### **Public Key Cryptography**

## Performance Comparison and Benchmarking

Tanja Lange

Department of Mathematics
Technical University of Denmark
tanja@hyperelliptic.org
28.08.2006

## What is the Fastest Public Key Cryptosystem?

#### Fastest Public Key system ...

- for key agreement?
- for electronic signature?
- for encryption?
- for key generation?

Decision will depend on application and resources like

- low power embedded device,
- personal computer or laptop, or
- server handling millions of connections.

Even with complete specifications it is hard to decide from the theoretical description which is faster.

#### **RSA**

- $n = p \cdot q$ , p, q primes.
- Choose random e, compute  $d \equiv e^{-1} \mod \varphi(n)$  (if possible);  $\varphi(n) = (p-1)(q-1)$ .
- Public key (e, n).
- Secret key d.

Example: signing of message m with hash function h (school book version!)

- Signer: Compute h(m) and send  $s \equiv h(m)^{d} \mod n$  as signature.
- Verifier: Compute  $h' \equiv s^e \mod n$ . Accept only if h' = h(m).

#### **RSA**

- $n = p \cdot q$ , p, q primes.
- Choose small e, compute  $d \equiv e^{-1} \mod \varphi(n)$  (if possible);  $\varphi(n) = (p-1)(q-1)$ .
- Public key (e, n).
- Secret key d.

Example: signing of message m with hash function h (school book version!)

- Signer: Compute h(m) and send  $s \equiv h(m)^{\mathbf{d}} \mod n$  as signature.
- Verifier: Compute  $h' \equiv s^e \mod n$ . Accept only if h' = h(m).

#### **Costs of RSA signature**

- Signer computes hash and computes 1 modular exponentiation.
- Verifier computes hash and computes 1 modular exponentiation.
- If RSA with small public exponent is used, verification gets cheaper.

Costs for encryption are similar.

#### **DL** in finite fields

- General system parameters:
  - p prime power,  $\mathbb{F}_p$  finite field with p elements.
  - g generator of group of order q, with  $q \mid p-1$ .
- Choose random a, compute  $h = g^a$ .
- Public key h. (Note that public parameters are not included, they are assumed to be system-wide parameters.)
- Secret key a.

#### Schnorr signature on m

#### Signer:

- Choose k, compute  $K = g^k$ , compute H = h(K, m).
- Compute  $S \equiv k aH \mod q$ .
- Signature is (H, S).

#### Verifier:

- $\bullet$  Retrieve h.
- Compute  $K' = g^S \cdot h^H$ .
- Accept only if H = h(K', m).
- Works since

$$K' = g^S \cdot h^H = g^{k-aH} \cdot g^{aH} = g^k = K$$

if the signature was computed correctly.

#### **Costs of Schnorr signature**

- Signer computes hash, 1 modular exponentiation and one multiplication modulo q (much smaller than modulus p).
- Verifier computes hash and 2 modular exponentiations (usually done as 1 multiexponentiation).

So on first sight this is more expensive than RSA – if  $p \sim n$ .

#### Elliptic curve

$$E: y^2 + \underbrace{(a_1x + a_3)}_{h(x)} y = \underbrace{x^3 + a_2x^2 + a_4x + a_6}_{f(x)}, \ h, f \in \mathbb{F}_q[x].$$

**Group:** 
$$E(\mathbb{F}_q) = \{ (x, y) \in \mathbb{F}_q^2 : y^2 + h(x)y = f(x) \} \cup \{ P_{\infty} \}$$

Often  $q=2^r$  or q=p, prime. Isomorphic transformations lead to

$$y^2 = f(x)$$
  $q \text{ odd},$ 

for

$$y^2+xy=x^3+a_2x^2+a_6$$
  $y^2+y=x^3+a_4x+a_6$   $q=2^r$ , curve non-supersingular

### Group Law in $E(\mathbb{R}), h = 0$



### Group Law in $E(\mathbb{R}), h = 0$



## Group Law in $E(\mathbb{R}), h = 0$



### **Group Law (q odd)**

$$E: y^2 = x^3 + a_4x + a_6, \ a_i \in \mathbb{F}_q$$



Line  $y = \lambda x + \mu$  has slope

$$\lambda = \frac{y_R - y_P}{x_R - x_P}$$
 .

Equating gives

$$(\lambda x + \mu)^2 = x^3 + a_4 x + a_6.$$

This equation has 3 solutions, the x-coordinates of P, R and -P-R, thus

$$(x - x_P)(x - x_R)(x - x_{-P-R}) = x^3 - \lambda^2 x^2 + (a_4 - 2\lambda\mu)x + a_6 - x_{-P-R} = \lambda^2 - x_P - x_R$$

Tanja Lange

Benchmarking – p. 11

### **Group Law (q odd)**

$$E: y^2 = x^3 + a_4x + a_6, \ a_i \in \mathbb{F}_q$$



Point *P* is on line, thus

$$y_P = \lambda x_P + \mu$$
, i.e.  $\mu = y_P - \lambda x_P$ ,

and

$$y_{-P-R} = \lambda x_{-P-R} + \mu$$

$$= \lambda x_{-P-R} + y_P - \lambda x_P$$

$$= \lambda (x_{-P-R} - x_P) + y_P$$

Point P + R has the same x-coordinate but negative y-coordinate:

$$x_{P+R} = \lambda^2 - x_P - x_R, \quad y_{P+R} = \lambda(x_P - x_{-P-R}) - y_P$$

## Group Law (q odd)

$$E: y^2 = x^3 + a_4x + a_6, \ a_i \in \mathbb{F}_q$$



In general, for 
$$(x_{P}, y_{P}) \neq (x_{R}, -y_{R})$$
:
$$(x_{P}, y_{P}) + (x_{R}, y_{R}) =$$

$$= (x_{P+R}, y_{P+R}) =$$

$$= (\lambda^{2} - x_{P} - x_{R}, \lambda(x_{P} - x_{P+R}) - y_{P}),$$

where 
$$\lambda = \begin{cases} (y_R - y_P)/(x_R - x_P) & \text{if } x_P \neq x_R, \\ (3x_P^2 + a_4)/(2y_P) & \text{else.} \end{cases}$$

⇒ Addition and Doubling need

1 I, 2M, 1S and 1 I, 2M, 2S, respectively

#### **Systems based on ECC**

Use the group of points instead of finite field in previous signature scheme.

- General system parameters:
  - $\mathbb{F}_q$  finite field with q elements.
  - E elliptic curve over  $\mathbb{F}_q$ , group order n.
  - P generator of group of order  $\ell$  with  $\ell \mid n$ .
- Choose random a, compute Q = [a]P.
- Public key Q. (Note that public parameters are not included, they are assumed to be system-wide parameters.)
- Secret key a.

#### **ECDSA** signature on m

- Signer:
  - Choose k, compute K = [k]P.
  - Compute  $s \equiv (k^{-1}(h(m) ah(K))) \mod \ell$
  - Signature is (K, s).
- Verifier:
  - Retrieve Q.
  - Compute  $R_1 = [h(K)]Q \oplus [s]K$ .
  - Compute  $R_2 = [h(m)]P$ .
  - Accept only if  $R_1 = R_2$ .
- Works since

$$R_1 = [h(K)]Q \oplus [s]K = [ah(K)]P \oplus [ks]P$$
  
=  $[ah(K) + h(m) - ah(K)]P = [h(m)]P = R_2.$ 

#### **Costs of ECDSA**

- Signer computes hash, 1 scalar multiplication and one multiplication modulo  $\ell$ .
- Verifier computes hash, 1 scalar multiplication and 1 multi-exponentiation.

Warning: this is not the most efficient version, one multi-exponentiation is sufficient.

- So the number and type of operations is similar to Schnorr signature,
- however, each group operation on the elliptic curve is much more complicated than in finite fields (actually composed of several finite field operations).
- BUT finite fields do NOT have the same size.

#### Fair comparison

Systems should offer same level of security!

- RSA is broken if n can be factored. There are subexponential algorithms for factoring.
- Schnorr's signature scheme is broken if a can be obtained from  $h = g^a$ . There are subexponential algorithms to solve the DLP in finite fields.
- **●** ECDSA is broken if a can be obtained from Q = [a]P. We are not aware of any subexponential algorithm for solving the DLP on elliptic curves. Best known attacks on carefully chosen curves need  $O(\sqrt{\ell})$  operations, so the DLP has exponential security.
- Hyperelliptic curves of small genus behave like elliptic curves.

#### **Implications**

Asymptotic behavior does not capture constants. ECRYPT's www.ecrypt.eu.org report on key-sizes states security of RSA as

$$s(n) = \left(\frac{64}{9}\right)^{1/3} \log_2(e)(n \ln 2)^{1/3} (\ln(n \ln 2))^{2/3} - 14.$$

- Sizes of n, p for RSA and Schnorr signature scheme grow much faster than group size  $\ell$  in ECDSA.
- Often mentioned current recommendations are RSA or finite fields with 1024 bit modulus; ECC in fields of 160 bits.
- Often only discrete steps stated and contradicting answers.

Nice compilation www.keylength.com.

#### Comparison seems possible

- For current security level (and thus also for future ones) ECDSA is faster than RSA or DSA in general.
- RSA with small public key has fast verification. Security is unclear.
- Implementations in soft- and hardware confirm this.
- Benchmarks are done (at least on one machine at a time), results usually point in the same direction and confirm above statement.
- Have theoretical comparison and real world measures (Pentium cycles, Athlon cycles, etc.)
- However, often implementor prefers his own system are his results significant for other systems?

#### Other systems

- There are many more systems that are much harder to put into comparison:
  - SFLASH is an HFE based signature system.
  - Merkle-tree signatures are based on hash functions.
  - Coding based systems are around almost since the beginning of public key cryptography and still unbroken.
  - NTRU a lattice based encryption seems secure, NTRUsign is controversial.
- These systems are interesting in general.
- Additional advantage: they seem to resist quantum computing attacks (while RSA and DL would be broken completely).

#### **eBATS**

- eBATS: ECRYPT Benchmarking of Asymmetric Systems www.ecrypt.eu.org/ebats
- benchmark real world measures (Pentium cycles, Athlon cycles, etc.)
- for generating keys, signing, verifying, encrypting, decrypting;
- measure key bytes, signed-message bytes, ciphertext bytes, etc.
- of any submitted BAT (Benchmarkable Asymmetric Tool), i.e. public key system for signing, encrypting or key sharing.
- Benchmarking tool is called BATMAN (Benchmarking of Asymmetric Tools on Multiple Architectures, Non-Interactively).

#### **Advantages**

- BAT is submitted by person supporting this particular system.
- Only systems that find at least one interested person are considered.
- Independent benchmarking on a variety of machines.
- Unifying API so that code can run anywhere.
- Wrapper to make fixed length encryption/signature handle arbitrary length ones.
- OpenSSL, GMP and NTL are provided.

#### **Disadvantages**

- Only submitted systems are considered might miss some systems.
- Result depends on programming abilities of submitter might be slower than optimal.
- Wrapper might be slower than designated encryption/signature of arbitrary length messages.
- Provided software packages (OpenSSL, GMP, NTL) might not be optimal for small field sizes.

#### eBATS approach

- Some BATs are provided to guarantee presence of RSA, DL in finite fields.
- BATMAN comes with example BATs.
- Use of OpenSSL, GMP and NTL is optional. A BAT can come with full code for modular reduction etc.
- BATMAN tries all conceivable compiler options, also for included software.
- Source code is put online. Improvements are possible over the full duration of the competition.
- We accept multiple BATs for the same cryptographic primitive (ronald is a slow RSA BAT).
- Wrapper is optional. Implementation of full API is very welcome.

#### Example measurements with ronald



Just try to beat ronald and submit your BAT!

## Example measured on a Pentium 4 f12:

|                  | sflashv2-1 | ronald-3 2048 |
|------------------|------------|---------------|
| key-gen cycles   | 462090336  | 2467681772    |
| secret-key bytes |            | 2048          |
| public-key bytes | 19266      | 256           |
| sign cycles      | 1908060    | 63607084      |
| sign 29 bytes    | 66         | 256           |
| sign 709 bytes   | 746        | 752           |
| verify cycles    | 667684     | 575108        |
|                  |            |               |

Results show which systems are faster.

## Example measured on a Pentium 4 f12:

```
cycles implementation
29646848 claus-1 (using OpenSSL)
21324260 claus++-1 (using NTL)
13919316 claus++-1 (using GMP)
```

Results show which implementations are faster.

Note to implementers: GMP is very fast!

## claus++-1 measured on different machines:

<u>cycles CPU</u>

28981828 Intel Pentium 1 52c

27069568 Motorola PowerPC G4

13919316 Intel Pentium 4 f12

11306413 Sun UltraSPARC IV

9892179 AMD Athlon 622

3273274 AMD Athlon 64 X2 fb1

3082045 DEC Alpha 21264 EV6

Results show which computers are faster.

eBATS - Crypto 2006



# Want to advertise your system/implementation?

- Take a few minutes to turn your software into a BAT (Benchmarkable Asymmetric Tool) and submit it to eBATS.
- Measurements are continuing.
- Major reports in December 2006, July 2007.
- Intermediate announcements on web pages.

www.ecrypt.eu.org/ebats





