

Metric	Streamlined	NTRU
	NTRU Prime 4591 ⁷⁶¹	LPRime 4591 ⁷⁶¹
Public-key size	1218 bytes	1047 bytes
Ciphertext size	1047 bytes	1175 bytes
Encapsulation time	59456 cycles	94508 cycles
Decapsulation time	97684 cycles	128316 cycles
Pre-quantum security	248 bits	225 bits

• Quantum computers will speed up attacks by less than squareroot.

Bonus slides: why automorphisms matter

Targets and history:

- 2014.10 Campbell–Groves–Shepherd describe an ideal-lattice-based system "Soliloquy"; claim quantum poly-time key recovery.
- 2010 Smart-Vercauteren system is practically identical to Soliloquy.
- 2009 Gentry system (simpler version described at STOC) has the same key-recovery problem.
- 2012 Garg-Gentry-Halevi multilinear maps have the same key-recovery problem (and many other security issues).

Smart-Vercauteren; Soliloquy

- Parameter: $k \ge 1$.
- Define $R = \mathbf{Z}[x]/\Phi_{2^k}$.
- Public key: prime q and $c \in \mathbf{Z}/q$.
- Secret key: short element $g \in R$ with gR = qR + (x c)R; i.e., short generator of the ideal qR + (x c)R.

Smart–Vercauteren; Soliloquy

- Parameter: $k \ge 1$.
- Define $R = \mathbf{Z}[x]/\Phi_{2^k}$.
- Public key: prime q and $c \in \mathbf{Z}/q$.
- Secret key: short element $g \in R$ with gR = qR + (x c)R; i.e., short generator of the ideal qR + (x c)R.
- 1993 Cohen textbook "A course in computational algebraic number theory" explains how to find generators.

Smart-Vercauteren; Soliloquy

- Parameter: $k \ge 1$.
- Define $R = \mathbf{Z}[x]/\Phi_{2^k}$.
- Public key: prime q and $c \in \mathbf{Z}/q$.
- Secret key: short element $g \in R$ with gR = qR + (x c)R; i.e., short generator of the ideal qR + (x c)R.
- 1993 Cohen textbook "A course in computational algebraic number theory" explains how to find generators.
- Smart-Vercauteren comment that this would take exponential time.
- But it actually takes subexponential time. Same basic idea as NFS.
- Campbell–Groves–Shepherd claim quantum poly time. Claim disputed by Biasse, not defended by CGS.

Smart-Vercauteren; Soliloquy

- Parameter: k > 1.
- Define $R = \mathbf{Z}[x]/\Phi_{2^k}$.
- Public key: prime q and $c \in \mathbf{Z}/q$.
- Secret key: short element $g \in R$ with gR = qR + (x c)R; i.e., short generator of the ideal qR + (x c)R.
- 1993 Cohen textbook "A course in computational algebraic number theory" explains how to find generators.
- Smart-Vercauteren comment that this would take exponential time.
- But it actually takes subexponential time. Same basic idea as NFS.
- Campbell–Groves–Shepherd claim quantum poly time. Claim disputed by Biasse, not defended by CGS.
- 2016 Biasse–Song: different algorithm that takes quantum poly time, building on 2014 Eisenträger–Hallgren–Kitaev–Song.

How to get a short generator?

- Have ideal I of R.
- Want short g with gR = I; have g' with g'R = I.
- Know g' = ug for some unit $u \in R^*$.
- To find u move to log lattice.

$$Log g' = Log u + Log g,$$

where Log is Dirichlet's log map.

- Dirichlet's unit theorem:
 Log R* is a lattice of known dimension.
- Finding Log u is a closest-vector problem in this lattice.

Quote from Campbell-Groves-Shepherd

"A simple generating set for the cyclotomic units is of course known. The image of \mathcal{O}^{\times} [here R^*] under the logarithm map forms a lattice. The determinant of this lattice turns out to be much bigger than the typical loglength of a private key α [here g], so it is easy to recover the causally short private key given any generator of $\alpha\mathcal{O}$ [here I], e.g. via the LLL lattice reduction algorithm."

Automorphisms

- $x \mapsto x^3$, $x \mapsto x^5$, $x \mapsto x^7$, etc. are automorphisms of $R = \mathbf{Z}[x]/\Phi_{2^k}$.
- Easy to see $(1-x^3)/(1-x) \in R^*$; for inverse use expansion.
- "Cyclotomic units" are defined as

$$R^* \cap \left\{ \pm x^{\mathsf{e}_0} \prod_i (1-x^i)^{\mathsf{e}_i} \right\}.$$

- Weber's conjecture:
 - All elements of R^* are cyclotomic units.
- Experiments confirm that SV is quickly broken by LLL using, e.g.,
 1997 Washington textbook basis for cyclotomic units.
- Shortness of basis is critical; this was not highlighted in CGS analysis.