Physically unclonable functions found in standard
PC components (PUFFIN)

Daniel J. Bernstein and Tanja Lange
reporting results of the PUFFIN project

http://puffin.eu.org
https://twitter.com/puffin_project

~)PUFFIN

L= INFSO-ICT-284833

2014.12.12

http://puffin.eu.org
https://twitter.com/puffin_project

Physically Unclonable Functions

» Can uniquely identify electronic components.

» Device-unique "fingerprints" create root of trust in a hardware
system; derive secret keys from physical properties.

» Protect valuable objects against counterfeiting.

» Typically found in specially designed hardware components.

» Fairly well understood are SRAM PUFs:

» Microscopic manufacturing differences in SRAM determine whether a
cell is more likely to hold a 0 or 1 when powered up.

» Many cells are stable across reboots.

> Need to be able to read up uninitialized memory.

» Often found in specially designed hardware components, e.g., FPGA
dongles.

» The same behavior generates true randomness.

B Physically unclonable functions found in Jard PC p (PUFFIN) http://puffin.eu.org

http://puffin.eu.org

PUFFIN Mission

Study and show the existence of SRAM PUFs and other types of PUFs in
» PCs,
> laptops,
» mobile phones,
» consumer electronics,

for use as secret keys or trust anchors in mass-market applications.
Show how to use this new root of trust to

» add security for mass-market applications,

» replace or complement the role of a trusted platform module,

» enable security for applications such as broadcast applications,

content protection for the gaming industry,

» secure day-to-day transactions for everyone.
The results of the project will allow for the first time an a priori open
platform, the most difficult element to secure in an
information-technology system today, to inherit security properties from
its own identity and its intrinsic physical properties.

found in lard PC

p (PUFFIN) http://puffin.eu.org

http://puffin.eu.org

Partners

TU/ e

Technische Universiteit Eindhoven, the Netherlands
(Co-ordinator)

e Daniel J. Bernstein, Tanja Lange,

Ruben Niederhagen, Boris Skoric

Intrinsic ID, Netherlands
e Pim Tuyls (scientific coordinator), Vincent van der Leest

Katholieke Universiteit Leuven, Belgium
e Bart Preneel, Anthony van Herrewege,
Frederic Vercauteren

Technical University of Darmstadt, Germany
o Stefan Katzenbeisser, André Schaller

found in lard PC p (PUFFIN) http://puffin.eu.org

http://puffin.eu.org

Scientific Work packages

» WP1: Exploration
» Read out the uninitialized memory of various GPU and CPU types;
» Make a preliminary assessment of the quality of the so obtained data;
» Find identifying properties of mobile devices such as smart phones
that are hard to clone;
» Contingency plan: Consider PUFs on FPGAs as potential add-on.
» WP2: Analysis and qualification
» Develop statistical analysis tools and mathematical and probabilistic
models for the qualification of potential PUF data from WP1.
» Run the tools: perform such analysis and qualification on WP1 data.
» Recommend security parameters to use these PUFs in WP3.
» WP3: Use cases
> Develop hardware-entangled cryptographic primitives that draw their
security directly from physical assumptions of the underlying PUF.
» Develop error correction schemes specifically tailored towards the
error characteristics of the PUFs identified in WP1
> Investigate to which extent the PUFFIN PUFs can be used to
implement low-cost alternatives to Trusted Platform Modules.
» Anti-counterfeiting: guarantee the integrity of software or securely
bind software to a particular hardware platform.

Physically unclonable functions found in Jard PC p (PUFFIN) http://puffin.eu.org

http://puffin.eu.org

STM32F100R8 microcontrollers (ARM Cortex-M3)

Custom PCB with several STM32F100R8 microcontrollers
(32-bit ARM Cortex M3) and measurement board.

& Physically | ble fi i found in lard PC

p (PUFFIN) http://puffin.eu.org

http://puffin.eu.org

Programming pen

Simplify programming the microcontroller:
Six pogo pins contact the PCB; other end connects via USB to host PC.

@ Physically lonable fi ions found in dard PC

p (PUFFIN) http://puffin.eu.org

http://puffin.eu.org

http://puffin.eu.org

Qualification of PUFs

» Want enough stable bits to reconstruct secret.
» Stability is studied relative to one enrollment
measurement.

» If all bits are stable this cannot be related to
physical process but is programmed, so want
some intermediate value.

» Require device identification, i.e., big differences between devices.

» To reconstruct enrollment secret use some helper data; usually this
involves linear error correction codes.

» Make sure that helper data does not reveal information about the
secret (e.g. bit 3is 0).

Physically | ble fi i found in lard PC

p (PUFFIN) http://puffin.eu.org

http://puffin.eu.org

Secure PRNG Seeding on COTS ! devices

General idea:

v

Collect noisy SRAM bits upon early boot time.

Overwrite SRAM bits to make it inaccessible during further usage.

>
» Apply hash function on noisy bits for entropy extraction.
» Use hash output as a seed for a PRNG.
>

Use generated bit stream of random numbers for crypto applications.

S

Q O ‘) Pattern

-

Seed

Embedded SRAM Entropy extraction
providing Entropy with Conditioning
Algorithm

1COTS: Commercial Off-The-Shelf

& Physically lonable f i found in

dard PC

Random

Bitstream

Pseudo-Random
Number Generator

p (PUFFIN) http://puffin.eu.org

10

http://puffin.eu.org

Secure PRNG Seeding on COTS Microcontrollers?

» STMicroelectronics STM32F100R8 with
8KiB SRAM.

» Contains enough entropy for TRNG:
minimum 5,5%.

» We need about 1.04KiB to derive
a truly random seed of 256 bits.
However ...
» Microchip PIC16F1825 with 1 KiB SRAM.

» Startup values exhibit clearly visible
patterns. Prediction attacks!

f!l'ﬂ{"”' "I' |1 H'I

» Not enough entropy. llmu u||lﬂ|||

J i
2Van Herrewege, van der Leest, Schaller, Katzenbeisser, Verbauwhede TrustED 13

B Physically unclonable functions found in dard PC p (PUFFIN) http://puffin.eu.org

11

http://puffin.eu.org

Light-Weight Secure Boot Implementation for SoCs

Establish secure boot anchor on
smart phones (link bootloader to
device, stop malware at kernel
level, might also enforce software
license terms).

PandaBoard has ARM Cortex-A9
(TI OMAP4460).

PUF source: On-Chip Memory (OCM) L3 SRAM, 56 KiB

OCM used to hold initializing code — part of the memory cannot be
used as PUF as it is initialized.

OCM part with good PUF behavior: ca. 12 KiB
Enough to derive a 256 bit AES key.

I ble fi
f

Physically found in dard PC

p (PUFFIN) http://puffin.eu.org

12

http://puffin.eu.org

Light-Weight Secure Boot for SoCs

Hamming weight: ca. 49

» Max. within-class Hamming
distance: 3.90 %

» Min. between-class Hamming
distance: 50.02 %

» Current implementation needs
675 SRAM bytes

» Golay(23, 12, 7)-Code &
repetition encoding for error
correction

3Schaller, Arul, van der Leest

Physically lonable f i found in

d

using PUFs3

d PC

ZED MEMORY RANGE
' BY ROM co

(PUFFIN) http://puffin.eu.org

13

http://puffin.eu.org

Secure Boot on Laptop or PC?

Typical boot sequence on AMDG64 systems:
1. BIOS (UEFI),
2. boot loader,

3. operating system.

& Physically lonable fi i found in dard PC

(PUFFIN) http://puffin.eu.org

14

http://puffin.eu.org

Secure Boot on Laptop or PC?

Typical boot sequence on AMDG64 systems:
1. BIOS (UEFI),
2. boot loader,
3. operating system.
SRAM in AMD64 CPUs:
» General purpose registers.
» Vector registers (XMM): 16 - 128 = 2048 bits (per core).

» Caches.

& Physically lonable fi i found in dard PC

p (PUFFIN) http://puffin.eu.org

14

http://puffin.eu.org

Secure Boot on Laptop or PC?

Typical boot sequence on AMDG64 systems:
1. BIOS (UEFI),
2. boot loader,
3. operating system.
SRAM in AMD64 CPUs:
» General purpose registers.
» Vector registers (XMM): 16 - 128 = 2048 bits (per core).
» Caches.
Registers on OS level: [small kernel patch and module]
» All XMM registers on CPU core 1 contained all 0.

» Some XMM registers on CPU core 0 contained, e.g.

» EFI_STATUS_CODE_SPECIFIC_DATA_GUID and
» EFI_PROCESSOR_PRODUCER_GUID.

& Physically lonable fi i found in dard PC

p (PUFFIN) http://puffin.eu.org 14

http://puffin.eu.org

Secure Boot on Laptop or PC?

Typical boot sequence on AMDG64 systems:
1. BIOS (UEFI),
2. boot loader,
3. operating system.
SRAM in AMD64 CPUs:
» General purpose registers.
» Vector registers (XMM): 16 - 128 = 2048 bits (per core).
» Caches.
Registers on OS level: [small kernel patch and module]
» All XMM registers on CPU core 1 contained all 0.

» Some XMM registers on CPU core 0 contained, e.g.

» EFI_STATUS_CODE_SPECIFIC_DATA_GUID and
» EFI_PROCESSOR_PRODUCER_GUID.

» The registers have been initialized /used before the OS was started!

& Physically lonable fi i found in dard PC

p (PUFFIN) http://puffin.eu.org 14

http://puffin.eu.org

Registers on bootloader level

More serious code changes.
> All XMM registers except xmm0O were 0.

» XMM register xmmO contained the same data on each boot, though
different data for different test machines.

» The data turned out to be some fill-pattern of the BIOS code or
some CPUID depending on the test machine.

& Physically lonable fi i found in dard PC

p (PUFFIN) http://puffin.eu.org

15

http://puffin.eu.org

Registers on bootloader level

More serious code changes.
> All XMM registers except xmm0O were 0.

» XMM register xmmO contained the same data on each boot, though
different data for different test machines.

» The data turned out to be some fill-pattern of the BIOS code or
some CPUID depending on the test machine.

» The registers have been initialized /used before the OS was started!

- Physically unclonable functions found in standard PC (PUFFIN) http://puffin.eu.org

15

http://puffin.eu.org

Registers on bootloader level

More serious code changes.

>

>

>

| 4

All XMM registers except xmm0O were 0.

XMM register xmm0 contained the same data on each boot, though
different data for different test machines.

The data turned out to be some fill-pattern of the BIOS code or
some CPUID depending on the test machine.

The registers have been initialized/used before the OS was started!

Try registers on BIOS level:

>

>
| 4
>
>

Need to use Coreboot to access BIOS code.

Only specific main boards are supported out-of-the-box.

Read XMM registers as early as possible (before RAM is initialized).
More serious Coreboot patch.

Manual analysis of Coreboot disassembly ensures that (at least)
xmm2—xmm7 have not been touched before patch code.

Physically unclonable functions found in dard PC (PUFFIN) http://puffin.eu.org

15

http://puffin.eu.org

ASRock E350M1 with AMD E-350 APU

@ Physically lonable fi ions found in dard PC

(PUFFIN) http://puffin.eu.or,

16

http://puffin.eu.org

Registers on BIOS Level

All XMM registers were 0.

& Physically lonable fi

found in

d

d PC

(PUFFIN) http://puffin.eu.org

17

http://puffin.eu.org

Registers on BIOS Level

All XMM registers were 0.
Volume 1 of the AMDG64 Architecture Programmer’s Manual states:

Upon power-on reset, all 16 YMM/XMM registers are cleared
to +0.0. However, initialization by means of the #INIT
external input signal does not change the state of the
YMM/XMM registers.

Last chance:

B Physically unclonable functions found in dard PC p (PUFFIN) http://puffin.eu.org

17

http://puffin.eu.org

Registers on BIOS Level

All XMM registers were 0.

Volume 1 of the AMDG64 Architecture Programmer’s Manual states:
Upon power-on reset, all 16 YMM/XMM registers are cleared
to +0.0. However, initialization by means of the #INIT
external input signal does not change the state of the
YMM/XMM registers.

Last chance:
Investigate the cache after power-on.

B Physically unclonable functions found in dard PC p (PUFFIN) http://puffin.eu.org

17

http://puffin.eu.org

Cache on BIOS level

» Use Coreboot since we need access to BIOS code.

» Print cache-as-RAM region to serial console before RAM is
initialized.

» Make sure cache-as-RAM is not nulled!
= Coreboot patch

& Physically lonable fi i found in dard PC

p (PUFFIN) http://puffin.eu.org

18

http://puffin.eu.org

Cache

v

v

v

v

v

on BIOS level

Use Coreboot since we need access to BIOS code.

Print cache-as-RAM region to serial console before RAM is
initialized.

Make sure cache-as-RAM is not nulled!

= Coreboot patch

Most data was 0,

except for some data that had been stored to the stack previously.

Physically unclonable functions found in dard PC p (PUFFIN) http://puffin.eu.org

18

http://puffin.eu.org

Cache

on BIOS level

Use Coreboot since we need access to BIOS code.

» Print cache-as-RAM region to serial console before RAM is

initialized.

Make sure cache-as-RAM is not nulled!

= Coreboot patch

Most data was 0,

except for some data that had been stored to the stack previously.

The cache has been initialized by hardware before BIOS code is
executed!

Physically unclonable functions found in dard PC p (PUFFIN) http://puffin.eu.org 18

http://puffin.eu.org

Investigating SRAM PUFs in AMD64 CPUs®

» Bad news:

4van Aubel, Bernstein, and Niederhagen
5van Aubel and Niederhagen, submitted

& Physically lonable fi ions found in

d

d PC

(PUFFIN) http://puffin.eu.org

19

http://puffin.eu.org

Investigating SRAM PUFs in AMD64 CPUs®

» Bad news:
On AMD64 CPUs, neither (XMM) registers nor caches
allow access to uninitialized SRAM.

4van Aubel, Bernstein, and Niederhagen
5van Aubel and Niederhagen, submitted

& Physically lonable fi i found in dard PC

p (PUFFIN) http://puffin.eu.org

19

http://puffin.eu.org

Investigating SRAM PUFs in AMD64 CPUs®

» Bad news:
On AMD64 CPUs, neither (XMM) registers nor caches
allow access to uninitialized SRAM.

» More bad news:

4van Aubel, Bernstein, and Niederhagen
5van Aubel and Niederhagen, submitted

B Physically unclonable functions found in dard PC p (PUFFIN) http://puffin.eu.org

19

http://puffin.eu.org

Investigating SRAM PUFs in AMD64 CPUs®

» Bad news:
On AMD64 CPUs, neither (XMM) registers nor caches
allow access to uninitialized SRAM.

» More bad news:
It is not easy to publish a paper with negative results:

4van Aubel, Bernstein, and Niederhagen
5van Aubel and Niederhagen, submitted

& Physically lonable fi i found in dard PC

p (PUFFIN) http://puffin.eu.org

19

http://puffin.eu.org

Investigating SRAM PUFs in AMD64 CPUs®

» Bad news:
On AMD64 CPUs, neither (XMM) registers nor caches
allow access to uninitialized SRAM.

» More bad news:
It is not easy to publish a paper with negative results:

» Good news:

4van Aubel, Bernstein, and Niederhagen
5van Aubel and Niederhagen, submitted

B Physically unclonable functions found in dard PC p (PUFFIN) http://puffin.eu.org

19

http://puffin.eu.org

Investigating SRAM PUFs in AMD64 CPUs®

» Bad news:
On AMD64 CPUs, neither (XMM) registers nor caches
allow access to uninitialized SRAM.

» More bad news:
It is not easy to publish a paper with negative results:

» Good news:
NVIDIA GTX 295 GPUs exhibit PUF behavior.*

» NIVIDA GPUs are programmed using the CUDA framework.

» Experiments with 17 GTX 295 chips
providing 17-30 - 16 KB = 8,160 KB PUF data.

4van Aubel, Bernstein, and Niederhagen
5van Aubel and Niederhagen, submitted

B Physically unclonable functions found in dard PC p (PUFFIN) http://puffin.eu.org 19

http://puffin.eu.org

http://puffin.eu.org

2

0.06

0.05

0.04

0.03

0.02

0.01

Within-class hamming distance antilles2, device 0, MPs 0-29

Physically

bl

found in

dard PC

(PUFFIN) http://puffin.eu.org

21

http://puffin.eu.org

0.8

0.2

Between-class hamming distance

Physically

bl

f found in dard PC

p (PUFFIN) http://puffin.eu.org

22

http://puffin.eu.org

