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NTRU History

Introduced by Hoffstein—Pipher-Silverman in 1998.

Security related to lattice problems; pre-version cryptanalyzed with
LLL by Coppersmith and Shamir.

System parameters (p, q), p prime, integer g, gcd(3,q) = 1.

All computations done in ring R = Z[x]/(x? — 1).
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NTRU History

@ Introduced by Hoffstein—Pipher-Silverman in 1998.

@ Security related to lattice problems; pre-version cryptanalyzed with
LLL by Coppersmith and Shamir.

e System parameters (p, q), p prime, integer g, gcd(3,q) = 1.

@ All computations done in ring R = Z[x]/(xP — 1).

@ Private key: f, g € R sparse with coefficients in {—1,0,1}.
Additional requirement: f must be invertible in R modulo g.

@ Public key h =3g/f mod q.

@ Can see this as lattice with basis matrix

_(alb O
== (70 )

where H corresponds to multiplication by h/3 modulo xP — 1.
@ (g, f)is a short vector in the lattice as result of

for some polynomial k (from fh/3 = g — kq).
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Original NTRU

e System parameters (p, g), p prime, integer g, gcd(p, q) = 1.
@ All computations done in ring R = Z[x]/(xP — 1), some use additional
reduction modulo g, ring denoted by R,.
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Original NTRU

e System parameters (p, g), p prime, integer g, gcd(p, q) = 1.

@ All computations done in ring R = Z[x]/(xP — 1), some use additional
reduction modulo g, ring denoted by R,.

@ Private key: f, g € R with coefficients in {—1,0, 1}, almost all
coefficients are zero (small fixed number are nonzero).
Additional requirement: f must be invertible in R modulo g and
modulo 3.

e Public key h =3g/f mod q.
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Original NTRU

e System parameters (p, g), p prime, integer g, gcd(p, q) = 1.

@ All computations done in ring R = Z[x]/(xP — 1), some use additional
reduction modulo g, ring denoted by R,.

@ Private key: f, g € R with coefficients in {—1,0, 1}, almost all
coefficients are zero (small fixed number are nonzero).
Additional requirement: f must be invertible in R modulo g and
modulo 3.

e Public key h =3g/f mod q.

@ Encryption of message m € R, coefficients in {—1,0,1}:
Pick random, sparse r € R, same sample space as f; compute:

c=r-h+ mmod gq.
@ Decryption of c € R;: Compute
a=f-c=f(rh+m)=f(3rg/f+ m)=3rg + fmmod q,

move all coefficients to [—q/2, q/2]. If everything is small enough
then a equals 3rg + fm in R and m = a/f mod 3.
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Why we don’t stick with original NTRU.
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Reason 1: Decryption failures

@ Decryption of ¢ € R;: Compute
a=f-c=f(rh+m)=f(3rg/f +m)=3rg + fmmod q,

move all coefficients to [—q/2, q/2]. If everything is small enough
then a equals 3rg 4+ fm in R and m = a/f mod 3.
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Reason 1: Decryption failures
@ Decryption of ¢ € R;: Compute
a=f-c=f(rh+m)=f(3rg/f +m)=3rg + fmmod q,

move all coefficients to [—q/2, q/2]. If everything is small enough
then a equals 3rg 4+ fm in R and m = a/f mod 3.

o Let
L(d,t) ={F € R|F has d coefficients equal to 1

and t coefficients equal to —1, all others 0}.

@ Then f € L(df,df —1), r € L(d,,d,), and g € L(dg, dg) with d, < dg.
@ Then 3rg + fm has coefficients of size at most

3.2d, +2df — 1
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Reason 1: Decryption failures

@ Decryption of ¢ € R;: Compute
a=f-c=f(rh+m)=f(3rg/f +m)=3rg + fmmod q,

move all coefficients to [—q/2, q/2]. If everything is small enough
then a equals 3rg 4+ fm in R and m = a/f mod 3.
o Let

L(d,t) ={F € R|F has d coefficients equal to 1

and t coefficients equal to —1, all others 0}.

@ Then f € L(df,df —1), r € L(d,,d,), and g € L(dg, dg) with d, < dg.
@ Then 3rg + fm has coefficients of size at most

3.-2d,+2dr—1
which is larger than g/2 for typical parameters. Such large coefficients

are highly unlikely — but annoying for applications and guarantees.
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Reason 1: Decryption failures

@ Decryption of ¢ € R;: Compute
a=f-c=f(rh+m)=f(3rg/f +m)=3rg + fmmod q,

move all coefficients to [—q/2, q/2]. If everything is small enough
then a equals 3rg + fm in R and m = a/f mod 3.
o Let
L(d,t) ={F € R|F has d coefficients equal to 1
and t coefficients equal to —1, all others 0}.
@ Then f € L(df,df —1), r € L(d,,d,), and g € L(dg, dg) with d, < dg.
@ Then 3rg + fm has coefficients of size at most

3.2d, +2df — 1

which is larger than g/2 for typical parameters. Such large coefficients
are highly unlikely — but annoying for applications and guarantees.
@ Security decreases with large g; reduction is important.
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Reason 2: Evaluation-at-1 attack

o Ciphertext equals ¢ = rh+ m and r € L(d,,d,), so r(1) =0 and
g € L(dg, dg), so h(1) = g(1)/f(1) = 0.

@ This implies
c(1) =r(1)h(1) + m(1) = m(1)

which gives information about m, in particular if |m(1)| is large.
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Reason 2: Evaluation-at-1 attack

o Ciphertext equals ¢ = rh+ m and r € L(d,, d,), so r(1) =0 and
g € L(dg, dg), so h(1) = g(1)/£(1) = 0.
@ This implies
c(1) = r(1)h(1) + m(1) = m(1)
which gives information about m, in particular if |m(1)| is large.

@ For other choices of r and h, such as L(d,,d, — 1) or such,
one knows r(1) and h is public, so evaluation at 1 leaks m(1).
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Reason 2: Evaluation-at-1 attack

o Ciphertext equals ¢ = rh+ m and r € L(d,, d,), so r(1) =0 and
g € L(dg,dg), so h(1) = g(1)/f(1) = 0.
@ This implies
c(1) = r(1)h(1) + m(1) = m(1)
which gives information about m, in particular if |m(1)| is large.

@ For other choices of r and h, such as L(d,,d, — 1) or such,
one knows r(1) and h is public, so evaluation at 1 leaks m(1).

@ Original NTRU rejects extreme messages — this is dealt with by
randomizing m via a padding (not mentioned so far).

e Could also replace x? — 1 by &, = (x? —1)/(x — 1) to avoid attack.
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Reason 3: Mappings to subrings

e Consider Ry = (Z/q)[x]/(xP —1).
@ Can possibly get more information on m from homomorphism
Y : Ry — T, for some ring T.
@ Typical choice in original NTRU: g = 2048 leads to natural ring maps
from (Z/2048)[x]/(xP — 1) to
> (Z/2)[x]/(xP = 1),

(
> (Z/4)[x]/(xP = 1),
> (Z/8)[x]/(xP — 1), etc.
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Reason 3: Mappings to subrings

e Consider Ry = (Z/q)[x]/(xP —1).
@ Can possibly get more information on m from homomorphism
Y : Ry — T, for some ring T.

@ Typical choice in original NTRU: g = 2048 leads to natural ring maps
from (Z/2048)[x]/(xP — 1) to

> (Z/2)[x]/(xP = 1),
> (Z/4)[x]/(xP = 1),
> (Z/8)[x]/(xP — 1), etc.

@ Unclear whether these can be exploited to get information on m.
e Maybe, complicated. [Silverman-Smart-Vercauteren '04]

e If you pick bad rings, then yes. [Eisentrager-Hallgren-Lauter '14,
Elias-Lauter-Ozman-Stange '15, Chen-Lauter-Stange '16,
Castryck-lliashenko-Vercauteren '16]
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Reasons 4 and 5

@ Rings of original NTRU also have

> a large proper subfield (used in attack by [Bauch-Bernstein-Lange-de
Valence-van Vredendaal '17], attack by [Albrecht-Bai-Ducas '16], and
attack in Bernstein's 2014 blogpost).

» many easily computable automorphisms (usable to find a fundamental
basis of short units which is used in [Campbell-Groves-Shepherd '14]
and subsequently [Cramer-Ducas-Peikert-Regev '15,
Cramer-Ducas-Wesolowski '17, Alice's talk]).
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Reasons 4 and 5

@ Rings of original NTRU also have

> a large proper subfield (used in attack by [Bauch-Bernstein-Lange-de
Valence-van Vredendaal '17], attack by [Albrecht-Bai-Ducas '16], and
attack in Bernstein's 2014 blogpost).

» many easily computable automorphisms (usable to find a fundamental
basis of short units which is used in [Campbell-Groves-Shepherd '14]
and subsequently [Cramer-Ducas-Peikert-Regev '15,
Cramer-Ducas-Wesolowski '17, Alice's talk]).

@ Whether paranoia, or valid panic; what can we do about it?
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NTRU Prime ring

o Differences from original NTRU:
prime degree, large Galois group, inert modulus.
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NTRU Prime ring

o Differences from original NTRU:
prime degree, large Galois group, inert modulus.

@ Choose monic irreducible polynomial P € Z[x].

@ Choose prime g such that P is irreducible modulo g; this means that
q is inert in R = Z[x]/P and (Z/q)[x]/P is a field.
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NTRU Prime ring

o Differences from original NTRU:
prime degree, large Galois group, inert modulus.

@ Choose monic irreducible polynomial P € Z[x].

@ Choose prime g such that P is irreducible modulo g; this means that
q is inert in R = Z[x]/P and (Z/q)[x]/P is a field.
o Further choose P of prime degree p with large Galois group.

@ Specifically, set P = xP — x — 1.
This has Galois group S, of size p!.

@ NTRU Prime works over the NTRU Prime field

R/q=(Z/q)[x]/(x* —x —1).
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NTRU Prime: added defenses

Prime degree, large Galois group, inert modulus.
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NTRU Prime: added defenses

Prime degree, large Galois group,

=» Only subfields of Q[x]/P are itself and Q Avoids structures used by,
e.g., multiquad attack.

=» Large Galois group means no easy to compute automorphisms. Roots
of P live in degree-p! extension. Avoids structures used by
Campbell-Groves—Shepherd attack (obtaining short unit basis). No
hopping between units, so no easy way to extend from some small
unit to a fundamental system of short units.

No ring homomorphism to smaller nonzero rings. Avoids structures
used by Chen—-Lauter-Stange attack.
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NTRU Prime: added defenses

Prime degree, large Galois group,

=» Only subfields of Q[x]/P are itself and Q Avoids structures used by,
e.g., multiquad attack.

=» Large Galois group means no easy to compute automorphisms. Roots
of P live in degree-p! extension. Avoids structures used by
Campbell-Groves—Shepherd attack (obtaining short unit basis). No
hopping between units, so no easy way to extend from some small
unit to a fundamental system of short units.

No ring homomorphism to smaller nonzero rings. Avoids structures
used by Chen—-Lauter-Stange attack.

Irreducibility also avoids the evaluation-at-1 attack which simplifies
padding.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 10


https://ntruprime.cr.yp.to

Streamlined NTRU Prime: private and public key

e System parameters (p, q,t), p,q prime, g > 32t + 1.
@ Pick g small in R

g = 8o + .- —|—gp71Xp_1 with 8i S {_150’ 1}

No weight restriction on g, only size restriction on coefficients;
g required to be invertible in R/3.

@ Pick t-small f e R
f=f+ - +fxP twith f € {~1,0,1} and ) || =2t

Since R/q is a field, f is invertible.
e Compute public key h = g/(3f) in R/q.
@ Private key is f and 1/g € R/3.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to

11


https://ntruprime.cr.yp.to

Streamlined NTRU Prime: private and public key

e System parameters (p, q,t), p,q prime, g > 32t + 1.
@ Pick g small in R

g = 8o + .- —|—gp71Xp_1 with 8i S {_150’ 1}

No weight restriction on g, only size restriction on coefficients;
g required to be invertible in R/3.

Pick t-small f e R

f=f+ - +fxP twith f € {~1,0,1} and ) || =2t

Since R/q is a field, f is invertible.
Compute public key h = g/(3f) in R/q.
Private key is f and 1/g € R/3.

Difference from original NTRU: more key options, 3 in denominator.
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Streamlined NTRU Prime: KEM/DEM

e Streamlined NTRU Prime is a Key Encapsulation Mechanism (KEM).

e Combine with Data Encapsulation Mechanism (DEM)
to send messages.
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Streamlined NTRU Prime: KEM/DEM

e Streamlined NTRU Prime is a Key Encapsulation Mechanism (KEM).

e Combine with Data Encapsulation Mechanism (DEM)
to send messages.

KEM:
@ Alice looks up Bob's public key h.
@ Picks t-small r € R (i.e., r; € {—1,0,1}, > |ri| = 2t).
e Computes hr in R/q, lifts coefficients to ZN[—(g —1)/2,(g — 1)/2].
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Streamlined NTRU Prime: KEM/DEM

e Streamlined NTRU Prime is a Key Encapsulation Mechanism (KEM).

e Combine with Data Encapsulation Mechanism (DEM)
to send messages.

KEM:
@ Alice looks up Bob's public key h.
@ Picks t-small r € R (i.e., r; € {—1,0,1}, > |ri| = 2t).
e Computes hr in R/q, lifts coefficients to ZN[—(g —1)/2,(g — 1)/2].
@ Rounds each coefficient to the nearest multiple of 3 to get c.
e Computes hash(r) = (C|K).
@ Sends (C|c), uses session key K for DEM.

Rounding hr saves bandwidth and adds same entropy as adding ternary m.
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Streamlined NTRU Prime: decapsulation

Bob decrypts (C|c):
@ Reminder h = g/(3f) in R/q.

e Computes 3fc = 3f(hr + m) = gr + 3fm in R/q,
lifts coefficients to ZN [—(g —1)/2,(q — 1)/2].

@ Reduces the coefficients modulo 3 to get a = gr € R/3.

e Computes r' = a/g € R/3, lifts r' to R.

e Computes hash(r') = (C'|K’) and ¢’ as rounding of hr'.

o Verifies that ¢/ = c and C’' = C.
If all checks verify, K = K’ is the session key between Alice and Bob and
can be used in a data encapsulation mechanism (DEM).

Choosing g > 32t + 1 means no decryption failures, so r = r’ and
verification works unless (C|c) was incorrectly generated or tempered with.
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Family picture |

send m + hr for small m, r and public h in ring R (“NTRU”)‘

/

3

cyclotomic,
power-of-2 index,

split modulus
(“NTRU NTT")

cyclotomic,

prime index,
power-of-2 modulus
(“NTRU Classic™)

large Galois group,
prime degree,
inert modulus

(“"NTRU Prime")

random m

key h=d + aG
for small a, d,
public G
(“Noisy Product
NTRU NTT")

|

Lyubashevsky—
Peikert—Regev
cryptosystem

random m

key h=g/f
for small f, g
(“Noisy Quotient

NTRU Classic”)

original NTRU
cryptosystem
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random m

key h=d + aG
for small a, d,
public G
(“Rounded
Product
NTRU Prime™)

[ “NTRU LPRime" |

round hr to m+ hr
(“Rounded
NTRU Prime™)

for small f, g
(“Rounded
Quotient

NTRU Prime”)

l

“Streamlined
NTRU Prime”
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Streamlined NTRU Prime: Security

@ What we know so far:

Original | Common | Streamlined
NTRU R-LWE | NTRU Prime
Polynomial P xP -1 xP+1 xP—x—1
Degree p prime power of 2 prime
Modulus g 2d prime prime
# factors of P in R/q >1 p 1
# proper subfields >1 many 1
Every m encryptable X v v
No decryption failures X X v
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Streamlined NTRU Prime: Security

@ What we know so far:

Original | Common | Streamlined
NTRU R-LWE | NTRU Prime
Polynomial P xP -1 xP+1 xP—x—1
Degree p prime power of 2 prime
Modulus g 2d prime prime
# factors of P in R/q >1 p 1
# proper subfields >1 many 1
Every m encryptable X v v
No decryption failures X X v

@ Because of the last 2 v''s the analysis is simpler than that of original
NTRU.
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Streamlined NTRU Prime: Security

@ What we know so far:

Original | Common | Streamlined
NTRU R-LWE | NTRU Prime
Polynomial P xP -1 xP+1 xP—x—1
Degree p prime power of 2 prime
Modulus g 2d prime prime
# factors of P in R/q >1 p 1
# proper subfields >1 many 1
Every m encryptable X v v
No decryption failures X X v

@ Because of the last 2 v''s the analysis is simpler than that of original
NTRU.

@ But is it still fast?

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 15


https://ntruprime.cr.yp.to

Polynomial Multiplication

Main bottleneck is polynomial multiplication
Classic choices of xP — 1 and x" 4 1 have very fast reduction.

NTRU uses xP — 1 for p prime and g = 2V,

Most R-LWE systems use x" + 1, with n = 2%; g prime.

Typical implementations use the number-theoretic transform (NTT).
This requires g to be “NTT-friendly”, i.e., x" + 1 splits into linear
factors modulo g, so g = 1 mod 2n;

e.g. n=1024 and g = 6-2048 + 1.

@ Complete factorization of x” + 1 modulo g is also used in
search-to-decision problem reductions.

@ Obvious benefit: NTT is fast.

@ Not so obvious downside: NTT friendly combinations are rare — likely
to overshoot security targets in some direction.
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Multiplication for NTRU Prime

@ How to compute efficiently in Z[x]/(xP — x — 1)?

@ Reduction is not too bad, but no special tricks for multiplication.

@ Multiplication algorithms considered:

» refined Karatsuba,
» arbitrary degree variant of Karatsuba (3-7 levels).

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to
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Multiplication for NTRU Prime

@ How to compute efficiently in Z[x]/(xP — x — 1)?
@ Reduction is not too bad, but no special tricks for multiplication.
@ Multiplication algorithms considered:

» refined Karatsuba,
» arbitrary degree variant of Karatsuba (3-7 levels).

@ Best operation count obtained so far for 768 x 768:

» Toom-6 from 768 x 768 to 128 x 128.
» 5-level refined Karatsuba from 128 x 128 to 4 x 4.
Best speed obtained so far for 768 x 768:

> 5-level refined Karatsuba from 768 x 768 to 24 x 24.
» Half precision: twice as many entries in vectors.

(]
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Vectorization

f=
g:

Bernstein, Chuengsatiansup, Lange, van Vredendaal
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Vectorization

IE

f=
g:

o Karatsuba
» cut polynomials into smaller parts; independent operations on the parts

T - (N - [T T 7 -+
NN - I - I - —_—_"—"
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Vectorization

IE

f=
g:

o Karatsuba
» cut polynomials into smaller parts; independent operations on the parts

CTTT] + i + T T 17+
I - I - T - —_—_—_—
@ Vectorization
» vectorize across independent multiplications
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Odlyzko's meet-in-the-middle attack on NTRU

@ ldea: split the possibilities for f in two parts

h=(h+hH) g
fih=g—fh

o If there was no g: collision search in f; - hand —f> - h

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to
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Odlyzko's meet-in-the-middle attack on NTRU

@ ldea: split the possibilities for f in two parts

h=(h+hH) g
fioh=g—fh

If there was no g: collision search in f; - hand —f> - h

@ Solution: look for collisions in c¢(f; - h) and c(—£ - h) with

C(ao +aix—+---+ ap_lxp_l) = (1(30 > 0), ceey l(ap_l > 0))

using that g is small and thus 4+g often does not change the sign.

If c(fi - h) = c(—f - h) check whether h(f; + £,) is in L(dg, dg).
For NTRU Prime check whether h(f; 4 f2) is small.

Basically runs in squareroot of size of search space.
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Attackable rotations

e In NTRU, x'f is simply a rotation of f, so it has the same
coefficients, just at different positions. This means, x'f also gives a
solution in the mitm attack: hx'f = x’g has same sparsity etc.,
increasing the number of targets.

Decryption using x'f works the same as with f for NTRU, so each

target is valid.
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Attackable rotations

e In NTRU, x'f is simply a rotation of f, so it has the same
coefficients, just at different positions. This means, x'f also gives a
solution in the mitm attack: hx'f = x’g has same sparsity etc.,
increasing the number of targets.

Decryption using x'f works the same as with f for NTRU, so each
target is valid.

@ In NTRU Prime P = xP — x — 1, so reduction modulo P changes
density and weight, e.g.

(x*=x®*+1)-x=(x+1)—x*+x=x>+2x+1mod (x* — x — 1).

@ For small j up to p — 1 — deg(f) have shifted (valid) target.

o Very unlikely that any x/f for large i produces viable keys;
first reduction occurs on average at i = p/(2t).

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 20


https://ntruprime.cr.yp.to

Security against Odlyzko's meet-in-the-middle attack

@ Number of choices for f is

<p>22t
2t

because f is t-small, signs of those 2t coefficients are random.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to
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Security against Odlyzko's meet-in-the-middle attack

@ Number of choices for f is

<p>22t
2t

because f is t-small, signs of those 2t coefficients are random.
@ We (over-)estimate number of viable rotations by p — t.
@ Running time / memory mitm against Streamlined NTRU Prime

(5)2%

2(p—t)
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Security against Odlyzko's meet-in-the-middle attack

@ Number of choices for f is

<p>22t
2t

because f is t-small, signs of those 2t coefficients are random.
@ We (over-)estimate number of viable rotations by p — t.

@ Running time / memory mitm against Streamlined NTRU Prime

(5)2%

V2(p—t)

@ Memory requirement can be reduced by [van Vredendaal ANTS 2016].
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Security against lattice attacks

Lattice attack setup is same as for NTRU.
@ Recall h=g/(3f) in R/q.
@ This implies that for k ¢ R: f-3h+k-g=g.
@ Streamlined NTRU Prime lattice

(%)) = n.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to
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Security against lattice attacks

Lattice attack setup is same as for NTRU.

@ Recall h=g/(3f) in R/q.

@ This implies that for k ¢ R: f-3h+k-g=g.

@ Streamlined NTRU Prime lattice

o (H 0

Asymptotically sieving works in
memory in dimension d.

Memory is more an issue than time.

Bernstein, Chuengsatiansup, Lange, van Vredendaal

)=t ).

Keypair (g, f) is a short vector in this lattice.
£0.292-d+0(d)

using 20.208~d+o(d)

Crossover point between sieving and enumeration is still unclear.

https://ntruprime.cr.yp.to
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Hybrid attack

Howgrave-Graham combines lattice basis reduction and
meet-in-the-middle attack.

@ |dea: reduce submatrix of the Streamlined NTRU Prime lattice,
then perform mitm on the rest.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 23
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Hybrid attack

Howgrave-Graham combines lattice basis reduction and
meet-in-the-middle attack.

@ |dea: reduce submatrix of the Streamlined NTRU Prime lattice,
then perform mitm on the rest.

@ Use BKZ on submatrix B to get B”:

qgl, 0 0
. gl 0) _ 7
C (H I>_ * B0
* x|y

@ Guess options for last w’ coordinates of f, using collision search (as
before).

o If the Hermite factor of B’ is small enough, then a rounding algorithm
can detect collision of halfguesses.
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Security against the hybrid attack

@ Balance the costs of the BKZ and mitm phase.
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Security against the hybrid attack

@ Balance the costs of the BKZ and mitm phase.

o Hoffstein, Pipher, Schanck, Silverman, Whyte, and Zhang
[HPSWZ15] published simplfied analysis tool.

@ Compute BKZ costs with Chen-Nguyen simulator.

o Estimate the mitm costs by estimating the size of
the projected space [HPSWZ15].
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Security against the hybrid attack

@ Balance the costs of the BKZ and mitm phase.

o Hoffstein, Pipher, Schanck, Silverman, Whyte, and Zhang
[HPSWZ15] published simplfied analysis tool.

@ Compute BKZ costs with Chen-Nguyen simulator.

o Estimate the mitm costs by estimating the size of
the projected space [HPSWZ15].

@ For detailed formulas and justifications, see our paper
https://eprint.iacr.org/2016/461 and NIST submission
https://ntruprime.cr.yp.to.
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Streamlined NTRU Prime Security: parameters

@ We investigated security against the strongest known attacks;
meet-in-the-middle (mitm), hybrid attack of BKZ and mitm,
algebraic attacks, and sieving.

@ Streamlined NTRU Prime 4591791 and NTRU LPRime 4591761
both use p = 761 and g = 4591.

@ The resulting sizes and Haswell speeds show that reducing the attack
surface has very low cost:

Metric Streamlined NTRU

NTRU Prime 45917%1 | LPRime 45917%!
Public-key size 1218 bytes 1047 bytes
Ciphertext size 1047 bytes 1175 bytes
Encapsulation time 59456 cycles 94508 cycles
Decapsulation time 97684 cycles 128316 cycles
Pre-quantum security 248 bits 225 bits

@ Quantum computers will speed up attacks by less than squareroot.
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Bonus slides: why automorphisms matter

Targets and history:

@ 2014.10 Campbell-Groves—Shepherd describe an ideal-lattice-based
system “Soliloquy”; claim quantum poly-time key recovery.

@ 2010 Smart—Vercauteren system is practically identical to Soliloquy.

@ 2009 Gentry system (simpler version described at STOC) has the
same key-recovery problem.

@ 2012 Garg—Gentry—Halevi multilinear maps have the same
key-recovery problem (and many other security issues).
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Smart—Vercauteren; Soliloquy

Parameter: k > 1.
Define R = Z[x]/®y«.
Public key: prime g and c € Z/q.

Secret key: short element g € R with gR = gR + (x — ¢)R;

i.e., short generator of the ideal gR + (x — ¢)R.

Bernstein, Chuengsatiansup, Lange, van Vredendaal
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Smart—Vercauteren; Soliloquy

Parameter: k > 1.
Define R = Z[x]/®y«.
Public key: prime g and c € Z/q.

Secret key: short element g € R with gR = gR + (x — ¢)R;
i.e., short generator of the ideal gR + (x — ¢)R.

1993 Cohen textbook “A course in computational algebraic number
theory” explains how to find generators.
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Smart—Vercauteren; Soliloquy

Parameter: k > 1.
Define R = Z[x]/®y«.
Public key: prime g and c € Z/q.

Secret key: short element g € R with gR = gR + (x — ¢)R;
i.e., short generator of the ideal gR + (x — ¢)R.

@ 1993 Cohen textbook “A course in computational algebraic number
theory” explains how to find generators.

@ Smart—Vercauteren comment that this would take exponential time.
@ But it actually takes subexponential time. Same basic idea as NFS.

@ Campbell-Groves—Shepherd claim quantum poly time. Claim disputed
by Biasse, not defended by CGS.
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Smart—Vercauteren; Soliloquy

Parameter: k > 1.
Define R = Z[x]/®y«.
Public key: prime g and c € Z/q.

Secret key: short element g € R with gR = gR + (x — ¢)R;
i.e., short generator of the ideal gR + (x — ¢)R.

@ 1993 Cohen textbook “A course in computational algebraic number
theory” explains how to find generators.

@ Smart—Vercauteren comment that this would take exponential time.
@ But it actually takes subexponential time. Same basic idea as NFS.

@ Campbell-Groves—Shepherd claim quantum poly time. Claim disputed
by Biasse, not defended by CGS.

@ 2016 Biasse—Song: different algorithm that takes quantum poly time,
building on 2014 Eisentrager—Hallgren—Kitaev—-Song.
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How to get a short generator?

Have ideal I of R.

Know g’ = ug for some unit u € R*.

To find u move to log lattice.

Want short g with gR = /; have g’ with g’'R = 1.

Logg’ = Logu+ Logg,

where Log is Dirichlet's log map.

@ Dirichlet’s unit theorem:
Log R* is a lattice of known dimension.

Bernstein, Chuengsatiansup, Lange, van Vredendaal

Finding Log u is a closest-vector problem in this lattice.
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Quote from Campbell-Groves—Shepherd

“A simple generating set for the cyclotomic units is of course known.
The image of O* [here R*] under the logarithm map forms a lattice.
The determinant of this lattice turns out to be much bigger than the
typical loglength of a private key « [here g], so it is easy to recover the

causally short private key given any generator of aO [here /], e.g. via the
LLL lattice reduction algorithm.”
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Automorphisms

o x> x3, x> x>, x = x7, etc. are automorphisms of R = Z[x]/®y«.
e Easy to see (1 — x3)/(1 — x) € R*; for inverse use expansion.
@ “Cyclotomic units" are defined as

R*N {:l:XeO H(l - xi)ei} .

Weber's conjecture:
All elements of R* are cyclotomic units.

Experiments confirm that SV is quickly broken by LLL using, e.g.,
1997 Washington textbook basis for cyclotomic units.

Shortness of basis is critical; this was not highlighted in CGS analysis.
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