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Live demo on bench.cr.yp.to

Some cycle counts on h9ivy (Intel Core i5-3210M, Ivy Bridge):

I ronald1024 encrypt (RSA-1024, ≈280) 46940

I mceliece encrypt (2008 Biswas–Sendrier, ≈280) 61440

I gls254 DH (binary elliptic curve; CHES 2013) 77468

I kumfp127g DH (hyperelliptic curve; Eurocrypt 2013) 116944

I curve25519 DH (conservative elliptic curve) 182632

I ntruees787ep1 encrypt (from NTRU Inc., ≈2256) 398912

I ntruees787ep1 decrypt 700512

I mceliece decrypt 1219344

I ronald1024 decrypt 1340040
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Efficient public-key encryption

I Batch operations are not yet in benchmarking framework:
handle multiple encryptions or decryptions together. This is
very useful for busy Internet nodes or cell towers.

I The McBits cryptosystem handles a batch of 256 decryptions
together (CHES 2013 Bernstein–Chou–Schwabe):

0.07MB public key (≈280) 26544

0.21MB public key (≈2128) 60493

1MB public key (≈2256) 306102

I Speeds are per decryption for a batch of 256 decryptions.

I Decoding only; cipher time not included.

I Fully protected against software side-channel attacks, i.e.
attacker can have account on same computer and not get any
information on the secrets.
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Basics of coding theory

Here only consider binary codes, i.e. codes over IF2.

I Basics of coding theory: Transmission channel is not perfect,
so x ∈ IFn

2 will have some bits flipped.

I Syndrome decoding: compute Hx = s for big (n − k)× n
matrix H.

1 0 1 1 . . . 0
0 0 0 1 . . . 0
...

...
...

... . . .
...

0 1 0 0 . . . 1





1
0
0
1
...
1



=


0
1
...
1

 = s

I Reconstruct error vector e and thereby get originally sent
codeword x + e.

I Works if not too many errors, i.e. number of 1s in e is small.
This number is called the weight.
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Code-based cryptography

I Basics of coding theory: Transmission channel is not perfect,
so x ∈ IFn

2 will have some bits flipped.

I Syndrome decoding: compute Hx = s for big (n − k)× n
matrix H. Reconstruct error vector e and thereby get
originally sent codeword x + e.

I Works if not too many errors, i.e. number of 1s in e is small.
This number is called the weight.

I Code-based crypto uses e to transport key for symmetric
encryption. Take e ∈ IFn

q to have exactly weight t.

I Users know how to derive keys for symmetric encryption (AES,
Salsa20, . . . ) k(e) and key for message authentication r(e)..

I To encrypt m to Bob, Alice looks up Bob’s matrix H,
computes s = He, c = Enck(e)(m) and a = MACr(e)(c) and
sends s, c , a to Bob.
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How can this be secure? 
1 0 1 1 . . . 0
0 0 0 1 . . . 0
...

...
...

... . . .
...

0 1 0 0 . . . 1





1
0
0
1
...
1


=


0
1
...
1


I Code-based crypto uses two different views of the same code

– one for the public parameter H which resembles a generic
code and one for the secret key which is efficiently decodable.

I Classical decoding problem: find the closest codeword c ∈ C
to a given x ∈ IFn

2, assuming that there is a unique closest
codeword.

I In particular: Decoding a generic binary code of length n and
without knowing anything about its structure requires about
2(0.5+o(1))n/ log2(n) binary operations (assuming a rate ≈ 1/2)

I Coding theory deals with efficiently decodable codes, e.g.
Goppa codes are efficiently decodable and lead to random
looking public matrices H.
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Good security history

I Original parameters by McEliece in 1978 n = 1024, k = 524,
t = 50, i.e. 50 errors in a [1024, 524] code.

I In 2008 we wrote attack software against these original
parameters. Attack on a single computer with a 2.4GHz Intel
Core 2 Quad Q6600 CPU would need, on average, 1400 days
(258 CPU cycles) to complete the attack.

I Parameters used in McBits offer much more security (280,
2128, and 2256 respectively), size of public key is k(n− k) bits.

I Move from 2128 to 2256 to protect against attacks using
quantum computers.

Good efficiency

I Encrypting is efficient – simple matrix-vector product.

I McBits shows that Goppa codes can be decoded efficiently
and in constant time.
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