
NTRU Prime

Daniel J. Bernstein, Chitchanok Chuengsatiansup,
Tanja Lange, and Christine van Vredendaal

21 June 2018

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 1

https://ntruprime.cr.yp.to

NTRU History

Introduced by Hoffstein–Pipher–Silverman in 1998.

Security related to lattice problems; pre-version cryptanalyzed with
LLL by Coppersmith and Shamir.

System parameters (p, q), p prime, integer q, gcd(3, q) = 1.

All computations done in ring R = Z[x]/(xp − 1).

Private key: f , g ∈ R sparse with coefficients in {−1, 0, 1}.
Additional requirement: f must be invertible in R modulo q.

Public key h = 3g/f mod q.

Can see this as lattice with basis matrix

B =

(
q Ip 0
H Ip

)
,

where H corresponds to multiplication by h/3 modulo xp − 1.

(g , f) is a short vector in the lattice as result of

(k , f)B = (kq + f · h/3, f) = (g , f)

for some polynomial k (from fh/3 = g − kq).

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 2

https://ntruprime.cr.yp.to

NTRU History

Introduced by Hoffstein–Pipher–Silverman in 1998.

Security related to lattice problems; pre-version cryptanalyzed with
LLL by Coppersmith and Shamir.

System parameters (p, q), p prime, integer q, gcd(3, q) = 1.

All computations done in ring R = Z[x]/(xp − 1).

Private key: f , g ∈ R sparse with coefficients in {−1, 0, 1}.
Additional requirement: f must be invertible in R modulo q.

Public key h = 3g/f mod q.

Can see this as lattice with basis matrix

B =

(
q Ip 0
H Ip

)
,

where H corresponds to multiplication by h/3 modulo xp − 1.

(g , f) is a short vector in the lattice as result of

(k , f)B = (kq + f · h/3, f) = (g , f)

for some polynomial k (from fh/3 = g − kq).

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 2

https://ntruprime.cr.yp.to

Original NTRU

System parameters (p, q), p prime, integer q, gcd(p, q) = 1.

All computations done in ring R = Z[x]/(xp − 1), some use additional
reduction modulo q, ring denoted by Rq.

Private key: f , g ∈ R with coefficients in {−1, 0, 1}, almost all
coefficients are zero (small fixed number are nonzero).
Additional requirement: f must be invertible in R modulo q and
modulo 3.

Public key h = 3g/f mod q.

Encryption of message m ∈ R, coefficients in {−1, 0, 1}:
Pick random, sparse r ∈ R, same sample space as f ; compute:

c = r · h + m mod q.

Decryption of c ∈ Rq: Compute

a = f · c = f (rh + m) ≡ f (3rg/f + m) ≡ 3rg + fm mod q,

move all coefficients to [−q/2, q/2]. If everything is small enough
then a equals 3rg + fm in R and m = a/f mod 3.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 3

https://ntruprime.cr.yp.to

Original NTRU

System parameters (p, q), p prime, integer q, gcd(p, q) = 1.

All computations done in ring R = Z[x]/(xp − 1), some use additional
reduction modulo q, ring denoted by Rq.

Private key: f , g ∈ R with coefficients in {−1, 0, 1}, almost all
coefficients are zero (small fixed number are nonzero).
Additional requirement: f must be invertible in R modulo q and
modulo 3.

Public key h = 3g/f mod q.

Encryption of message m ∈ R, coefficients in {−1, 0, 1}:
Pick random, sparse r ∈ R, same sample space as f ; compute:

c = r · h + m mod q.

Decryption of c ∈ Rq: Compute

a = f · c = f (rh + m) ≡ f (3rg/f + m) ≡ 3rg + fm mod q,

move all coefficients to [−q/2, q/2]. If everything is small enough
then a equals 3rg + fm in R and m = a/f mod 3.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 3

https://ntruprime.cr.yp.to

Original NTRU

System parameters (p, q), p prime, integer q, gcd(p, q) = 1.

All computations done in ring R = Z[x]/(xp − 1), some use additional
reduction modulo q, ring denoted by Rq.

Private key: f , g ∈ R with coefficients in {−1, 0, 1}, almost all
coefficients are zero (small fixed number are nonzero).
Additional requirement: f must be invertible in R modulo q and
modulo 3.

Public key h = 3g/f mod q.

Encryption of message m ∈ R, coefficients in {−1, 0, 1}:
Pick random, sparse r ∈ R, same sample space as f ; compute:

c = r · h + m mod q.

Decryption of c ∈ Rq: Compute

a = f · c = f (rh + m) ≡ f (3rg/f + m) ≡ 3rg + fm mod q,

move all coefficients to [−q/2, q/2]. If everything is small enough
then a equals 3rg + fm in R and m = a/f mod 3.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 3

https://ntruprime.cr.yp.to

Why we don’t stick with original NTRU.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 4

https://ntruprime.cr.yp.to

Reason 1: Decryption failures

Decryption of c ∈ Rq: Compute

a = f · c = f (rh + m) ≡ f (3rg/f + m) ≡ 3rg + fm mod q,

move all coefficients to [−q/2, q/2]. If everything is small enough
then a equals 3rg + fm in R and m = a/f mod 3.

Let

L(d , t) ={F ∈ R|F has d coefficients equal to 1

and t coefficients equal to −1, all others 0}.

Then f ∈ L(df , df −1), r ∈ L(dr , dr), and g ∈ L(dg , dg) with dr < dg .

Then 3rg + fm has coefficients of size at most

3 · 2dr + 2df − 1

which is larger than q/2 for typical parameters. Such large coefficients
are highly unlikely – but annoying for applications and guarantees.

Security decreases with large q; reduction is important.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 5

https://ntruprime.cr.yp.to

Reason 1: Decryption failures

Decryption of c ∈ Rq: Compute

a = f · c = f (rh + m) ≡ f (3rg/f + m) ≡ 3rg + fm mod q,

move all coefficients to [−q/2, q/2]. If everything is small enough
then a equals 3rg + fm in R and m = a/f mod 3.

Let

L(d , t) ={F ∈ R|F has d coefficients equal to 1

and t coefficients equal to −1, all others 0}.

Then f ∈ L(df , df −1), r ∈ L(dr , dr), and g ∈ L(dg , dg) with dr < dg .

Then 3rg + fm has coefficients of size at most

3 · 2dr + 2df − 1

which is larger than q/2 for typical parameters. Such large coefficients
are highly unlikely – but annoying for applications and guarantees.

Security decreases with large q; reduction is important.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 5

https://ntruprime.cr.yp.to

Reason 1: Decryption failures

Decryption of c ∈ Rq: Compute

a = f · c = f (rh + m) ≡ f (3rg/f + m) ≡ 3rg + fm mod q,

move all coefficients to [−q/2, q/2]. If everything is small enough
then a equals 3rg + fm in R and m = a/f mod 3.

Let

L(d , t) ={F ∈ R|F has d coefficients equal to 1

and t coefficients equal to −1, all others 0}.

Then f ∈ L(df , df −1), r ∈ L(dr , dr), and g ∈ L(dg , dg) with dr < dg .

Then 3rg + fm has coefficients of size at most

3 · 2dr + 2df − 1

which is larger than q/2 for typical parameters. Such large coefficients
are highly unlikely – but annoying for applications and guarantees.

Security decreases with large q; reduction is important.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 5

https://ntruprime.cr.yp.to

Reason 1: Decryption failures

Decryption of c ∈ Rq: Compute

a = f · c = f (rh + m) ≡ f (3rg/f + m) ≡ 3rg + fm mod q,

move all coefficients to [−q/2, q/2]. If everything is small enough
then a equals 3rg + fm in R and m = a/f mod 3.

Let

L(d , t) ={F ∈ R|F has d coefficients equal to 1

and t coefficients equal to −1, all others 0}.

Then f ∈ L(df , df −1), r ∈ L(dr , dr), and g ∈ L(dg , dg) with dr < dg .

Then 3rg + fm has coefficients of size at most

3 · 2dr + 2df − 1

which is larger than q/2 for typical parameters. Such large coefficients
are highly unlikely – but annoying for applications and guarantees.

Security decreases with large q; reduction is important.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 5

https://ntruprime.cr.yp.to

Reason 2: Evaluation-at-1 attack

Ciphertext equals c = rh + m and r ∈ L(dr , dr), so r(1) = 0 and
g ∈ L(dg , dg), so h(1) = g(1)/f (1) = 0.

This implies
c(1) = r(1)h(1) + m(1) = m(1)

which gives information about m, in particular if |m(1)| is large.

For other choices of r and h, such as L(dr , dr − 1) or such,
one knows r(1) and h is public, so evaluation at 1 leaks m(1).

Original NTRU rejects extreme messages – this is dealt with by
randomizing m via a padding (not mentioned so far).

Could also replace xp − 1 by Φp = (xp − 1)/(x − 1) to avoid attack.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 6

https://ntruprime.cr.yp.to

Reason 2: Evaluation-at-1 attack

Ciphertext equals c = rh + m and r ∈ L(dr , dr), so r(1) = 0 and
g ∈ L(dg , dg), so h(1) = g(1)/f (1) = 0.

This implies
c(1) = r(1)h(1) + m(1) = m(1)

which gives information about m, in particular if |m(1)| is large.

For other choices of r and h, such as L(dr , dr − 1) or such,
one knows r(1) and h is public, so evaluation at 1 leaks m(1).

Original NTRU rejects extreme messages – this is dealt with by
randomizing m via a padding (not mentioned so far).

Could also replace xp − 1 by Φp = (xp − 1)/(x − 1) to avoid attack.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 6

https://ntruprime.cr.yp.to

Reason 2: Evaluation-at-1 attack

Ciphertext equals c = rh + m and r ∈ L(dr , dr), so r(1) = 0 and
g ∈ L(dg , dg), so h(1) = g(1)/f (1) = 0.

This implies
c(1) = r(1)h(1) + m(1) = m(1)

which gives information about m, in particular if |m(1)| is large.

For other choices of r and h, such as L(dr , dr − 1) or such,
one knows r(1) and h is public, so evaluation at 1 leaks m(1).

Original NTRU rejects extreme messages – this is dealt with by
randomizing m via a padding (not mentioned so far).

Could also replace xp − 1 by Φp = (xp − 1)/(x − 1) to avoid attack.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 6

https://ntruprime.cr.yp.to

Reason 3: Mappings to subrings

Consider Rq = (Z/q)[x]/(xp − 1).

Can possibly get more information on m from homomorphism
ψ : Rq → T , for some ring T .

Typical choice in original NTRU: q = 2048 leads to natural ring maps
from (Z/2048)[x]/(xp − 1) to

I (Z/2)[x]/(xp − 1),
I (Z/4)[x]/(xp − 1),
I (Z/8)[x]/(xp − 1), etc.

Unclear whether these can be exploited to get information on m.

Maybe, complicated. [Silverman-Smart-Vercauteren ’04]

If you pick bad rings, then yes. [Eisenträger-Hallgren-Lauter ’14,
Elias-Lauter-Ozman-Stange ’15, Chen-Lauter-Stange ’16,
Castryck-Iliashenko-Vercauteren ’16]

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 7

https://ntruprime.cr.yp.to

Reason 3: Mappings to subrings

Consider Rq = (Z/q)[x]/(xp − 1).

Can possibly get more information on m from homomorphism
ψ : Rq → T , for some ring T .

Typical choice in original NTRU: q = 2048 leads to natural ring maps
from (Z/2048)[x]/(xp − 1) to

I (Z/2)[x]/(xp − 1),
I (Z/4)[x]/(xp − 1),
I (Z/8)[x]/(xp − 1), etc.

Unclear whether these can be exploited to get information on m.

Maybe, complicated. [Silverman-Smart-Vercauteren ’04]

If you pick bad rings, then yes. [Eisenträger-Hallgren-Lauter ’14,
Elias-Lauter-Ozman-Stange ’15, Chen-Lauter-Stange ’16,
Castryck-Iliashenko-Vercauteren ’16]

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 7

https://ntruprime.cr.yp.to

Reasons 4 and 5

Rings of original NTRU also have
I a large proper subfield (used in attack by [Bauch-Bernstein-Lange-de

Valence-van Vredendaal ’17], attack by [Albrecht-Bai-Ducas ’16], and
attack in Bernstein’s 2014 blogpost).

I many easily computable automorphisms (usable to find a fundamental
basis of short units which is used in [Campbell-Groves-Shepherd ’14]
and subsequently [Cramer-Ducas-Peikert-Regev ’15,
Cramer-Ducas-Wesolowski ’17, Alice’s talk]).

Whether paranoia, or valid panic; what can we do about it?

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 8

https://blog.cr.yp.to/20140213-ideal.html
https://ntruprime.cr.yp.to

Reasons 4 and 5

Rings of original NTRU also have
I a large proper subfield (used in attack by [Bauch-Bernstein-Lange-de

Valence-van Vredendaal ’17], attack by [Albrecht-Bai-Ducas ’16], and
attack in Bernstein’s 2014 blogpost).

I many easily computable automorphisms (usable to find a fundamental
basis of short units which is used in [Campbell-Groves-Shepherd ’14]
and subsequently [Cramer-Ducas-Peikert-Regev ’15,
Cramer-Ducas-Wesolowski ’17, Alice’s talk]).

Whether paranoia, or valid panic; what can we do about it?

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 8

https://blog.cr.yp.to/20140213-ideal.html
https://ntruprime.cr.yp.to

NTRU Prime ring

Differences from original NTRU:
prime degree, large Galois group, inert modulus.

Choose monic irreducible polynomial P ∈ Z[x].

Choose prime q such that P is irreducible modulo q; this means that
q is inert in R = Z[x]/P and (Z/q)[x]/P is a field.

Further choose P of prime degree p with large Galois group.

Specifically, set P = xp − x − 1.
This has Galois group Sp of size p!.

NTRU Prime works over the NTRU Prime field

R/q = (Z/q)[x]/(xp − x − 1).

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 9

https://ntruprime.cr.yp.to

NTRU Prime ring

Differences from original NTRU:
prime degree, large Galois group, inert modulus.

Choose monic irreducible polynomial P ∈ Z[x].

Choose prime q such that P is irreducible modulo q; this means that
q is inert in R = Z[x]/P and (Z/q)[x]/P is a field.

Further choose P of prime degree p with large Galois group.

Specifically, set P = xp − x − 1.
This has Galois group Sp of size p!.

NTRU Prime works over the NTRU Prime field

R/q = (Z/q)[x]/(xp − x − 1).

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 9

https://ntruprime.cr.yp.to

NTRU Prime ring

Differences from original NTRU:
prime degree, large Galois group, inert modulus.

Choose monic irreducible polynomial P ∈ Z[x].

Choose prime q such that P is irreducible modulo q; this means that
q is inert in R = Z[x]/P and (Z/q)[x]/P is a field.

Further choose P of prime degree p with large Galois group.

Specifically, set P = xp − x − 1.
This has Galois group Sp of size p!.

NTRU Prime works over the NTRU Prime field

R/q = (Z/q)[x]/(xp − x − 1).

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 9

https://ntruprime.cr.yp.to

NTRU Prime: added defenses

Prime degree, large Galois group, inert modulus.

Ü Only subfields of Q[x]/P are itself and Q. Avoids structures used by,
e.g., multiquad attack.

Ü Large Galois group means no easy to compute automorphisms. Roots
of P live in degree-p! extension. Avoids structures used by
Campbell–Groves–Shepherd attack (obtaining short unit basis). No
hopping between units, so no easy way to extend from some small
unit to a fundamental system of short units.

Ü No ring homomorphism to smaller nonzero rings. Avoids structures
used by Chen–Lauter–Stange attack.

Irreducibility also avoids the evaluation-at-1 attack which simplifies
padding.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 10

https://ntruprime.cr.yp.to

NTRU Prime: added defenses

Prime degree, large Galois group, inert modulus.

Ü Only subfields of Q[x]/P are itself and Q. Avoids structures used by,
e.g., multiquad attack.

Ü Large Galois group means no easy to compute automorphisms. Roots
of P live in degree-p! extension. Avoids structures used by
Campbell–Groves–Shepherd attack (obtaining short unit basis). No
hopping between units, so no easy way to extend from some small
unit to a fundamental system of short units.

Ü No ring homomorphism to smaller nonzero rings. Avoids structures
used by Chen–Lauter–Stange attack.

Irreducibility also avoids the evaluation-at-1 attack which simplifies
padding.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 10

https://ntruprime.cr.yp.to

NTRU Prime: added defenses

Prime degree, large Galois group, inert modulus.

Ü Only subfields of Q[x]/P are itself and Q. Avoids structures used by,
e.g., multiquad attack.

Ü Large Galois group means no easy to compute automorphisms. Roots
of P live in degree-p! extension. Avoids structures used by
Campbell–Groves–Shepherd attack (obtaining short unit basis). No
hopping between units, so no easy way to extend from some small
unit to a fundamental system of short units.

Ü No ring homomorphism to smaller nonzero rings. Avoids structures
used by Chen–Lauter–Stange attack.

Irreducibility also avoids the evaluation-at-1 attack which simplifies
padding.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 10

https://ntruprime.cr.yp.to

Streamlined NTRU Prime: private and public key

System parameters (p, q, t), p, q prime, q ≥ 32t + 1.

Pick g small in R

g = g0 + · · ·+ gp−1xp−1 with gi ∈ {−1, 0, 1}

No weight restriction on g , only size restriction on coefficients;
g required to be invertible in R/3.

Pick t-small f ∈ R

f = f0 + · · ·+ fp−1xp−1 with fi ∈ {−1, 0, 1} and
∑
|fi | = 2t

Since R/q is a field, f is invertible.

Compute public key h = g/(3f) in R/q.

Private key is f and 1/g ∈ R/3.

Difference from original NTRU: more key options, 3 in denominator.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 11

https://ntruprime.cr.yp.to

Streamlined NTRU Prime: private and public key

System parameters (p, q, t), p, q prime, q ≥ 32t + 1.

Pick g small in R

g = g0 + · · ·+ gp−1xp−1 with gi ∈ {−1, 0, 1}

No weight restriction on g , only size restriction on coefficients;
g required to be invertible in R/3.

Pick t-small f ∈ R

f = f0 + · · ·+ fp−1xp−1 with fi ∈ {−1, 0, 1} and
∑
|fi | = 2t

Since R/q is a field, f is invertible.

Compute public key h = g/(3f) in R/q.

Private key is f and 1/g ∈ R/3.

Difference from original NTRU: more key options, 3 in denominator.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 11

https://ntruprime.cr.yp.to

Streamlined NTRU Prime: KEM/DEM

Streamlined NTRU Prime is a Key Encapsulation Mechanism (KEM).

Combine with Data Encapsulation Mechanism (DEM)
to send messages.

KEM:

Alice looks up Bob’s public key h.

Picks t-small r ∈ R (i.e., ri ∈ {−1, 0, 1},
∑
|ri | = 2t).

Computes hr in R/q, lifts coefficients to Z ∩ [−(q − 1)/2, (q − 1)/2].

Rounds each coefficient to the nearest multiple of 3 to get c .

Computes hash(r) = (C |K).

Sends (C |c), uses session key K for DEM.

Rounding hr saves bandwidth and adds same entropy as adding ternary m.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 12

https://ntruprime.cr.yp.to

Streamlined NTRU Prime: KEM/DEM

Streamlined NTRU Prime is a Key Encapsulation Mechanism (KEM).

Combine with Data Encapsulation Mechanism (DEM)
to send messages.

KEM:

Alice looks up Bob’s public key h.

Picks t-small r ∈ R (i.e., ri ∈ {−1, 0, 1},
∑
|ri | = 2t).

Computes hr in R/q, lifts coefficients to Z ∩ [−(q − 1)/2, (q − 1)/2].

Rounds each coefficient to the nearest multiple of 3 to get c .

Computes hash(r) = (C |K).

Sends (C |c), uses session key K for DEM.

Rounding hr saves bandwidth and adds same entropy as adding ternary m.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 12

https://ntruprime.cr.yp.to

Streamlined NTRU Prime: KEM/DEM

Streamlined NTRU Prime is a Key Encapsulation Mechanism (KEM).

Combine with Data Encapsulation Mechanism (DEM)
to send messages.

KEM:

Alice looks up Bob’s public key h.

Picks t-small r ∈ R (i.e., ri ∈ {−1, 0, 1},
∑
|ri | = 2t).

Computes hr in R/q, lifts coefficients to Z ∩ [−(q − 1)/2, (q − 1)/2].

Rounds each coefficient to the nearest multiple of 3 to get c .

Computes hash(r) = (C |K).

Sends (C |c), uses session key K for DEM.

Rounding hr saves bandwidth and adds same entropy as adding ternary m.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 12

https://ntruprime.cr.yp.to

Streamlined NTRU Prime: decapsulation

Bob decrypts (C |c):

Reminder h = g/(3f) in R/q.

Computes 3fc = 3f (hr + m) = gr + 3fm in R/q,
lifts coefficients to Z ∩ [−(q − 1)/2, (q − 1)/2].

Reduces the coefficients modulo 3 to get a = gr ∈ R/3.

Computes r ′ = a/g ∈ R/3, lifts r ′ to R.

Computes hash(r ′) = (C ′|K ′) and c ′ as rounding of hr ′.

Verifies that c ′ = c and C ′ = C .

If all checks verify, K = K ′ is the session key between Alice and Bob and
can be used in a data encapsulation mechanism (DEM).

Choosing q ≥ 32t + 1 means no decryption failures, so r = r ′ and
verification works unless (C |c) was incorrectly generated or tempered with.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 13

https://ntruprime.cr.yp.to

Family picture send m + hr for small m, r and public h in ring R (“NTRU”)

zz yy

cyclotomic,

power-of-2 index,
split modulus

(“NTRU NTT”)

��

cyclotomic,
prime index,

power-of-2 modulus
(“NTRU Classic”)

��

large Galois group,
prime degree,
inert modulus

(“NTRU Prime”)

��

��

random m

��

random m

��

random m

round hr to m + hr
(“Rounded

NTRU Prime”)

{{

��

key h = d + aG
for small a, d ,

public G
(“Noisy Product
NTRU NTT”)

��

key h = g/f
for small f , g

(“Noisy Quotient
NTRU Classic”)

��

key h = d + aG
for small a, d ,

public G
(“Rounded

Product
NTRU Prime”)

��

key h = g/f
for small f , g
(“Rounded
Quotient

NTRU Prime”)

��Lyubashevsky–
Peikert–Regev
cryptosystem

original NTRU
cryptosystem “NTRU LPRime”

“Streamlined
NTRU Prime”

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 14

https://ntruprime.cr.yp.to

Streamlined NTRU Prime: Security

What we know so far:

Original Common Streamlined
NTRU R-LWE NTRU Prime

Polynomial P xp − 1 xp + 1 xp − x − 1

Degree p prime power of 2 prime

Modulus q 2d prime prime

factors of P in R/q > 1 p 1

proper subfields > 1 many 1

Every m encryptable 7 3 3

No decryption failures 7 7 3

Because of the last 2 3’s the analysis is simpler than that of original
NTRU.

But is it still fast?

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 15

https://ntruprime.cr.yp.to

Streamlined NTRU Prime: Security

What we know so far:

Original Common Streamlined
NTRU R-LWE NTRU Prime

Polynomial P xp − 1 xp + 1 xp − x − 1

Degree p prime power of 2 prime

Modulus q 2d prime prime

factors of P in R/q > 1 p 1

proper subfields > 1 many 1

Every m encryptable 7 3 3

No decryption failures 7 7 3

Because of the last 2 3’s the analysis is simpler than that of original
NTRU.

But is it still fast?

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 15

https://ntruprime.cr.yp.to

Streamlined NTRU Prime: Security

What we know so far:

Original Common Streamlined
NTRU R-LWE NTRU Prime

Polynomial P xp − 1 xp + 1 xp − x − 1

Degree p prime power of 2 prime

Modulus q 2d prime prime

factors of P in R/q > 1 p 1

proper subfields > 1 many 1

Every m encryptable 7 3 3

No decryption failures 7 7 3

Because of the last 2 3’s the analysis is simpler than that of original
NTRU.

But is it still fast?

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 15

https://ntruprime.cr.yp.to

Polynomial Multiplication

Main bottleneck is polynomial multiplication

Classic choices of xp − 1 and xn + 1 have very fast reduction.

NTRU uses xp − 1 for p prime and q = 2N .

Most R-LWE systems use xn + 1, with n = 2t ; q prime.
Typical implementations use the number-theoretic transform (NTT).
This requires q to be “NTT-friendly”, i.e., xn + 1 splits into linear
factors modulo q, so q ≡ 1 mod 2n;
e.g. n = 1024 and q = 6 · 2048 + 1.

Complete factorization of xn + 1 modulo q is also used in
search-to-decision problem reductions.

Obvious benefit: NTT is fast.

Not so obvious downside: NTT friendly combinations are rare – likely
to overshoot security targets in some direction.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 16

https://ntruprime.cr.yp.to

Multiplication for NTRU Prime

How to compute efficiently in Z[x]/(xp − x − 1)?

Reduction is not too bad, but no special tricks for multiplication.

Multiplication algorithms considered:
I refined Karatsuba,
I arbitrary degree variant of Karatsuba (3–7 levels).

Best operation count obtained so far for 768× 768:

I Toom-6 from 768× 768 to 128× 128.
I 5-level refined Karatsuba from 128× 128 to 4× 4.

Best speed obtained so far for 768 × 768:
I 5-level refined Karatsuba from 768× 768 to 24× 24.
I Half precision: twice as many entries in vectors.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 17

https://ntruprime.cr.yp.to

Multiplication for NTRU Prime

How to compute efficiently in Z[x]/(xp − x − 1)?

Reduction is not too bad, but no special tricks for multiplication.

Multiplication algorithms considered:
I refined Karatsuba,
I arbitrary degree variant of Karatsuba (3–7 levels).

Best operation count obtained so far for 768× 768:

I Toom-6 from 768× 768 to 128× 128.
I 5-level refined Karatsuba from 128× 128 to 4× 4.

Best speed obtained so far for 768 × 768:
I 5-level refined Karatsuba from 768× 768 to 24× 24.
I Half precision: twice as many entries in vectors.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 17

https://ntruprime.cr.yp.to

Vectorization

f =

g =

Karatsuba
I cut polynomials into smaller parts; independent operations on the parts

+ + +

+ + +

Vectorization
I vectorize across independent multiplications

×

×

×

×

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 18

https://ntruprime.cr.yp.to

Vectorization

f =

g =

Karatsuba
I cut polynomials into smaller parts; independent operations on the parts

+ + +

+ + +

Vectorization
I vectorize across independent multiplications

×

×

×

×

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 18

https://ntruprime.cr.yp.to

Vectorization

f =

g =

Karatsuba
I cut polynomials into smaller parts; independent operations on the parts

+ + +

+ + +

Vectorization
I vectorize across independent multiplications

×

×

×

×

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 18

https://ntruprime.cr.yp.to

Odlyzko’s meet-in-the-middle attack on NTRU

Idea: split the possibilities for f in two parts

h = (f1 + f2)−1g

f1 · h = g − f2 · h.

If there was no g : collision search in f1 · h and −f2 · h

Solution: look for collisions in c(f1 · h) and c(−f2 · h) with

c(a0 + a1x + · · ·+ ap−1xp−1) = (1(a0 > 0), . . . , 1(ap−1 > 0))

using that g is small and thus +g often does not change the sign.

If c(f1 · h) = c(−f2 · h) check whether h(f1 + f2) is in L(dg , dg).
For NTRU Prime check whether h(f1 + f2) is small.

Basically runs in squareroot of size of search space.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 19

https://ntruprime.cr.yp.to

Odlyzko’s meet-in-the-middle attack on NTRU

Idea: split the possibilities for f in two parts

h = (f1 + f2)−1g

f1 · h = g − f2 · h.

If there was no g : collision search in f1 · h and −f2 · h
Solution: look for collisions in c(f1 · h) and c(−f2 · h) with

c(a0 + a1x + · · ·+ ap−1xp−1) = (1(a0 > 0), . . . , 1(ap−1 > 0))

using that g is small and thus +g often does not change the sign.

If c(f1 · h) = c(−f2 · h) check whether h(f1 + f2) is in L(dg , dg).
For NTRU Prime check whether h(f1 + f2) is small.

Basically runs in squareroot of size of search space.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 19

https://ntruprime.cr.yp.to

Attackable rotations

In NTRU, x i f is simply a rotation of f , so it has the same
coefficients, just at different positions. This means, x i f also gives a
solution in the mitm attack: hx i f = x ig has same sparsity etc.,
increasing the number of targets.
Decryption using x i f works the same as with f for NTRU, so each
target is valid.

In NTRU Prime P = xp − x − 1, so reduction modulo P changes
density and weight, e.g.

(x4 − x2 + 1) · x ≡ (x + 1)− x3 + x = x3 + 2x + 1 mod (x5 − x − 1).

For small i up to p − 1− deg(f) have shifted (valid) target.

Very unlikely that any x i f for large i produces viable keys;
first reduction occurs on average at i = p/(2t).

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 20

https://ntruprime.cr.yp.to

Attackable rotations

In NTRU, x i f is simply a rotation of f , so it has the same
coefficients, just at different positions. This means, x i f also gives a
solution in the mitm attack: hx i f = x ig has same sparsity etc.,
increasing the number of targets.
Decryption using x i f works the same as with f for NTRU, so each
target is valid.

In NTRU Prime P = xp − x − 1, so reduction modulo P changes
density and weight, e.g.

(x4 − x2 + 1) · x ≡ (x + 1)− x3 + x = x3 + 2x + 1 mod (x5 − x − 1).

For small i up to p − 1− deg(f) have shifted (valid) target.

Very unlikely that any x i f for large i produces viable keys;
first reduction occurs on average at i = p/(2t).

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 20

https://ntruprime.cr.yp.to

Security against Odlyzko’s meet-in-the-middle attack

Number of choices for f is (
p

2t

)
22t

because f is t-small, signs of those 2t coefficients are random.

We (over-)estimate number of viable rotations by p − t.

Running time / memory mitm against Streamlined NTRU Prime

L =

√(p
2t

)
22t√

2(p − t)
.

Memory requirement can be reduced by [van Vredendaal ANTS 2016].

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 21

https://ntruprime.cr.yp.to

Security against Odlyzko’s meet-in-the-middle attack

Number of choices for f is (
p

2t

)
22t

because f is t-small, signs of those 2t coefficients are random.

We (over-)estimate number of viable rotations by p − t.

Running time / memory mitm against Streamlined NTRU Prime

L =

√(p
2t

)
22t√

2(p − t)
.

Memory requirement can be reduced by [van Vredendaal ANTS 2016].

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 21

https://ntruprime.cr.yp.to

Security against Odlyzko’s meet-in-the-middle attack

Number of choices for f is (
p

2t

)
22t

because f is t-small, signs of those 2t coefficients are random.

We (over-)estimate number of viable rotations by p − t.

Running time / memory mitm against Streamlined NTRU Prime

L =

√(p
2t

)
22t√

2(p − t)
.

Memory requirement can be reduced by [van Vredendaal ANTS 2016].

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 21

https://ntruprime.cr.yp.to

Security against lattice attacks

Lattice attack setup is same as for NTRU.

Recall h = g/(3f) in R/q.

This implies that for k ∈ R: f · 3h + k · q = g .

Streamlined NTRU Prime lattice

(
k f

)(qI 0
H I

)
=
(
g f

)
.

Keypair (g , f) is a short vector in this lattice.

Asymptotically sieving works in 20.292·d+o(d) using 20.208·d+o(d)

memory in dimension d .

Crossover point between sieving and enumeration is still unclear.

Memory is more an issue than time.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 22

https://ntruprime.cr.yp.to

Security against lattice attacks

Lattice attack setup is same as for NTRU.

Recall h = g/(3f) in R/q.

This implies that for k ∈ R: f · 3h + k · q = g .

Streamlined NTRU Prime lattice

(
k f

)(qI 0
H I

)
=
(
g f

)
.

Keypair (g , f) is a short vector in this lattice.

Asymptotically sieving works in 20.292·d+o(d) using 20.208·d+o(d)

memory in dimension d .

Crossover point between sieving and enumeration is still unclear.

Memory is more an issue than time.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 22

https://ntruprime.cr.yp.to

Hybrid attack

Howgrave-Graham combines lattice basis reduction and
meet-in-the-middle attack.

Idea: reduce submatrix of the Streamlined NTRU Prime lattice,
then perform mitm on the rest.

Use BKZ on submatrix B to get B ′:

C ·
(

qI 0
H I

)
=

qIw 0 0

∗ B ′ 0

∗ ∗ Iw ′

 .

Guess options for last w ′ coordinates of f , using collision search (as
before).

If the Hermite factor of B ′ is small enough, then a rounding algorithm
can detect collision of halfguesses.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 23

https://ntruprime.cr.yp.to

Hybrid attack

Howgrave-Graham combines lattice basis reduction and
meet-in-the-middle attack.

Idea: reduce submatrix of the Streamlined NTRU Prime lattice,
then perform mitm on the rest.

Use BKZ on submatrix B to get B ′:

C ·
(

qI 0
H I

)
=

qIw 0 0

∗ B ′ 0

∗ ∗ Iw ′

 .

Guess options for last w ′ coordinates of f , using collision search (as
before).

If the Hermite factor of B ′ is small enough, then a rounding algorithm
can detect collision of halfguesses.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 23

https://ntruprime.cr.yp.to

Security against the hybrid attack

Balance the costs of the BKZ and mitm phase.

Hoffstein, Pipher, Schanck, Silverman, Whyte, and Zhang
[HPSWZ15] published simplfied analysis tool.

Compute BKZ costs with Chen-Nguyen simulator.

Estimate the mitm costs by estimating the size of
the projected space [HPSWZ15].

For detailed formulas and justifications, see our paper
https://eprint.iacr.org/2016/461 and NIST submission
https://ntruprime.cr.yp.to.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 24

https://eprint.iacr.org/2016/461
https://ntruprime.cr.yp.to
https://ntruprime.cr.yp.to

Security against the hybrid attack

Balance the costs of the BKZ and mitm phase.

Hoffstein, Pipher, Schanck, Silverman, Whyte, and Zhang
[HPSWZ15] published simplfied analysis tool.

Compute BKZ costs with Chen-Nguyen simulator.

Estimate the mitm costs by estimating the size of
the projected space [HPSWZ15].

For detailed formulas and justifications, see our paper
https://eprint.iacr.org/2016/461 and NIST submission
https://ntruprime.cr.yp.to.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 24

https://eprint.iacr.org/2016/461
https://ntruprime.cr.yp.to
https://ntruprime.cr.yp.to

Security against the hybrid attack

Balance the costs of the BKZ and mitm phase.

Hoffstein, Pipher, Schanck, Silverman, Whyte, and Zhang
[HPSWZ15] published simplfied analysis tool.

Compute BKZ costs with Chen-Nguyen simulator.

Estimate the mitm costs by estimating the size of
the projected space [HPSWZ15].

For detailed formulas and justifications, see our paper
https://eprint.iacr.org/2016/461 and NIST submission
https://ntruprime.cr.yp.to.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 24

https://eprint.iacr.org/2016/461
https://ntruprime.cr.yp.to
https://ntruprime.cr.yp.to

Streamlined NTRU Prime Security: parameters

We investigated security against the strongest known attacks;
meet-in-the-middle (mitm), hybrid attack of BKZ and mitm,
algebraic attacks, and sieving.

Streamlined NTRU Prime 4591761 and NTRU LPRime 4591761

both use p = 761 and q = 4591.

The resulting sizes and Haswell speeds show that reducing the attack
surface has very low cost:
Metric Streamlined NTRU

NTRU Prime 4591761 LPRime 4591761

Public-key size 1218 bytes 1047 bytes

Ciphertext size 1047 bytes 1175 bytes

Encapsulation time 59456 cycles 94508 cycles

Decapsulation time 97684 cycles 128316 cycles

Pre-quantum security 248 bits 225 bits

Quantum computers will speed up attacks by less than squareroot.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 25

https://ntruprime.cr.yp.to

Bonus slides: why automorphisms matter

Targets and history:

2014.10 Campbell–Groves–Shepherd describe an ideal-lattice-based
system “Soliloquy”; claim quantum poly-time key recovery.

2010 Smart–Vercauteren system is practically identical to Soliloquy.

2009 Gentry system (simpler version described at STOC) has the
same key-recovery problem.

2012 Garg–Gentry–Halevi multilinear maps have the same
key-recovery problem (and many other security issues).

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 26

https://ntruprime.cr.yp.to

Smart–Vercauteren; Soliloquy

Parameter: k ≥ 1.

Define R = Z[x]/Φ2k .

Public key: prime q and c ∈ Z/q.

Secret key: short element g ∈ R with gR = qR + (x − c)R;
i.e., short generator of the ideal qR + (x − c)R.

1993 Cohen textbook “A course in computational algebraic number
theory” explains how to find generators.

Smart–Vercauteren comment that this would take exponential time.

But it actually takes subexponential time. Same basic idea as NFS.

Campbell–Groves–Shepherd claim quantum poly time. Claim disputed
by Biasse, not defended by CGS.

2016 Biasse–Song: different algorithm that takes quantum poly time,
building on 2014 Eisenträger–Hallgren–Kitaev–Song.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 27

https://ntruprime.cr.yp.to

Smart–Vercauteren; Soliloquy

Parameter: k ≥ 1.

Define R = Z[x]/Φ2k .

Public key: prime q and c ∈ Z/q.

Secret key: short element g ∈ R with gR = qR + (x − c)R;
i.e., short generator of the ideal qR + (x − c)R.

1993 Cohen textbook “A course in computational algebraic number
theory” explains how to find generators.

Smart–Vercauteren comment that this would take exponential time.

But it actually takes subexponential time. Same basic idea as NFS.

Campbell–Groves–Shepherd claim quantum poly time. Claim disputed
by Biasse, not defended by CGS.

2016 Biasse–Song: different algorithm that takes quantum poly time,
building on 2014 Eisenträger–Hallgren–Kitaev–Song.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 27

https://ntruprime.cr.yp.to

Smart–Vercauteren; Soliloquy

Parameter: k ≥ 1.

Define R = Z[x]/Φ2k .

Public key: prime q and c ∈ Z/q.

Secret key: short element g ∈ R with gR = qR + (x − c)R;
i.e., short generator of the ideal qR + (x − c)R.

1993 Cohen textbook “A course in computational algebraic number
theory” explains how to find generators.

Smart–Vercauteren comment that this would take exponential time.

But it actually takes subexponential time. Same basic idea as NFS.

Campbell–Groves–Shepherd claim quantum poly time. Claim disputed
by Biasse, not defended by CGS.

2016 Biasse–Song: different algorithm that takes quantum poly time,
building on 2014 Eisenträger–Hallgren–Kitaev–Song.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 27

https://ntruprime.cr.yp.to

Smart–Vercauteren; Soliloquy

Parameter: k ≥ 1.

Define R = Z[x]/Φ2k .

Public key: prime q and c ∈ Z/q.

Secret key: short element g ∈ R with gR = qR + (x − c)R;
i.e., short generator of the ideal qR + (x − c)R.

1993 Cohen textbook “A course in computational algebraic number
theory” explains how to find generators.

Smart–Vercauteren comment that this would take exponential time.

But it actually takes subexponential time. Same basic idea as NFS.

Campbell–Groves–Shepherd claim quantum poly time. Claim disputed
by Biasse, not defended by CGS.

2016 Biasse–Song: different algorithm that takes quantum poly time,
building on 2014 Eisenträger–Hallgren–Kitaev–Song.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 27

https://ntruprime.cr.yp.to

How to get a short generator?

Have ideal I of R.

Want short g with gR = I ; have g ′ with g ′R = I .

Know g ′ = ug for some unit u ∈ R∗.

To find u move to log lattice.

Log g ′ = Log u + Log g ,

where Log is Dirichlet’s log map.

Dirichlet’s unit theorem:
LogR∗ is a lattice of known dimension.

Finding Log u is a closest-vector problem in this lattice.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 28

https://ntruprime.cr.yp.to

Quote from Campbell–Groves–Shepherd

“A simple generating set for the cyclotomic units is of course known.
The image of O× [here R∗] under the logarithm map forms a lattice.
The determinant of this lattice turns out to be much bigger than the
typical loglength of a private key α [here g], so it is easy to recover the
causally short private key given any generator of αO [here I], e.g. via the
LLL lattice reduction algorithm.”

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 29

https://ntruprime.cr.yp.to

Automorphisms

x 7→ x3, x 7→ x5, x 7→ x7, etc. are automorphisms of R = Z[x]/Φ2k .

Easy to see (1− x3)/(1− x) ∈ R∗; for inverse use expansion.

“Cyclotomic units” are defined as

R∗ ∩

{
±xe0

∏
i

(1− x i)ei

}
.

Weber’s conjecture:
All elements of R∗ are cyclotomic units.

Experiments confirm that SV is quickly broken by LLL using, e.g.,
1997 Washington textbook basis for cyclotomic units.

Shortness of basis is critical; this was not highlighted in CGS analysis.

Bernstein, Chuengsatiansup, Lange, van Vredendaal https://ntruprime.cr.yp.to 30

https://ntruprime.cr.yp.to

