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Commonly used systems

Sender
“Alice”

//

Untrustworthy network
“Eve”

Receiver
“Bob”

Cryptography with symmetric keys
AES-128. AES-192. AES-256. AES-GCM. ChaCha20. HMAC-SHA-256. Poly1305.
SHA-2. SHA-3. Salsa20.

Cryptography with public keys
BN-254. Curve25519. DH. DSA. ECDH. ECDSA. EdDSA. NIST P-256. NIST P-384.
NIST P-521. RSA encrypt. RSA sign. secp256k1.

I Very easy solutions if Alice and Bob already share long secret key k :
I “One-time pad” for confidentiality.
I “Wegman–Carter MAC” for integrity and authenticity.

I AES-256: Standardized method to expand short secret key (256-bit k)
into string indistinguishable from long secret key.

I AES introduced in 1998 by Daemen and Rijmen.
Security analyzed in papers by dozens of cryptanalysts.

I No credible threat from quantum algorithms. Grover costs 2128.
I Some results assume attacker has quantum access to computation, then some systems are

weaker . . . but I’d know if my laptop had turned into a quantum computer.
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Symmetric-key authenticated encryption

Sender
“Alice”

//

Untrustworthy network
“Eve” with quantum computer

Receiver
“Bob”

Cryptography with symmetric keys
AES-128. AES-192. AES-256. AES-GCM. ChaCha20. HMAC-SHA-256. Poly1305.
SHA-2. SHA-3. Salsa20.

Cryptography with public keys
BN-254. Curve25519. DH. DSA. ECDH. ECDSA. EdDSA. NIST P-256. NIST P-384.
NIST P-521. RSA encrypt. RSA sign. secp256k1.

I Very easy solutions if Alice and Bob already share long secret key k :
I “One-time pad” for confidentiality.
I “Wegman–Carter MAC” for integrity and authenticity.

I AES-256: Standardized method to expand short secret key (256-bit k)
into string indistinguishable from long secret key.

I AES introduced in 1998 by Daemen and Rijmen.
Security analyzed in papers by dozens of cryptanalysts.

I No credible threat from quantum algorithms. Grover costs 2128.
I Some results assume attacker has quantum access to computation, then some systems are

weaker . . . but I’d know if my laptop had turned into a quantum computer.
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National Academy of Sciences (US)

4 December 2018: Report on quantum computing

Don’t panic. “Key Finding 1: Given the current state of quantum computing and recent rates
of progress, it is highly unexpected that a quantum computer that can compromise RSA 2048
or comparable discrete logarithm-based public key cryptosystems will be built within the next
decade.”

Panic. “Key Finding 10: Even if a quantum computer that can decrypt current cryptographic
ciphers is more than a decade off, the hazard of such a machine is high enough—and the time
frame for transitioning to a new security protocol is sufficiently long and uncertain—that
prioritization of the development, standardization, and deployment of post-quantum
cryptography is critical for minimizing the chance of a potential security and privacy disaster.”

“[Section 4.4:] In particular, all encrypted data that is recorded today and stored for future use,
will be cracked once a large-scale quantum computer is developed.”
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High urgency for long-term confidentiality

I Today’s encrypted communication is being stored by attackers and will be decrypted years
later with quantum computers. Danger for human-rights workers, medical records,
journalists, security research, legal proceedings, state secrets, . . .
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Many stages of research from design to deployment

Define the goals

qq
Explore space of cryptosystems

pp
Study algorithms for the attackers

pp
Focus on secure cryptosystems

pp
Study algorithms for the users

pp
Study implementations on real hardware

pp
Study side-channel attacks, fault attacks, etc.

pp
Focus on secure, reliable implementations

pp
Focus on implementations meeting performance requirements

pp
Integrate securely into real-world applications
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Warning:
waterfall
data flow,
undesirable.
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Confidence-inspiring crypto takes time to build

I Example: ECC introduced 1985;
big advantages over RSA.
Robust ECC started to take over
the Internet in 2015.

I Can’t wait for quantum computers
before finding a solution!
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Post-quantum cryptography
Cryptography under the assumption that the attacker has a quantum computer.

I 1994: Shor’s quantum algorithm. 1996: Grover’s quantum algorithm.
Many subsequent papers on quantum algorithms: see quantumalgorithmzoo.org.

I 2003: Daniel J. Bernstein introduces term Post-quantum cryptography.

I 2006: First International Workshop on Post-Quantum Cryptography. PQCrypto 2006,
2008, 2010, 2011, 2013, 2014, 2016, 2017, 2018, 2019, 2020, 2021, (soon) 2022.

I 2015: NIST hosts its first workshop on post-quantum cryptography.

I 2016: NIST announces a standardization project for post-quantum systems.

I 2017: Deadline for submissions to the NIST competition.

I 2019: Second round of NIST competition begins.

I 2020: Third round of NIST competition begins.

I

I 2022 →∞ NIST studies further systems.

I 2023/2024?: NIST issues post-quantum standards.
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Major categories of public-key post-quantum systems

I Code-based encryption: McEliece cryptosystem has survived since 1978. Short ciphertexts
and large public keys. Security relies on hardness of decoding error-correcting codes.

I Hash-based signatures: very solid security and small public keys. Require only a secure
hash function (hard to find second preimages).

I Isogeny-based encryption: new kid on the block, promising short keys and ciphertexts
and non-interactive key exchange. Security relies on hardness of finding isogenies between
elliptic curves over finite fields.

I Lattice-based encryption and signatures: possibility for balanced sizes. Security relies on
hardness of finding short vectors in some (typically special) lattice.

I Multivariate-quadratic signatures: short signatures and large public keys. Security relies
on hardness of solving systems of multivariate equations over finite fields.

Warning: These are categories of mathematical problems;
individual systems may be totally insecure if the problem is not used correctly.

We have a good algorithmic abstraction of what a quantum computer can do,
but new systems need more analysis. Any extra structure offers more attack surface.
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NIST’s 5 July announcement

The winners:

I Kyber, a KEM based on structured lattices

I Dilithium, a signature scheme based on structured lattices

I Falcon, a signature scheme based on structured lattices

I SPHINCS+, a signature scheme based on

hash functions

This is an odd choice, given that KEMs are most urgently needed to ensure long-term
confidentiality.

Schemes advancing to round 4, so maybe more winners later:

I BIKE, a KEM based on codes

I Classic McEliece, a KEM based on codes

I HQC, a KEM based on codes

I SIKE, a KEM based on isogenies (now really badly broken, < 1 month after NIST’s
announcement)
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21 December 2017: NIST posts 69 submissions from 260 people.
BIG QUAKE. BIKE. CFPKM. Classic McEliece. Compact LWE.
CRYSTALS-DILITHIUM. CRYSTALS-KYBER. DAGS. Ding Key Exchange. DME.
DRS. DualModeMS. Edon-K. EMBLEM and R.EMBLEM. FALCON. FrodoKEM.
GeMSS. Giophantus. Gravity-SPHINCS. Guess Again. Gui. HILA5. HiMQ-3. HK17.
HQC. KINDI. LAC. LAKE. LEDAkem. LEDApkc. Lepton. LIMA. Lizard. LOCKER.
LOTUS. LUOV. McNie. Mersenne-756839. MQDSS. NewHope. NTRU Prime.
NTRU-HRSS-KEM. NTRUEncrypt. NTS-KEM. Odd Manhattan.
OKCN/AKCN/CNKE. Ouroboros-R. Picnic. pqNTRUSign. pqRSA encryption.
pqRSA signature. pqsigRM. QC-MDPC KEM. qTESLA. RaCoSS. Rainbow.
Ramstake. RankSign. RLCE-KEM. Round2. RQC. RVB. SABER. SIKE. SPHINCS+.
SRTPI. Three Bears. Titanium. WalnutDSA.

Some less security than claimed; some really broken; some attack scripts.
Merges for second round: HILA5 & Round2; LAKE, LOCKER, & Ouroboros-R;

LEDAkem & LEDApkc; NTRUEncrypt & NTRU-HRSS-KEM.
Merges for third round: Classic McEliece & NTS-KEM.
Life remains interesting in third round . . .
4 winners, 4 schemes in fourth round. SIKE completely broken with attack running in seconds.
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By end of 2017: 8 out of 69 submissions attacked.
BIG QUAKE. BIKE. CFPKM. Classic McEliece. Compact LWE.
CRYSTALS-DILITHIUM. CRYSTALS-KYBER. DAGS. Ding Key Exchange. DME.
DRS. DualModeMS. Edon-K. EMBLEM and R.EMBLEM. FALCON. FrodoKEM.
GeMSS. Giophantus. Gravity-SPHINCS. Guess Again. Gui. HILA5. HiMQ-3. HK17.
HQC. KINDI. LAC. LAKE. LEDAkem. LEDApkc. Lepton. LIMA. Lizard. LOCKER.
LOTUS. LUOV. McNie. Mersenne-756839. MQDSS. NewHope. NTRU Prime.
NTRU-HRSS-KEM. NTRUEncrypt. NTS-KEM. Odd Manhattan.
OKCN/AKCN/CNKE. Ouroboros-R. Picnic. pqNTRUSign. pqRSA encryption.
pqRSA signature. pqsigRM. QC-MDPC KEM. qTESLA. RaCoSS. Rainbow.
Ramstake. RankSign. RLCE-KEM. Round2. RQC. RVB. SABER. SIKE. SPHINCS+.
SRTPI. Three Bears. Titanium. WalnutDSA.

Some less security than claimed; some really broken; some attack scripts.

Merges for second round: HILA5 & Round2; LAKE, LOCKER, & Ouroboros-R;
LEDAkem & LEDApkc; NTRUEncrypt & NTRU-HRSS-KEM.

Merges for third round: Classic McEliece & NTS-KEM.
Life remains interesting in third round . . .
4 winners, 4 schemes in fourth round. SIKE completely broken with attack running in seconds.
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By end of 2018: 22 out of 69 submissions attacked.
BIG QUAKE. BIKE. CFPKM. Classic McEliece. Compact LWE.
CRYSTALS-DILITHIUM. CRYSTALS-KYBER. DAGS. Ding Key Exchange. DME.
DRS. DualModeMS. Edon-K. EMBLEM and R.EMBLEM. FALCON. FrodoKEM.
GeMSS. Giophantus. Gravity-SPHINCS. Guess Again. Gui. HILA5. HiMQ-3. HK17.
HQC. KINDI. LAC. LAKE. LEDAkem. LEDApkc. Lepton. LIMA. Lizard. LOCKER.
LOTUS. LUOV. McNie. Mersenne-756839. MQDSS. NewHope. NTRU Prime.
NTRU-HRSS-KEM. NTRUEncrypt. NTS-KEM. Odd Manhattan.
OKCN/AKCN/CNKE. Ouroboros-R. Picnic. pqNTRUSign. pqRSA encryption.
pqRSA signature. pqsigRM. QC-MDPC KEM. qTESLA. RaCoSS. Rainbow.
Ramstake. RankSign. RLCE-KEM. Round2. RQC. RVB. SABER. SIKE. SPHINCS+.
SRTPI. Three Bears. Titanium. WalnutDSA.

Some less security than claimed; some really broken; some attack scripts.

Merges for second round: HILA5 & Round2; LAKE, LOCKER, & Ouroboros-R;
LEDAkem & LEDApkc; NTRUEncrypt & NTRU-HRSS-KEM.

Merges for third round: Classic McEliece & NTS-KEM.
Life remains interesting in third round . . .
4 winners, 4 schemes in fourth round. SIKE completely broken with attack running in seconds.
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30 January 2019: 26 candidates retained for second round.
BIG QUAKE. BIKE. CFPKM. Classic McEliece. Compact LWE.
CRYSTALS-DILITHIUM. CRYSTALS-KYBER. DAGS. Ding Key Exchange. DME.
DRS. DualModeMS. Edon-K. EMBLEM and R.EMBLEM. FALCON. FrodoKEM.
GeMSS. Giophantus. Gravity-SPHINCS. Guess Again. Gui. HILA5. HiMQ-3. HK17.
HQC. KINDI. LAC. LAKE. LEDAkem. LEDApkc. Lepton. LIMA. Lizard. LOCKER.
LOTUS. LUOV. McNie. Mersenne-756839. MQDSS. NewHope. NTRU Prime.
NTRU-HRSS-KEM. NTRUEncrypt. NTS-KEM. Odd Manhattan.
OKCN/AKCN/CNKE. Ouroboros-R. Picnic. pqNTRUSign. pqRSA encryption.
pqRSA signature. pqsigRM. QC-MDPC KEM. qTESLA. RaCoSS. Rainbow.
Ramstake. RankSign. RLCE-KEM. Round2. RQC. RVB. SABER. SIKE. SPHINCS+.
SRTPI. Three Bears. Titanium. WalnutDSA.

Some less security than claimed; some really broken; some attack scripts.
Merges for second round: HILA5 & Round2; LAKE, LOCKER, & Ouroboros-R;
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By end of 2019: 30 out of 69 submissions attacked.
BIG QUAKE. BIKE. CFPKM. Classic McEliece. Compact LWE.
CRYSTALS-DILITHIUM. CRYSTALS-KYBER. DAGS. Ding Key Exchange. DME.
DRS. DualModeMS. Edon-K. EMBLEM and R.EMBLEM. FALCON. FrodoKEM.
GeMSS. Giophantus. Gravity-SPHINCS. Guess Again. Gui. HILA5. HiMQ-3. HK17.
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22 July 2020: 15 candidates retained for third round.
BIG QUAKE. BIKE. CFPKM. Classic McEliece. Compact LWE.
CRYSTALS-DILITHIUM. CRYSTALS-KYBER. DAGS. Ding Key Exchange. DME.
DRS. DualModeMS. Edon-K. EMBLEM and R.EMBLEM. FALCON. FrodoKEM.
GeMSS. Giophantus. Gravity-SPHINCS. Guess Again. Gui. HILA5. HiMQ-3. HK17.
HQC. KINDI. LAC. LAKE. LEDAkem. LEDApkc. Lepton. LIMA. Lizard. LOCKER.
LOTUS. LUOV. McNie. Mersenne-756839. MQDSS. NewHope. NTRU Prime.
NTRU-HRSS-KEM. NTRUEncrypt. NTS-KEM. Odd Manhattan.
OKCN/AKCN/CNKE. Ouroboros-R. Picnic. pqNTRUSign. pqRSA encryption.
pqRSA signature. pqsigRM. QC-MDPC KEM. qTESLA. RaCoSS. Rainbow.
Ramstake. RankSign. RLCE-KEM. Round2. RQC. RVB. SABER. SIKE. SPHINCS+.
SRTPI. Three Bears. Titanium. WalnutDSA.

Some less security than claimed; some really broken; some attack scripts.
Merges for second round: HILA5 & Round2; LAKE, LOCKER, & Ouroboros-R;

LEDAkem & LEDApkc; NTRUEncrypt & NTRU-HRSS-KEM.
Merges for third round: Classic McEliece & NTS-KEM.

Life remains interesting in third round . . .
4 winners, 4 schemes in fourth round. SIKE completely broken with attack running in seconds.
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Spring 2022: 2 out of 15 candidates attacked.
BIG QUAKE. BIKE. CFPKM. Classic McEliece. Compact LWE.
CRYSTALS-DILITHIUM. CRYSTALS-KYBER. DAGS. Ding Key Exchange. DME.
DRS. DualModeMS. Edon-K. EMBLEM and R.EMBLEM. FALCON. FrodoKEM.
GeMSS. Giophantus. Gravity-SPHINCS. Guess Again. Gui. HILA5. HiMQ-3. HK17.
HQC. KINDI. LAC. LAKE. LEDAkem. LEDApkc. Lepton. LIMA. Lizard. LOCKER.
LOTUS. LUOV. McNie. Mersenne-756839. MQDSS. NewHope. NTRU Prime.
NTRU-HRSS-KEM. NTRUEncrypt. NTS-KEM. Odd Manhattan.
OKCN/AKCN/CNKE. Ouroboros-R. Picnic. pqNTRUSign. pqRSA encryption.
pqRSA signature. pqsigRM. QC-MDPC KEM. qTESLA. RaCoSS. Rainbow.
Ramstake. RankSign. RLCE-KEM. Round2. RQC. RVB. SABER. SIKE. SPHINCS+.
SRTPI. Three Bears. Titanium. WalnutDSA.

Some less security than claimed; some really broken; some attack scripts.
Merges for second round: HILA5 & Round2; LAKE, LOCKER, & Ouroboros-R;

LEDAkem & LEDApkc; NTRUEncrypt & NTRU-HRSS-KEM.
Merges for third round: Classic McEliece & NTS-KEM.
Life remains interesting in third round . . .

4 winners, 4 schemes in fourth round. SIKE completely broken with attack running in seconds.
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30 July 2020: 4 winners, 4 more candidates of which 1 broken.
BIG QUAKE. BIKE. CFPKM. Classic McEliece. Compact LWE.
CRYSTALS-DILITHIUM. CRYSTALS-KYBER. DAGS. Ding Key Exchange. DME.
DRS. DualModeMS. Edon-K. EMBLEM and R.EMBLEM. FALCON. FrodoKEM.
GeMSS. Giophantus. Gravity-SPHINCS. Guess Again. Gui. HILA5. HiMQ-3. HK17.
HQC. KINDI. LAC. LAKE. LEDAkem. LEDApkc. Lepton. LIMA. Lizard. LOCKER.
LOTUS. LUOV. McNie. Mersenne-756839. MQDSS. NewHope. NTRU Prime.
NTRU-HRSS-KEM. NTRUEncrypt. NTS-KEM. Odd Manhattan.
OKCN/AKCN/CNKE. Ouroboros-R. hboxPicnic. pqNTRUSign. pqRSA encryption.
pqRSA signature. pqsigRM. QC-MDPC KEM. qTESLA. RaCoSS. Rainbow.
Ramstake. RankSign. RLCE-KEM. Round2. RQC. RVB. SABER. SIKE. SPHINCS+.
SRTPI. Three Bears. Titanium. WalnutDSA.

Some less security than claimed; some really broken; some attack scripts.
Merges for second round: HILA5 & Round2; LAKE, LOCKER, & Ouroboros-R;

LEDAkem & LEDApkc; NTRUEncrypt & NTRU-HRSS-KEM.
Merges for third round: Classic McEliece & NTS-KEM.
Life remains interesting in third round . . .
4 winners, 4 schemes in fourth round. SIKE completely broken with attack running in seconds.
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Post-quantum public-key signatures

// // //
99

//

CC 88

I Secret key , public key .

I Only one prerequisite: a good hash function, e.g. SHA3-512, . . .
Hash functions map long strings to fixed-length strings. H : {0, 1}∗ → {0, 1}n.

Signature schemes use hash functions in handling .

I Quantum computers affect the hardness only marginally (Grover, not Shor).
I Old idea: 1979 Lamport one-time signatures; 1979 Merkle extends to more signatures.
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On the fast track: stateful hash-based signatures
I CFRG has published 2 RFCs: RFC 8391 and RFC 8554

I NIST followed both RFCs and standardized XMSS and LMS.
Only concern is about statefulness in general.

I ISO SC27 JTC1 WG2 is gettting closer to standard on stateful hash-based signatures
(again both XMSS and LMS).

Tanja Lange Post-quantum cryptography 16
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One-time signatures
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A signature scheme for empty messages: key generation

First part of signempty.py

import os; from hashlib import sha3_256;

def keypair():

secret = sha3_256(os.urandom(32))

public = sha3_256(secret)

return public,secret

>>> import signempty; import binascii;

>>> pk,sk = signempty.keypair()

>>> binascii.hexlify(pk)

b’a447bc8d7c661f85defcf1bbf8bad77bfc6191068a8b658c99c7ef4cbe37cf9f’

>>> binascii.hexlify(sk)

b’a4a1334a6926d04c4aa7cd98231f4b644be90303e4090c358f2946f1c257687a’
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A signature scheme for empty messages: signing, verification

Rest of signempty.py

def sign(message,secret):

if message != ’’: raise Exception(’nonempty message’)

signedmessage = secret

return signedmessage

def open(signedmessage,public):

if sha3_256(signedmessage) != public:

raise Exception(’bad signature’)

message = ’’

return message

>>> sm = signempty.sign(’’,sk)

>>> signempty.open(sm,pk)

’’
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A signature scheme for 1-bit messages: key generation, signing

First part of signbit.py

import signempty

def keypair():

p0,s0 = signempty.keypair()

p1,s1 = signempty.keypair()

return p0+p1,s0+s1

def sign(message,secret):

if message == 0:

return (’0’ , signempty.sign(’’,secret[0:32]))

if message == 1:

return (’1’ , signempty.sign(’’,secret[32:64]))

raise Exception(’message must be 0 or 1’)
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A signature scheme for 1-bit messages: verification

Rest of signbit.py

def open(signedmessage,public):

if signedmessage[0] == ’0’:

signempty.open(signedmessage[1],public[0:32])

return 0

if signedmessage[0] == ’1’:

signempty.open(signedmessage[1],public[32:64])

return 1

raise Exception(’message must be 0 or 1’)

>>> import signbit

>>> pk,sk = signbit.keypair()

>>> sm = signbit.sign(1,sk)

>>> signbit.open(sm,pk)

1

Tanja Lange Post-quantum cryptography 21



A signature scheme for 1-bit messages: verification
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return 0
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A signature scheme for 4-bit messages: key generation

First part of sign4bits.py

import signbit

def keypair():

p0,s0 = signbit.keypair()

p1,s1 = signbit.keypair()

p2,s2 = signbit.keypair()

p3,s3 = signbit.keypair()

return p0+p1+p2+p3,s0+s1+s2+s3
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A signature scheme for 4-bit messages: sign & verify
Rest of sign4bits.py

def sign(m,secret):

if type(m) != int: raise Exception(’message must be int’)

if m < 0 or m > 15:

raise Exception(’message must be between 0 and 15’)

sm0 = signbit.sign(1 & (m >> 0),secret[0:64])

sm1 = signbit.sign(1 & (m >> 1),secret[64:128])

sm2 = signbit.sign(1 & (m >> 2),secret[128:192])

sm3 = signbit.sign(1 & (m >> 3),secret[192:256])

return sm0+sm1+sm2+sm3

def open(sm,public):

m0 = signbit.open(sm[0:2],public[0:64])

m1 = signbit.open(sm[2:4],public[64:128])

m2 = signbit.open(sm[4:6],public[128:192])

m3 = signbit.open(sm[6:],public[192:256])

return m0 + 2*m1 + 4*m2 + 8*m3
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Do not use one secret key to sign two messages!

>>> import sign4bits

>>> pk,sk = sign4bits.keypair()

>>> sm11 = sign4bits.sign(11,sk)

>>> sign4bits.open(sm11,pk)

11

>>> sm7 = sign4bits.sign(7,sk)

>>> sign4bits.open(sm7,pk)

7

>>> forgery = sm7[:6] + sm11[6:]

>>> sign4bits.open(forgery,pk)

15
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Lamport’s 1-time signature system
Sign arbitrary-length message by signing its 256-bit hash:

def keypair():

keys = [signbit.keypair() for n in range(256)]

public,secret = zip(*keys)

return public,secret

def sign(message,secret):

msg = message.to_bytes(200, byteorder="little")

h = sha3_256(msg)

hbits = [1 & (h[i//8])>>(i%8) for i in range(256)]

sigs = [signbit.sign(hbits[i],secret[i]) for i in range(256)]

return sigs, message

def open(sm,public):

message = sm[1]

msg = message.to_bytes(200, byteorder="little")

h = sha3_256(msg)

hbits = [1 & (h[i//8])>>(i%8) for i in range(256)]

for i in range(256):

if hbits[i] != signbit.open(sm[0][i],public[i]):

raise Exception(’bit %d of hash does not match’ % i)

return message

Tanja Lange Post-quantum cryptography 25



Want to sign 4 bits with just 32 bytes

I Lamport’s signatures have 2× 256 hash outputs (each 32 bytes) as public key and the
signature has 256 times 32 bytes.

I Define
H i (x) = H(H i−1(x)) = H(H(. . . (H(x))))︸ ︷︷ ︸

i times

.

I Pick random sk, compute pk= H16(sk).

I For message m reveal s = Hm(sk) as signature.

I To verify check that pk= H16−m(s).



Weak Winternitz
def keypair():

secret = sha3_256(os.urandom(32)); public = sha3_256(secret)

for i in range(16): public = sha3_256(public)

return public,secret

def sign(m,secret):

if type(m) != int: raise Exception(’message must be int’)

if m < 0 or m > 15: raise Exception(’message must be between 0 and 15’)

sign = secret

for i in range(m): sign = sha3_256(sign)

return sign, m

def open(sm,public):

if type(sm[1]) != int: raise Exception(’message must be int’)

if sm[1] < 0 or sm[1] > 15: raise Exception(’message must be between 0 and 15’)

check = sm[0]

for i in range(16-sm[1]): check = sha3_256(check)

if sha3_256(check) != public: raise Exception(’bad signature’)

return sm[1]



Want to sign 4 bits with just 32 bytes

I Lamport’s signatures have 2× 256 hash outputs (each 32 bytes) as public key and the
signature has 256 times 32 bytes.

I Define
H i (x) = H(H i−1(x)) = H(H(. . . (H(x))))︸ ︷︷ ︸

i times

.

I Pick random sk, compute pk= H16(sk).

I For message m reveal s = Hm(sk) as signature.

I To verify check that pk= H16−m(s).

I This works – but is insecure!

Eve can take H(s) as signature on m + 1 (for m < 15).

I Fix by doubling the key-sizes again, running one chain forward, one in reverse.
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Slow Winternitz 1-time signature system for 4 bits
Could stop at 15 iterations, but convenient to reuse code here:

import weak_winternitz

def keypair():

keys = [weak_winternitz.keypair() for n in range(2)]

public,secret = zip(*keys)

return public,secret

def sign(m,secret):

sign0 = weak_winternitz.sign(m,secret[0])

sign1 = weak_winternitz.sign(16-m,secret[1])

return sign0, sign1, m

def open(sm,public):

m0 = weak_winternitz.open(sm[0],public[0])

m1 = weak_winternitz.open(sm[1],public[1])

if m0 != sm[2] or m1 != (16-sm[2]): raise Exception(’Invalid signature’)

return sm[2]
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Winternitz 1-time signature system
I Define parameter w . Each chain will run for 2w steps.
I For signing a 256-bit hash this needs t1 = d256/we chains.

Write m in base 2w (integers of w bits):

m = (mt1−1, . . . ,m1,m0)

(zero–padding if necessary).
I Put

c =
t1−1∑
i=0

(2w −mi )

Note that c ≤ t12w .
I The checksum c gets larger if mi is smaller.
I Write c in base 2w . This takes t2 = 1 + db(log2 t1c+ 1)/we

w -bit integers
c = (ct2−1, . . . , c1, c0).

I Publish t1 + t2 public keys, sign with chains of lengths

mt1−1, . . . ,m1,m0, ct2−1, . . . , c1, c0.
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Winternitz 1-time signature system for w = 8
I Define parameter w = 8. Each chain will run for 28 = 256 steps.
I For signing a 256-bit hash this needs t1 = d256/8e = 32 chains.

Write m in base 28 (integers of 8 bits):

m = (m31, . . . ,m1,m0)

(zero–padding if necessary).
I Put

c =
31∑
i=0

(28 −mi )

Note that c ≤ 32 · 28 = 213.
I The checksum c gets larger if mi is smaller.
I Write c in base 28. This takes t2 = 1 + d(5 + 1)/8e = 2

8-bit integers
c = (c1, c0).

I Publish t1 + t2 = 34 public keys, sign with chains of lengths

m31, . . . ,m1,m0, c1, c0.
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More than one signature per key
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Merkle’s (e.g.) 8-time signature system

Hash 8 one-time public keys into a single Merkle public key P15.

P15 = H(P13,P14)

P13 = H(P9,P10)

44

P14 = H(P11,P12)

jj

P9 = H(P1,P2)

::

P10 = H(P3,P4)

dd

P11 = H(P5,P6)

::

P12 = H(P7,P8)

dd

P1

CC

P2

[[

P3

CC

P4

[[

P5

CC

P6

[[

P7

CC

P8

[[

S1

OO

S2

OO

S3

OO

S4

OO

S5

OO

S6

OO

S7

OO

S8

OO

Si → Pi can be Lamport or Winternitz one-time signature system.
Each such pair (Si ,Pi ) may be used only once.
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Signature in 8-time Merkle hash tree
Signature of first message: (sign(m,S1),P1,P2,P10,P14).

P15 = H(P13,P14)

P13 = H(P9,P10)

44

P14 = H(P11,P12)

jj

P9 = H(P1,P2)

::

P10 = H(P3,P4)

dd

P11 = H(P5,P6)

::

P12 = H(P7,P8)

dd

P1

CC

P2

[[

P3

CC

P4

[[

P5

CC

P6

[[

P7

CC

P8

[[

S1

OO

S2

OO

S3

OO

S4

OO

S5

OO

S6

OO

S7

OO

S8

OO

Verify signature sign(m,S1) with public key P1 (provided in signature).
Link P1 against public key P15 by computing P ′9 = H(P1,P2), P ′13 = H(P ′9,P10), and
comparing H(P ′13,P14) with P15.
Reject if H(P ′13,P14) 6= P15 of if the signature verification failed.
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Considerations about Merkle’s scheme

I Each key is good only for fixed number of messages, typically 2n.

I The public key is very short: just one hash output.
But each signature contains n public keys along with the one-time signature.

I Computing the public key requires computing and storing 2n one-time signature keys.

I Can trade time for space by computing the secret keys Si deterministically from a short
secret seed.
Very little storage for the seed but more time in signature generation to recompute
one-time signing keys.

I Can build trees of trees where each leaf of the top tree signs the root of a tree below it.
Only the top tree is needed in key generation.
This increases the signature length (one one-time signature per tree) and signing time.
The standardized schemes XMSS and LMS are built this way.

I Do not forget: these are stateful schemes, you need to be able to count.
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Stateless signatures
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Trees of Merkle trees

P15 = H(P13,P14)

P13 = H(P9,P10)

44

P14 = H(P11,P12)
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P9 = H(P1,P2)
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P10 = H(P3,P4)
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P1
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P2
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P3
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P4
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P5
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P6
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P7

CC

P8
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S1

OO

S2

OO

S3

OO

S4

OO

S5

OO

S6

OO

S7

OO

S8

OO
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Trees of Merkle trees

PK

◦

44

◦

jj

◦

::

◦

dd

◦

::

◦

dd

T1
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Ti are one-time signatures.
↑ indicates input to hash function.
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m
Ti and Ti,j are one-time signatures. ⇓ indicates signing.

No need to know PK5 when generating the top tree.
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Ti and Ti,j are one-time signatures. ⇓ indicates signing.
No need to know PK5 when generating the top tree.
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Huge trees (1987 Goldreich), keys on demand (Levin)
Signer chooses random r ∈

{
2255, 2255 + 1, . . . , 2256 − 1

}
,

uses one-time public key Tr to sign message;
uses one-time public key Ti to sign (T2i ,T2i+1) for i < 2255.
Generates ith secret key as Hk(i) where k is master secret.

T1

u} !)
T2

z� ��
T3

�� �$
. .
.

{�

. . . . .
. . . .

�&
T2254

|� �%

...

�	

T2255−1

w� �'
T2255 T2255+1 · · · Tr

��

· · · T2256−2 T2256−1

m

Ti for small i gets used repeatedly (each time an m falls in that sub-tree)
but (Hk(2i),Hk(2i + 1)) being deterministic means Ti signs the same value, so no break.
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Ti for small i gets used repeatedly (each time an m falls in that sub-tree)
but (Hk(2i),Hk(2i + 1)) being deterministic means Ti signs the same value, so no break.
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Use Goldreich to create stateless hash-based signatures

0.6 MB for hash-based Goldreich signature using
short-public-key Winternitz-16 one-time signatures.

Would dominate traffic in typical applications,
and add user-visible latency on typical network connections.

Example:
Debian operating system is designed for frequent upgrades.
At least one new signature for each upgrade.
Typical upgrade: one package or just a few packages.
1.2 MB average package size.
0.08 MB median package size.

Example:
HTTPS typically sends multiple signatures per page.
1.8 MB average web page in Alexa Top 1000000.
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Ingredients of SPHINCS (and SPHINCS-256)
Drastically reduce tree height (to 60).

Replace one-time leaves with few-time leaves.

Optimize few-time signature size plus key size.
New few-time HORST, improving upon HORS
(see exercise sheet 4).

Use hyper-trees (12 layers), as in GMSS.

Use masks, as in XMSS and XMSSMT,
for standard-model security proofs.

Optimize short-input (256-bit) hashing speed.
Use sponge hash (with ChaCha12 permutation).

Use fast stream cipher (again ChaCha12).

Vectorize hash software and cipher software.

See paper for details: sphincs.cr.yp.to

Updated version is NIST submission SPHINCS+
https://sphincs.org/.
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Further information

I NISTs PQC competition.

I Quantum Threat Timeline vom Global Risk Institute, 2019; 2021 update.

I Status of quantum computer development (by German BSI).

I ENISA Study Post-Quantum Cryptography: Current state and quantum mitigation

I ENISA Study Post-Quantum Cryptography - Integration study

I YouTube Channel Tanja Lange: Post-quantum cryptography.
Follow this in the Mastermath course “Selected Areas in Cryptography” next Spring.

I https://2017.pqcrypto.org/school: PQCRYPTO summer school
with 21 lectures on video, slides, and exercises.

I https://2017.pqcrypto.org/exec and https://pqcschool.org/index.html:
Executive school (less math, more perspective).

I https://pqcrypto.org our overview page.

I PQCrypto 2016, 2017, 2018, 2019, 2020, 2021, 2022 with many slides and videos online.

I https://pqcrypto.eu.org: PQCRYPTO EU Project.
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https://csrc.nist.gov/Projects/post-quantum-cryptography/Post-Quantum-Cryptography-Standardization
https://globalriskinstitute.org/publications/quantum-threat-timeline/
https://globalriskinstitute.org/publications/2021-quantum-threat-timeline-report/
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/P283_QC_Studie-V_1_2.pdf?__blob=publicationFile&v=1
https://www.enisa.europa.eu/publications/post-quantum-cryptography-current-state-and-quantum-mitigation
https://www.enisa.europa.eu/publications/post-quantum-cryptography-integration-study
https://www.youtube.com/channel/UCatHl2XgG1S3Vw4KD8IFnPQ
https://2017.pqcrypto.org/school
https://2017.pqcrypto.org/exec
https://pqcschool.org/index.html
https://pqcrypto.org
https://pqcrypto2016.jp/
https://2017.pqcrypto.org/conference/index.html
http://www.math.fau.edu/pqcrypto2018/daily-schedules.php
https://pqcrypto2019.org/
https://pqcrypto2020.inria.fr/
https://pqcrypto2021.kr/
https://2022.pqcrypto.org
https://pqcrypto.eu.org

