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What is the Fastest Public Key
Cryptosystem?
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Fastest Public Key system . . .

for key agreement?

for electronic signature?

for encryption?

for key generation?

Decision will depend on application and resources like

low power embedded device,

personal computer or laptop, or

server handling millions of connections.

Even with complete specifications it is hard to decide from
the theoretical description which is faster.
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RSA

n = p · q, p, q primes.

Choose random

small

e, compute d ≡ e−1 mod ϕ(n) (if
possible); ϕ(n) = (p − 1)(q − 1).

Public key (e, n).

Secret key d.

Example: signing of message m with hash function h
(school book version!)

Signer:
Compute h(m) and send s ≡ h(m)d mod n as signature.

Verifier:
Compute h′ ≡ se mod n.
Accept only if h′ = h(m).

Tanja Lange Benchmarking – p. 4



RSA

n = p · q, p, q primes.

Choose

random

small e, compute d ≡ e−1 mod ϕ(n) (if
possible); ϕ(n) = (p − 1)(q − 1).

Public key (e, n).

Secret key d.

Example: signing of message m with hash function h
(school book version!)

Signer:
Compute h(m) and send s ≡ h(m)d mod n as signature.

Verifier:
Compute h′ ≡ se mod n.
Accept only if h′ = h(m).

Tanja Lange Benchmarking – p. 4



Costs of RSA signature

Signer computes hash and computes 1 modular
exponentiation.

Verifier computes hash and computes 1 modular
exponentiation.

If RSA with small public exponent is used, verification
gets cheaper.

Costs for encryption are similar.
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DL in finite fields

General system parameters:
p prime power, IFp finite field with p elements.
g generator of group of order q, with q | p − 1.

Choose random a, compute h = ga.

Public key h. (Note that public parameters are not
included, they are assumed to be system-wide
parameters.)

Secret key a.
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Schnorr signature on m

Signer:
Choose k, compute K = gk, compute H = h(K, m).
Compute S ≡ k − aH mod q.
Signature is (H, S).

Verifier:
Retrieve h.
Compute K ′ = gS · hH .
Accept only if H = h(K ′, m).

Works since

K ′ = gS · hH = gk−aH · gaH = gk = K

if the signature was computed correctly.
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Costs of Schnorr signature

Signer computes hash, 1 modular exponentiation and
one multiplication modulo q (much smaller than
modulus p).

Verifier computes hash and 2 modular exponentiations
(usually done as 1 multiexponentiation).

So on first sight this is more expensive than RSA – if p ∼ n.
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Elliptic curve

E : y2 + (a1x + a3)
︸ ︷︷ ︸

h(x)

y = x3 + a2x
2 + a4x + a6

︸ ︷︷ ︸

f(x)

, h, f ∈ IFq[x].

Group: E(IFq) = { (x, y) ∈ IF2
q : y2 + h(x)y = f(x) } ∪ {P∞ }

Often q = 2r or q = p, prime. Isomorphic transformations
lead to

y2 = f(x) q odd,

for
y2 + xy = x3 + a2x

2 + a6

y2 + y = x3 + a4x + a6
q = 2r,

curve non-supersingular
curve supersingular
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Group Law in E(IR), h = 0

y2 = x3 − x

P

R

−P − R

P + R
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Group Law (q odd)
E : y2 = x3 + a4x + a6, ai ∈ IFq

P

R

−P − R

P + R

2P

−2P

Line y = λx + µ has slope

λ = yR−yP

xR−xP
.

Equating gives

(λx + µ)2 = x3 + a4x + a6.

This equation has 3 solutions, the x-coordinates of P , R
and −P − R, thus

(x − xP )(x − xR)(x − x−P−R) = x3 − λ2x2 + (a4 − 2λµ)x + a6 − µ2

x−P−R = λ2 − xP − xR

Point P is on line, thus

yP = λxP + µ, i.e.
µ = yP − λxP ,

and
y−P−R = λx−P−R + µ

= λx−P−R + yP − λxP

= λ(x−P−R − xP ) + yP

Point P + R has the same x-coordinate but negative
y-coordinate:

xP+R = λ2 − xP − xR, yP+R = λ(xP − x−P−R) − yP

In general, for (xP , yP ) 6= (xR,−yR):

(xP , yP ) + (xR, yR) =
= (xP+R, yP+R) =

= (λ2 − xP − xR, λ(xP − xP+R)− yP ),
where

λ =

{

(yR − yP )/(xR − xP ) if xP 6= xR,

(3x2
P + a4)/(2yP ) else.

⇒ Addition and Doubling need
1 I, 2M, 1S and 1 I, 2M, 2S, respectively

Tanja Lange Benchmarking – p. 11



Group Law (q odd)
E : y2 = x3 + a4x + a6, ai ∈ IFq

P

R

−P − R

P + R

2P

−2P

Line y = λx + µ has slope

λ = yR−yP

xR−xP
.

Equating gives

(λx + µ)2 = x3 + a4x + a6.

This equation has 3 solutions, the x-coordinates of P , R
and −P − R, thus

(x − xP )(x − xR)(x − x−P−R) = x3 − λ2x2 + (a4 − 2λµ)x + a6 − µ2

x−P−R = λ2 − xP − xR

Point P is on line, thus

yP = λxP + µ, i.e.
µ = yP − λxP ,

and
y−P−R = λx−P−R + µ

= λx−P−R + yP − λxP

= λ(x−P−R − xP ) + yP

Point P + R has the same x-coordinate but negative
y-coordinate:

xP+R = λ2 − xP − xR, yP+R = λ(xP − x−P−R) − yP

In general, for (xP , yP ) 6= (xR,−yR):

(xP , yP ) + (xR, yR) =
= (xP+R, yP+R) =

= (λ2 − xP − xR, λ(xP − xP+R)− yP ),
where

λ =

{

(yR − yP )/(xR − xP ) if xP 6= xR,

(3x2
P + a4)/(2yP ) else.

⇒ Addition and Doubling need
1 I, 2M, 1S and 1 I, 2M, 2S, respectively

Tanja Lange Benchmarking – p. 11



Group Law (q odd)
E : y2 = x3 + a4x + a6, ai ∈ IFq

P

R

−P − R

P + R

2P

−2P

Line y = λx + µ has slope

λ = yR−yP

xR−xP
.

Equating gives

(λx + µ)2 = x3 + a4x + a6.

This equation has 3 solutions, the x-coordinates of P , R
and −P − R, thus

(x − xP )(x − xR)(x − x−P−R) = x3 − λ2x2 + (a4 − 2λµ)x + a6 − µ2

x−P−R = λ2 − xP − xR

Point P is on line, thus

yP = λxP + µ, i.e.
µ = yP − λxP ,

and
y−P−R = λx−P−R + µ

= λx−P−R + yP − λxP

= λ(x−P−R − xP ) + yP

Point P + R has the same x-coordinate but negative
y-coordinate:

xP+R = λ2 − xP − xR, yP+R = λ(xP − x−P−R) − yP

In general, for (xP , yP ) 6= (xR,−yR):

(xP , yP ) + (xR, yR) =
= (xP+R, yP+R) =

= (λ2 − xP − xR, λ(xP − xP+R)− yP ),
where

λ =

{

(yR − yP )/(xR − xP ) if xP 6= xR,

(3x2
P + a4)/(2yP ) else.

⇒ Addition and Doubling need
1 I, 2M, 1S and 1 I, 2M, 2S, respectively

Tanja Lange Benchmarking – p. 11



Systems based on ECC

Use the group of points instead of finite field in previous
signature scheme.

General system parameters:
IFq finite field with q elements.
E elliptic curve over IFq, group order n.
P generator of group of order ` with ` | n.

Choose random a, compute Q = [a]P .

Public key Q. (Note that public parameters are not
included, they are assumed to be system-wide
parameters.)

Secret key a.
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ECDSA signature on m

Signer:
Choose k, compute K = [k]P .
Compute s ≡ (k−1(h(m) − ah(K))) mod `

Signature is (K, s).

Verifier:
Retrieve Q.
Compute R1 = [h(K)]Q ⊕ [s]K.
Compute R2 = [h(m)]P .
Accept only if R1 = R2.

Works since

R1 = [h(K)]Q ⊕ [s]K = [ah(K)]P ⊕ [ks]P

= [ah(K) + h(m) − ah(K)]P = [h(m)]P = R2.
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Costs of ECDSA

Signer computes hash, 1 scalar multiplication and one
multiplication modulo `.

Verifier computes hash , 1 scalar multiplication and 1
multi-exponentiation.

Warning: this is not the most efficient version, one
multi-exponentiation is sufficient.

So the number and type of operations is similar to
Schnorr signature,

however, each group operation on the elliptic curve is
much more complicated than in finite fields
(actually composed of several finite field operations).

BUT finite fields do NOT have the same size.
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Fair comparison

Systems should offer same level of security!

RSA is broken if n can be factored. There are
subexponential algorithms for factoring.

Schnorr’s signature scheme is broken if a can be
obtained from h = ga. There are subexponential
algorithms to solve the DLP in finite fields.

ECDSA is broken if a can be obtained from Q = [a]P .
We are not aware of any subexponential algorithm for
solving the DLP on elliptic curves. Best known attacks
on carefully chosen curves need O(

√
`) operations, so

the DLP has exponential security.

Hyperelliptic curves of small genus behave like elliptic
curves.
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Implications

Asymptotic behavior does not capture constants.
ECRYPT’s www.ecrypt.eu.org report on key-sizes
states security of RSA as

Sizes of n, p for RSA and Schnorr signature scheme
grow much faster than group size ` in ECDSA.

Often mentioned current recommendations are RSA or
finite fields with 1024 bit modulus; ECC in fields of 160
bits.

Often only discrete steps stated and contradicting
answers.
Nice compilation www.keylength.com.
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Comparison seems possible

For current security level (and thus also for future ones)
ECDSA is faster than RSA or DSA in general.

RSA with small public key has fast verification. Security
is unclear.

Implementations in soft- and hardware confirm this.

Benchmarks are done (at least on one machine at a
time), results usually point in the same direction and
confirm above statement.

Have theoretical comparison and real world measures
(Pentium cycles, Athlon cycles, etc.)

However, often implementor prefers his own system –
are his results significant for other systems?
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Other systems

There are many more systems that are much harder to
put into comparison:

SFLASH is an HFE based signature system.
Merkle-tree signatures are based on hash functions.
Coding based systems are around almost since the
beginning of public key cryptography and still
unbroken.
NTRU a lattice based encryption seems secure,
NTRUsign is controversial.

These systems are interesting in general.

Additional advantage: they seem to resist quantum
computing attacks (while RSA and DL would be broken
completely).
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eBATS
eBATS: ECRYPT Benchmarking of Asymmetric
Systems www.ecrypt.eu.org/ebats

benchmark real world measures (Pentium cycles,
Athlon cycles, etc.)

for generating keys, signing, verifying, encrypting,
decrypting;

measure key bytes, signed-message bytes, ciphertext
bytes, etc.

of any submitted BAT (Benchmarkable Asymmetric
Tool), i.e. public key system for signing, encrypting or
key sharing.

Benchmarking tool is called BATMAN (Benchmarking of
Asymmetric Tools on Multiple Architectures,
Non-Interactively).
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Advantages

BAT is submitted by person supporting this particular
system.

Only systems that find at least one interested person
are considered.

Independent benchmarking on a variety of machines.

Unifying API so that code can run anywhere.

Wrapper to make fixed length encryption/signature
handle arbitrary length ones.

OpenSSL, GMP and NTL are provided.
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Disadvantages

Only submitted systems are considered – might miss
some systems.

Result depends on programming abilities of submitter –
might be slower than optimal.

Wrapper might be slower than designated
encryption/signature of arbitrary length messages.

Provided software packages (OpenSSL, GMP, NTL)
might not be optimal for small field sizes.
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eBATS approach
Some BATs are provided to guarantee presence of
RSA, DL in finite fields.

BATMAN comes with example BATs.

Use of OpenSSL, GMP and NTL is optional. A BAT can
come with full code for modular reduction etc.

BATMAN tries all conceivable compiler options, also for
included software.

Source code is put online. Improvements are possible
over the full duration of the competition.

We accept multiple BATs for the same cryptographic
primitive (ronald is a slow RSA BAT).

Wrapper is optional. Implementation of full API is very
welcome.
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Example measurements with ronald

Just try to beat ronald and submit your BAT!
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