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Post-quantum cryptography

Cryptography under the assumption that the attacker has a quantum computer.

• 1994: Shor’s quantum algorithm. 1996: Grover’s quantum algorithm.
Many subsequent papers on quantum algorithms: see quantumalgorithmzoo.org.

• 2003: Daniel J. Bernstein introduces term Post-quantum cryptography.

• 2006: First International Workshop on Post-Quantum Cryptography. PQCrypto 2006,
2008, 2010, 2011, 2013, 2014, 2016, 2017, 2018, 2019, 2020, 2021, (soon) 2022.

• 2015: NIST hosts its first workshop on post-quantum cryptography.

• 2016: NIST announces a standardization project for post-quantum systems.

• 2017: Deadline for submissions to the NIST competition.

• 2019: Second round of NIST competition begins.

• 2020: Third round of NIST competition begins.

• 2021 2022 “not later than the end of March”:

05 Jul NIST announces first selections.

• 2022 →∞ NIST studies further systems.

• 2023/2024?: NIST issues post-quantum standards.

Tanja Lange S-unit attacks 2

https://quantumalgorithmzoo.org
https://pqcrypto.org/


Post-quantum cryptography

Cryptography under the assumption that the attacker has a quantum computer.

• 1994: Shor’s quantum algorithm. 1996: Grover’s quantum algorithm.
Many subsequent papers on quantum algorithms: see quantumalgorithmzoo.org.

• 2003: Daniel J. Bernstein introduces term Post-quantum cryptography.

• 2006: First International Workshop on Post-Quantum Cryptography. PQCrypto 2006,
2008, 2010, 2011, 2013, 2014, 2016, 2017, 2018, 2019, 2020, 2021, (soon) 2022.

• 2015: NIST hosts its first workshop on post-quantum cryptography.

• 2016: NIST announces a standardization project for post-quantum systems.

• 2017: Deadline for submissions to the NIST competition.

• 2019: Second round of NIST competition begins.

• 2020: Third round of NIST competition begins.

• 2021 2022 “not later than the end of March”: 05 Jul NIST announces first selections.

• 2022 →∞ NIST studies further systems.

• 2023/2024?: NIST issues post-quantum standards.

Tanja Lange S-unit attacks 2

https://quantumalgorithmzoo.org
https://pqcrypto.org/


Major categories of public-key post-quantum systems

• Code-based encryption: McEliece cryptosystem has survived since 1978. Short ciphertexts
and large public keys. Security relies on hardness of decoding error-correcting codes.

• Hash-based signatures: very solid security and small public keys. Require only a secure
hash function (hard to find second preimages).

• Isogeny-based encryption: new kid on the block, promising short keys and ciphertexts
and non-interactive key exchange. Security relies on hardness of finding isogenies between
elliptic curves over finite fields.

• Lattice-based encryption and signatures: possibility for balanced sizes. Security relies on
hardness of finding short vectors in some (typically special) lattice.

• Multivariate-quadratic signatures: short signatures and large public keys. Security relies
on hardness of solving systems of multivariate equations over finite fields.

Warning: These are categories of mathematical problems;
individual systems may be totally insecure if the problem is not used correctly.

We have a good algorithmic abstraction of what a quantum computer can do,
but new systems need more analysis. Any extra structure offers more attack surface.
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NIST’s 5 July announcement

The winners:

• Kyber, a KEM based on structured lattices

• Dilithium, a signature scheme based on structured lattices

• Falcon, a signature scheme based on structured lattices

• SPHINCS+, a signature scheme based on

hash functions

This is an odd choice, given that KEMs are most urgently needed to ensure long-term
confidentiality.

Schemes advancing to round 4, so maybe more winners later:

• BIKE, a KEM based on codes

• Classic McEliece, a KEM based on codes

• HQC, a KEM based on codes

• SIKE, a KEM based on isogenies (now really badly broken, < 1 month after NIST’s
announcement)
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Lattice-based cryptography

1998 (ANTS-III) Hoffstein, Pipher, and Silverman introduce NTRU,
working in ring Z[x ]/(xm − 1) (modulo q and modulo 3)

2010 Lyubashevsky, Peikert, and Regev “introduce” Ring-LWE and prove
“very strong hardness guarantees”

Assume “worst-case problems on ideal lattices
are hard for polynomial-time quantum algorithms”

��
“the ring-LWE distribution is pseudorandom”

��
security for a “truly practical

lattice-based public-key cryptosystem”

Concrete parameters in cryptosystems are chosen assuming much more than polynomial
hardness.
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Typical structured lattices

NTRU uses Z[x ]/(xm − 1) for prime m.

The winners all use 2-power cyclotomics:
Define R = Z[x ]/(xn + 1) for some n ∈ {2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . . }.
From now on consider this case.

Ideal-SVP
Given a nonzero ideal I ⊆ R, find a “short” nonzero element g ∈ I .

Ideal I is given by basis v1, v2, . . . , vn ∈ R such that I = Zv1 + Zv2 + · · ·+ Zvn.

E.g. for n = 4

v1 = x3 + 817
v2 = x2 + 540
v3 = x + 247
v4 = 1009

−→
this needs work

g = 2v1 + 3v2 − 5v3 − 2v4
= 2x3 + 3x2 − 5x + 1
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Doesn’t look so hard . . .

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

817 0 0 1
540 0 1 0
247 1 0 0

1009 0 0 0

Last row matches the g = 2v1 + 3v2− 5v3− 2v4 = 2x3 + 3x2− 5x + 1 from above (up to sign).

But this doesn’t reach “short” when n is large.
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Doesn’t look so hard . . .

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

817 0 0 1
540 0 1 0
247 1 0 0
192 0 0 −1

Last row matches the g = 2v1 + 3v2− 5v3− 2v4 = 2x3 + 3x2− 5x + 1 from above (up to sign).

But this doesn’t reach “short” when n is large.
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Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

277 0 −1 1
540 0 1 0
247 1 0 0
192 0 0 −1

Last row matches the g = 2v1 + 3v2− 5v3− 2v4 = 2x3 + 3x2− 5x + 1 from above (up to sign).

But this doesn’t reach “short” when n is large.
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by subtracting closest multiple of another row.

277 0 −1 1
263 0 2 −1
247 1 0 0
192 0 0 −1
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Doesn’t look so hard . . .

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

14 0 −3 2
263 0 2 −1
247 1 0 0
192 0 0 −1

Last row matches the g = 2v1 + 3v2− 5v3− 2v4 = 2x3 + 3x2− 5x + 1 from above (up to sign).

But this doesn’t reach “short” when n is large.
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by subtracting closest multiple of another row.

14 0 −3 2
16 −1 2 −1

247 1 0 0
192 0 0 −1

Last row matches the g = 2v1 + 3v2− 5v3− 2v4 = 2x3 + 3x2− 5x + 1 from above (up to sign).

But this doesn’t reach “short” when n is large.
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Doesn’t look so hard . . .

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

14 0 −3 2
16 −1 2 −1
55 1 0 1

192 0 0 −1

Last row matches the g = 2v1 + 3v2− 5v3− 2v4 = 2x3 + 3x2− 5x + 1 from above (up to sign).

But this doesn’t reach “short” when n is large.
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Doesn’t look so hard . . .

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

14 0 −3 2
16 −1 2 −1
55 1 0 1

137 −1 0 −2

Last row matches the g = 2v1 + 3v2− 5v3− 2v4 = 2x3 + 3x2− 5x + 1 from above (up to sign).

But this doesn’t reach “short” when n is large.
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Doesn’t look so hard . . .

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

14 0 −3 2
16 −1 2 −1
55 1 0 1
82 −2 0 −3

Last row matches the g = 2v1 + 3v2− 5v3− 2v4 = 2x3 + 3x2− 5x + 1 from above (up to sign).

But this doesn’t reach “short” when n is large.
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Doesn’t look so hard . . .

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

14 0 −3 2
16 −1 2 −1
55 1 0 1
27 −3 0 −4

Last row matches the g = 2v1 + 3v2− 5v3− 2v4 = 2x3 + 3x2− 5x + 1 from above (up to sign).

But this doesn’t reach “short” when n is large.

Tanja Lange S-unit attacks 7



Doesn’t look so hard . . .

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

14 0 −3 2
16 −1 2 −1
28 4 0 5
27 −3 0 −4

Last row matches the g = 2v1 + 3v2− 5v3− 2v4 = 2x3 + 3x2− 5x + 1 from above (up to sign).

But this doesn’t reach “short” when n is large.
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Doesn’t look so hard . . .

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

14 0 −3 2
16 −1 2 −1

1 7 0 9
27 −3 0 −4

Last row matches the g = 2v1 + 3v2− 5v3− 2v4 = 2x3 + 3x2− 5x + 1 from above (up to sign).

But this doesn’t reach “short” when n is large.
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Doesn’t look so hard . . .

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

14 0 −3 2
16 −1 2 −1

1 7 0 9
11 −2 −2 −3

Last row matches the g = 2v1 + 3v2− 5v3− 2v4 = 2x3 + 3x2− 5x + 1 from above (up to sign).

But this doesn’t reach “short” when n is large.
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Doesn’t look so hard . . .

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

14 0 −3 2
2 −1 5 −3
1 7 0 9

11 −2 −2 −3

Last row matches the g = 2v1 + 3v2− 5v3− 2v4 = 2x3 + 3x2− 5x + 1 from above (up to sign).

But this doesn’t reach “short” when n is large.
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Doesn’t look so hard . . .

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

3 2 −1 5
2 −1 5 −3
1 7 0 9

11 −2 −2 −3

Last row matches the g = 2v1 + 3v2− 5v3− 2v4 = 2x3 + 3x2− 5x + 1 from above (up to sign).

But this doesn’t reach “short” when n is large.
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Doesn’t look so hard . . .

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

3 2 −1 5
2 −1 5 −3
1 7 0 9
9 −1 −7 0

Last row matches the g = 2v1 + 3v2− 5v3− 2v4 = 2x3 + 3x2− 5x + 1 from above (up to sign).

But this doesn’t reach “short” when n is large.
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Doesn’t look so hard . . .

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

3 2 −1 5
2 −1 5 −3
−2 5 1 4

9 −1 −7 0

Last row matches the g = 2v1 + 3v2− 5v3− 2v4 = 2x3 + 3x2− 5x + 1 from above (up to sign).

But this doesn’t reach “short” when n is large.
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Doesn’t look so hard . . .

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

3 2 −1 5
2 −1 5 −3
−2 5 1 4

6 −3 −6 −5

Last row matches the g = 2v1 + 3v2− 5v3− 2v4 = 2x3 + 3x2− 5x + 1 from above (up to sign).

But this doesn’t reach “short” when n is large.
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Doesn’t look so hard . . .

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

3 2 −1 5
2 −1 5 −3
−2 5 1 4

4 2 −5 −1

Last row matches the g = 2v1 + 3v2− 5v3− 2v4 = 2x3 + 3x2− 5x + 1 from above (up to sign).

But this doesn’t reach “short” when n is large.
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Doesn’t look so hard . . .

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

3 2 −1 5
2 −1 5 −3
−5 3 2 −1

4 2 −5 −1

Last row matches the g = 2v1 + 3v2− 5v3− 2v4 = 2x3 + 3x2− 5x + 1 from above (up to sign).

But this doesn’t reach “short” when n is large.
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Doesn’t look so hard . . .

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

3 2 −1 5
2 −1 5 −3
−5 3 2 −1
−1 5 −3 −2

Last row matches the g = 2v1 + 3v2− 5v3− 2v4 = 2x3 + 3x2− 5x + 1 from above (up to sign).

But this doesn’t reach “short” when n is large.
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Lower bound on shortest nonzero element
Let K = Q(ζ2n) and let ι1, ι3, . . . , ιn−1, ι−1, . . . , ι−(n−1) be the embeddings of K into C.

For z ∈ C let |z | =
√
z · z̄ .

Minkowski embedding:
Apply

{
ι1, . . . , ιn−1, ι−1, . . . , ι−(n−1)

}
to the nonzero ideal I ⊆ R = Z[x ]/(xn + 1).

Obtain an n-dim lattice of covolume
√
nn ·#(R/I ).

E.g., for n = 4 as above 1009 7→ (1009, 1009, 1009, 1009);
x + 247 7→ (ζ18 + 247, ζ38 + 247, ζ−38 + 247, ζ−18 + 247);
x2 + 540 7→ (ζ28 + 540, ζ68 + 540, ζ−68 + 540, ζ−28 + 540);
x3 + 817 7→ (ζ38 + 817, ζ98 + 817, ζ−98 + 817, ζ−38 + 817);
I ↪� 4-dim lattice of covolume 44/2 · 1009 ≈ 11.274;

Use this to bound length of g ∈ I − {0} with
∏
ι |ι(g)| = #(R/g) ≥ #(R/I ) so

||g ||2 =
√∑

ι |ι(g)|2 ≥
√
n(
∏
ι |ι(g)|)1/n ≥

√
n#(R/I )1/n = (covol I )1/n.

In our example g = 2x3 + 3x2 − 5x + 1 7→
(2ζ38 + 3ζ28 − 5ζ8 + 1, 2ζ98 + 3ζ68 − 5ζ38 + 1, 2ζ−98 + 3ζ−68 − 5ζ−38 + 1, 2ζ−38 + 3ζ−28 − 5ζ−18 + 1)
||g ||2 =

√
4
√

22 + 32 + 52 + 1 ≈ 12.49 > 11.27.
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Upper bound on shortest nonzero element

1889 Minkowski “geometry of numbers” implies

||g ||2 ≤ 2(n/2)!1/nπ−1/2(covol I )1/n

for some g ∈ I − {0}, i.e., some nonzero g ∈ I has

η =
||g ||2

(covol I )1/n
≤ 2(n/2)!1/nπ−1/2,

where η is called the “Hermite factor”.

E.g. n = 4: η ≤ 1.35. n = 512: η ≤ 11.03.
Have 2(n/2)!1/nπ−1/2 ≈

√
2n/eπ for large n.

This shows that very short elements exist.
But can we find them?
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Performance of known algorithms

Algorithm input: nonzero ideal I ⊆ R = Z[x ]/(xn + 1).
Output: nonzero g = g0 + · · ·+ gn−1x

n−1 ∈ I with (g2
0 + · · ·+ g2

n−1)1/2 = η · (#(R/I ))1/n.

Algorithms using only additive structure of I :

• LLL (fast): η1/n ≈ 1.022.

• BKZ-80 (not hard): η1/n ≈ 1.010.

• BKZ-160 (public attack): η1/n ≈ 1.007.

• BKZ-300 (large-scale attack): η1/n ≈ 1.005.

BKZ-β repeatedly computes a shortest basis in a lattice of dimension β.
Quality and cost increae with β.

These algorithms work for arbitrary lattices.
Can we do better using ideal structure?
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Notation for infinite places of K = Q[x ]/(xn + 1)

Define ζm = exp(2πi/m) ∈ C for nonzero m ∈ Z.

For any c ∈ 1 + 2Z have (ζc2n)n + 1 = 0 so there is a unique ring morphism
ιc : K → C taking x to ζc2n.

All roots of xn + 1 in C: ζ12n, . . . , ζ
n−1
2n , ζ

−(n−1)
2n , . . . , ζ−12n .

All ι : K → C: ι1, . . . , ιn−1, ι−(n−1), . . . , ι−1.

Define |g |c = |ιc(g)|2 = ιc(g)ι−c(g).

The maps g 7→ |g |c are the infinite places of K .
All infinite places: g 7→ |g |1, g 7→ |g |3, . . . , g 7→ |g |n−1.
Same as: g 7→ |g |−1, g 7→ |g |−3, . . . , g 7→ |g |−n−1.

∑
c∈{1,3,...,n−1}

|g0 + · · ·+ gn−1x
n−1|c =

n

2
(g2

0 + · · ·+ g2
n−1).

Tanja Lange S-unit attacks 11



Notation for finite places of K = Q[x ]/(xn + 1)

Nonzero ideals of R factor into prime ideals.

For each nonzero prime ideal P of R, define

|g |P = #(R/P)−ordP g .

“Norm of P” is #(R/P).
The maps g 7→ |g |P are the finite places of K .

For each prime number p:
Factor xn + 1 in Fp[x ] to see the prime ideals of R containing p.

E.g. p = 2: Prime ideal 2R + (x + 1)R = (x + 1)R.

E.g. “unramified degree-1 primes”:
p ∈ 1 + 2nZ ⇒ exactly n nth roots r1, . . . , rn of −1 in Fp.
xn + 1 = (x − r1)(x − r2) . . . (x − rn) in Fp[x ].
Prime ideals pR + (x − r1)R, . . . , pR + (x − rn)R.
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Notation for places g 7→ |g |v for, e.g., n = 4, R = Z[x ]/(x4 + 1)

g = g0 + g1x + g2x
2 + g3x

3, ζ8 = exp(2πi/8):

ι−1(g) = g0 + g1ζ
−1
8 + g2ζ

−2
8 + g3ζ

−3
8 ;

ι1(g) = g0 + g1ζ8 + g2ζ
2
8 + g3ζ

3
8 ; |g |1 = |ι1(g)|2.

ι−3(g) = g0 + g1ζ
−3
8 + g2ζ

−6
8 + g3ζ

−9
8 ;

ι3(g) = g0 + g1ζ
3
8 + g2ζ

6
8 + g3ζ

9
8 ; |g |3 = |ι3(g)|2.

P17,2 = 17R + (x − 2)R: |g |17,2 = 17−ordP17,2g .

P17,8 = 17R + (x − 8)R: |g |17,8 = 17−ordP17,8g .

P17,−8 = 17R + (x + 8)R: |g |17,−8 = 17−ordP17,−8
g .

P17,−2 = 17R + (x + 2)R: |g |17,−2 = 17−ordP17,−2
g .

P41,3 = 41R + (x − 3)R: |g |41,3 = 41−ordP41,3g .
etc.
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S-units of K = Q[x ]/(xn + 1)

Assume ∞ ⊆ S ⊆ {places of K}.
Useful special case: S has all primes ≤ y for some y .
[Warning: Often people rename S −∞ as S .]

g ∈ K∗ is an S-unit ⇔ gR =
∏
P∈S

PeP for some eP

⇔ |g |v = 1 for all v ∈ {places of K} − S

⇔ the vector v 7→ log |g |v is 0 outside S .

S-unit lattice: set of such vectors v 7→ log |g |v .

E.g. Temporarily allowing n = 1, K = Q:
{{∞, 2, 3}-units in Q} = ±2Z3Z. (“3-smooth”.)
Lattice: (log 2,−log 2, 0)Z + (log 3, 0,−log 3)Z.
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Special case: unit attacks

0. Define S =∞. {∞-units of K} = {units of R} = R∗.
1. Input a nonzero ideal I of R.
2. Find a generator of I : some g with gR = I .
3. Find a unit u “close to g”.
4. Output g/u.

This assumes R∗ is known and I is principal.

Quality of the output:
How small is g/u compared to I?
Most cryptosystems require approx SVP to be hard.

History: 2014 Bernstein: this is “reasonably well known among computational algebraic
number theorists” and is a threat to lattice-based cryptography.
2014 Campbell–Groves–Shepherd: exploit cyclotomic units to break a lattice-based system
from 2009 Gentry. Assume finding g with quantum algorithm.
2015 Cramer–Ducas–Peikert–Regev: asymptotic analysis of 2014 algorithm.
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S-unit attacks

0. Choose a finite set S of places including ∞.
1. Input a nonzero ideal I of R.
2. Find an S-generator of I : some g with gR = I

∏
P∈S P

eP .
3. Find an S-unit u “close to g/I”. This is an S-unit-lattice close-vector problem.
4. Output g/u.

Step 2 has a poly-time quantum algorithm from 2016 Biasse–Song,
building on unit-group algorithm from 2014 Eisenträger–Hallgren–Kitaev–Song.
Also has non-quantum algorithms running in subexponential time,
assuming standard heuristics; for analysis and speedups see 2014 Biasse–Fieker.

Critical for Step 3 speed: constructing short vectors in the S-unit lattice.

History: 2015 Bernstein: apply unit attacks to close principal multiple of I .
2016 Bernstein: S-unit attacks.
2017 Cramer–Ducas–Wesolowski: use cyclotomic structure in finding close principal multiples;
more analysis in 2019 Ducas–Plançon–Wesolowski.
2019 Pellet-Mary–Hanrot–Stehlé: first analysis of S-unit attacks.
See also 2020 Bernard–Roux-Langlois, 2021 Bernard–Lesavourey–Nguyen–Roux-Langlois.
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“Cyclotomic units” in R = Z[x ]/(xn + 1)

±1,±x ,±x2, . . . ,±xn−1 = ∓1/x are units.

(1− x3)/(1− x) = 1 + x + x2 ∈ R.

This is a unit since (1− x)/(1− x3) = (1− x2n
2+1)/(1− x3) ∈ R.

For c ∈ 1 + 2Z: R has automorphism σc : x 7→ xc .
σc(1 + x + x2) = 1 + xc + x2c is a unit.
Useful to symmetrize: define uc = 1 + xc + x−c .

xZ
∏

c u
Z
c has finite index in R∗. Index is called h+.

Assume h+ = 1. Proven, assuming GRH, for n ∈ {2, 4, 8, . . . , 256}; see 2014 Miller.
Heuristics say true for all powers of 2; see 2004 Buhler–Pomerance–Robertson, 2015 Miller.

Tanja Lange S-unit attacks 17



“Cyclotomic units” in R = Z[x ]/(xn + 1)

±1,±x ,±x2, . . . ,±xn−1 = ∓1/x are units.

(1− x3)/(1− x) = 1 + x + x2 ∈ R.

This is a unit since (1− x)/(1− x3) =

(1− x2n
2+1)/(1− x3) ∈ R.

For c ∈ 1 + 2Z: R has automorphism σc : x 7→ xc .
σc(1 + x + x2) = 1 + xc + x2c is a unit.
Useful to symmetrize: define uc = 1 + xc + x−c .

xZ
∏

c u
Z
c has finite index in R∗. Index is called h+.

Assume h+ = 1. Proven, assuming GRH, for n ∈ {2, 4, 8, . . . , 256}; see 2014 Miller.
Heuristics say true for all powers of 2; see 2004 Buhler–Pomerance–Robertson, 2015 Miller.

Tanja Lange S-unit attacks 17



“Cyclotomic units” in R = Z[x ]/(xn + 1)

±1,±x ,±x2, . . . ,±xn−1 = ∓1/x are units.

(1− x3)/(1− x) = 1 + x + x2 ∈ R.

This is a unit since (1− x)/(1− x3) = (1− x2n
2+1)/(1− x3) ∈ R.

For c ∈ 1 + 2Z: R has automorphism σc : x 7→ xc .
σc(1 + x + x2) = 1 + xc + x2c is a unit.
Useful to symmetrize: define uc = 1 + xc + x−c .

xZ
∏

c u
Z
c has finite index in R∗. Index is called h+.

Assume h+ = 1. Proven, assuming GRH, for n ∈ {2, 4, 8, . . . , 256}; see 2014 Miller.
Heuristics say true for all powers of 2; see 2004 Buhler–Pomerance–Robertson, 2015 Miller.

Tanja Lange S-unit attacks 17



“Cyclotomic units” in R = Z[x ]/(xn + 1)

±1,±x ,±x2, . . . ,±xn−1 = ∓1/x are units.

(1− x3)/(1− x) = 1 + x + x2 ∈ R.

This is a unit since (1− x)/(1− x3) = (1− x2n
2+1)/(1− x3) ∈ R.

For c ∈ 1 + 2Z: R has automorphism σc : x 7→ xc .
σc(1 + x + x2) = 1 + xc + x2c is a unit.
Useful to symmetrize: define uc = 1 + xc + x−c .

xZ
∏

c u
Z
c has finite index in R∗. Index is called h+.

Assume h+ = 1. Proven, assuming GRH, for n ∈ {2, 4, 8, . . . , 256}; see 2014 Miller.
Heuristics say true for all powers of 2; see 2004 Buhler–Pomerance–Robertson, 2015 Miller.

Tanja Lange S-unit attacks 17



Unit lattice for n = 8

|u1|1 = |1 + ζ16 + ζ−116 |2 ≈ exp 2.093.
|u1|3 = |1 + ζ316 + ζ−316 |2 ≈ exp 1.137.
|u1|5 = |1 + ζ516 + ζ−516 |2 ≈ exp−2.899.
|u1|7 = |1 + ζ716 + ζ−716 |2 ≈ exp−0.330.

Define
Log∞ f = (log |f |1, log |f |3, log |f |5, log |f |7).

Log∞ u1 ≈ (2.093, 1.137,−2.899,−0.330).
Log∞ u3 ≈ (1.137,−0.330, 2.093,−2.899).
Log∞ u5 ≈ (−2.899, 2.093,−0.330, 1.137).
Log∞ u7 ≈ (−0.330,−2.899, 1.137, 2.093).

Log∞ R∗ is lattice of dim n/2− 1 = 3 in hyperplane{
(`1, `3, `5, `7) ∈ R4 : `1 + `3 + `5 + `7 = 0

}
.

Short lattice basis: Log∞ u1, Log∞ u3, Log∞ u5.
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Reducing modulo units

Assume I is principal.
Start with generator g = g0 + g1x + · · ·+ gn−1x

n−1 of I .
Compute Log∞ g = (log |g |1, log |g |3, . . . , log |g |n−1).

Replacing g with gu replaces |g |c with |g |c |u|c .
Easy to track ||g ||22 =

∑
c |g |c = (n/2)(g2

0 + · · ·+ g2
n−1).

Try to reduce Log∞ g modulo unit lattice:
Adjust Log∞ g by subtracting vectors from Log∞(R∗).

Actually, precompute some combinations of basis vectors
and subtract closest vector within this set;
repeat several times; keep smallest g2

0 + · · ·+ g2
n−1.

Note that unit hyperplane is orthogonal to norm:
#(R/I ) = #(R/g) =

∏
c |g |c = exp

∑
c log |g |c .
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Experiments for small n

Geometric average of η1/n over 100000 experiments:

n Model Attack Tweak Shortest
4 1.01516 1.01518 1.01518 1.01518
8 1.01968 1.01972 1.01696 1.01696

16 1.01861 1.01860 1.01628 1.01627

“Shortest”: Take I , find a shortest nonzero vector g ,
output η = (g2

0 + · · ·+ g2
n−1)1/2/#(R/I )1/n.

[Assuming BKZ-n software produces shortest nonzero vector.]

“Attack”: Same I , find a generator, reduce mod unit lattice → g ,
output (g2

0 + · · ·+ g2
n−1)1/2/#(R/I )1/n.

“Model”: Take a hyperplane point, reduce mod unit lattice → Log∞ g ,
output (g2

0 + · · ·+ g2
n−1)1/2.

“Tweak”: Multiply by x + 1, reduce, repeat for I , (x + 1)I , (x + 1)2I , (x + 1)3I , (x + 1)4I , . . . .
Often (x + 1)eg is closer to unit lattice than g .
(This is including a finite place of norm 2 in S .)
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Nice S-units for cyclotomics (as in this talk)

Can use Gauss sums and Jacobi sums.
For details and more credits see 2021 talk given by Bernstein at SIAM-AG.

For each prime number p ∈ 1 + 2nZ, and each group morphism χ : F∗p → ζZ2n, define

GaussΣp(χ) =
∑
a∈F∗

p

χ(a)ζap .

Then GaussΣp(χ) is an S-unit for S =∞∪ p.

E.g. n = 16, ζ2n = ζ32, p = 97 ∈ 1 + 2nZ:
There is a morphism χ : F∗97 → ζZ32 with χ(5) = ζ32.

GaussΣp(χ) = ζ032ζ
1
97 + ζ132ζ

5
97 + ζ232ζ

25
97 + · · · .

GaussΣp(χ2) = ζ032ζ
1
97 + ζ232ζ

5
97 + ζ432ζ

25
97 + · · · .

Stickelberger and augmented Stickelberger lattices used in 2019 Ducas–Plançon–Wesolowski
are exponent vectors in factorizations of (some) ratios of Gauss sums.
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Traditional method to find S-units: filtering

Take random small element u ∈ R: e.g. u = x31 − x41 + x59 + x26 − x53.
1. Does #(R/u) factor into primes ≤y?

Needs fast computation of norms and factorization.
Lots of algorithmic speedups.

2. Is u an S-unit for S =∞∪ {P : #(R/P) ≤ y}?

Small primes ⇒ fast non-quantum factorization.
[Helpful speedups: almost always #(R/P) ∈ 1 + 2nZ. Batch factorization.]

Standard heuristics ⇒ y2+o(1) choices of u include y1+o(1) S-units, spanning all S-units, for

• appropriate n1/2+o(1) choice for log y ,

• appropriate n1/2+o(1) choice for
∑

i u
2
i .

Total time exp(n1/2+o(1)).

Can tricks from NFS on extensions be applied to reach 1/3 + o(1)?
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Automorphisms and subrings

Apply each σc to quickly amplify each u found into, typically, n independent S-units.

What if u is invariant under (say) two σc?

Great!
Start with u from proper subrings. Makes #(R/u) much more likely to factor into small primes.

Examples of useful subrings of R = Z[x ]/(xn + 1):

• Z[x2]/(xn + 1) = {u ∈ R : σn+1(u) = u}.
• R+ = {u ∈ R : σ−1(u) = u}.

Also use subrings to speed up #(R/u) computation: see
https://s-unit.attacks.cr.yp.to/norms.html.

Some rings (but not power-of-2 cyclotomics) have so many subrings that no other techniques
are needed: see 2014 Bernstein, 2017 Bauch–Bernstein–de Valence–Lange–van Vredendaal,
2018 Biasse-van Vredendaal, 2020 Lesavourey–Plantard–Susilo,
2020 Biasse–Fieker–Hofmann–Page.
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Overview: Constructing small S-units

S-units

σc

��

x + 1

00

square roots

mm

u1 = 1 + x + x−1

66

P1P−1 gen

OO

BB

JacobiΣ

OO

VV

random

in R+

OO

in R

::

GaussΣ
ratios

OO
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Conjectured scalability: exp(n1/2+o(1))

Simple algorithm variant, skipping many speedups:

Take traditional log y ∈ n1/2+o(1).
Take S =∞∪ {P : #(R/P) ≤ y}.
Precompute {

S-unit u ∈ R:
∑

i u
2
i ≤ n1/2+o(1)

}
.

To randomize, multiply I by some random primes in S . Can repeat yO(1) times.

Compute S-generator g of I (quantum or classical).

Clear denominators: Multiply by generators of PcP−c (this assumes h+ = 1)
⇒ element of I that S-generates I .

Replace g with gu/v having log vector closest to I ;
repeat until stable ⇒ short element of I .

Heuristics ⇒ η ≤ n1/2+o(1), time exp(n1/2+o(1)).
“Vector within ε of shortest in subexponential time.”

Compare to typical cryptographic assumption: η ≤ n2+o(1) is hard to reach.
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Non-randomness of S-unit lattices

Number of points of a lattice L in a big ball B ≈ volB

covol L
.

For almost all lattices L (1956 Rogers, . . . , 2019 Strömbergsson–Södergren):
If volB = covol L then length of shortest nonzero vector in L ≈ radius of B.

2016 Laarhoven: analogous heuristics for effectiveness of reduction via subtracting off
short vectors from database. 2019 Pellet-Mary–Hanrot–Stehlé, 2021 Ducas–Pellet-Mary:
Apply these heuristics to S-unit lattices ⇒ very small chance that previous slide works.

But all of these heuristics provably fail for the lattice Zd .
Are these accurate for S-unit lattices?

2021 Bernstein–Lange “Non-randomness of S-unit lattices”:
The standard length/reduction heuristics provably fail for S-unit lattices for (1) n = 1, any S ;
(2) each n as S grows (roughly what the previous slide uses); (3) minimal S , any n.
See https://s-unit.attacks.cr.yp.to/spherical.html.
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Evidence for the conjecture

For traditional log y ∈ n1/2+o(1), time budget exp(n1/2+o(1)):
Standard smoothness heuristics ⇒ find short S-units spanning the S-unit lattice,
as in 2014 Biasse–Fieker; and find S-generator of I .

Various quantifications of the behavior of S-unit lattices
are much closer to Zd than to random lattices.
Model reduction as Zd reduction ⇒ find short S-generator of I .

Full attack software now available: https://s-unit.attacks.cr.yp.to/filtered.html.
Numerical experiments are consistent with the heuristics.

Ongoing work: attack speedups; more precise S-unit models and predictions;
more numerical evidence for comparison to the models;
other fast S-unit constructions, exploiting more cyclotomic structure.
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