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Post-quantum cryptography

Cryptography under the assumption that the attacker has a quantum computer.

1994:

Shor’'s quantum algorithm. 1996: Grover’'s quantum algorithm.

Many subsequent papers on quantum algorithms: see quantumalgorithmzoo.org.

2003:

2006:
2008,

2015:
2016:
2017:
2019:
2020:

Daniel J. Bernstein introduces term Post-quantum cryptography.

First International Workshop on Post-Quantum Cryptography. PQCrypto 2006,
2010, 2011, 2013, 2014, 2016, 2017, 2018, 2019, 2020, 2021, (soon) 2022.

NIST hosts its first workshop on post-quantum cryptography.

NIST announces a standardization project for post-quantum systems.
Deadline for submissions to the NIST competition.

Second round of NIST competition begins.

Third round of NIST competition begins.

2021 2022 “notlater-than-theend-of-March™
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Post-quantum cryptography

Cryptography under the assumption that the attacker has a quantum computer.

1994:

Shor’'s quantum algorithm. 1996: Grover’'s quantum algorithm.

Many subsequent papers on quantum algorithms: see quantumalgorithmzoo.org.

2003:

2006:
2008,

2015:
2016:
2017:
2019:
2020:

Daniel J. Bernstein introduces term Post-quantum cryptography.

First International Workshop on Post-Quantum Cryptography. PQCrypto 2006,
2010, 2011, 2013, 2014, 2016, 2017, 2018, 2019, 2020, 2021, (soon) 2022.

NIST hosts its first workshop on post-quantum cryptography.

NIST announces a standardization project for post-quantum systems.
Deadline for submissions to the NIST competition.

Second round of NIST competition begins.

Third round of NIST competition begins.

2021 2022 ~pet-laterthan-the-end-ef-Mareh™ 05 Jul NIST announces first selections.
2022 — oo NIST studies further systems.
2023/20247: NIST issues post-quantum standards.
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Major

categories of public-key post-quantum systems

Code-based encryption: McEliece cryptosystem has survived since 1978. Short ciphertexts
and large public keys. Security relies on hardness of decoding error-correcting codes.

Hash-based signatures: very solid security and small public keys. Require only a secure
hash function (hard to find second preimages).

Isogeny-based encryption: new kid on the block, promising short keys and ciphertexts
and non-interactive key exchange. Security relies on hardness of finding isogenies between
elliptic curves over finite fields.

Lattice-based encryption and signatures: possibility for balanced sizes. Security relies on
hardness of finding short vectors in some (typically special) lattice.

Multivariate-quadratic signatures: short signatures and large public keys. Security relies
on hardness of solving systems of multivariate equations over finite fields.

Warning: These are categories of mathematical problems;
individual systems may be totally insecure if the problem is not used correctly.

We have a good algorithmic abstraction of what a quantum computer can do,
but new systems need more analysis. Any extra structure offers more attack surface.
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NIST's 5 July announcement

The winners:
® Kyber, a KEM based on structured lattices
® Dilithium, a signature scheme based on structured lattices
® Falcon, a signature scheme based on structured lattices
SPHINCS+, a signature scheme based on
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® Kyber, a KEM based on structured lattices
® Dilithium, a signature scheme based on structured lattices
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SPHINCS+, a signature scheme based on hash functions

Tanja Lange S-unit attacks



NIST's 5 July announcement

The winners:
® Kyber, a KEM based on structured lattices
® Dilithium, a signature scheme based on structured lattices

® Falcon, a signature scheme based on structured lattices

SPHINCS+, a signature scheme based on hash functions

This is an odd choice, given that KEMs are most urgently needed to ensure long-term
confidentiality.
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NIST's 5 July announcement

The winners:
® Kyber, a KEM based on structured lattices
® Dilithium, a signature scheme based on structured lattices

® Falcon, a signature scheme based on structured lattices

SPHINCS+, a signature scheme based on hash functions

This is an odd choice, given that KEMs are most urgently needed to ensure long-term
confidentiality.
Schemes advancing to round 4, so maybe more winners later:
e BIKE, a KEM based on codes
Classic McEliece, a KEM based on codes
HQC, a KEM based on codes

SIKE, a KEM based on isogenies (now really badly broken, < 1 month after NIST's
announcement)
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Lattice-based cryptography

1998 (ANTS-II) Hoffstein, Pipher, and Silverman introduce NTRU,
working in ring Z[x]/(x™ — 1) (modulo g and modulo 3)
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Lattice-based cryptography

1998 (ANTS-II) Hoffstein, Pipher, and Silverman introduce NTRU,
working in ring Z[x]/(x™ — 1) (modulo g and modulo 3)

2010 Lyubashevsky, Peikert, and Regev “introduce” Ring-LWE and prove
“very strong hardness guarantees”

Assume “worst-case problems on ideal lattices
are hard for polynomial-time quantum algorithms”

“the ring-LWE distribution is pseudorandom”

security for a “truly practical
lattice-based public-key cryptosystem”

Concrete parameters in cryptosystems are chosen assuming much more than polynomial
hardness.
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Typical structured lattices

NTRU uses Z[x]/(x™ — 1) for prime m.
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Typical structured lattices

NTRU uses Z[x]/(x™ — 1) for prime m.

The winners all use 2-power cyclotomics:
Define R = Z[x]/(x" + 1) for some n € {2,4,8,16,32,64,128,256,512,1024, ...
From now on consider this case.

Ideal-SVP
Given a nonzero ideal /| C R, find a “short” nonzero element g € /.

Ideal [ is given by basis vy, v»,...,v, € R such that | = Zv; +Zv, + - -+ + Zv,,.
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Typical structured lattices

NTRU uses Z[x]/(x™ — 1) for prime m.

The winners all use 2-power cyclotomics:
Define R = Z[x]/(x" + 1) for some n € {2,4,8,16,32,64,128,256,512,1024, ...
From now on consider this case.

Ideal-SVP
Given a nonzero ideal /| C R, find a “short” nonzero element g € /.

Ideal [ is given by basis vy, v»,...,v, € R such that | = Zv; +Zv, + - -+ + Zv,,.

Eg forn=4

v = x3 4817 — g=2v1+3w»n —bvz — 2y
vo = x% 4 540 this needs work =2x34+3x2 —5x+1
v3 = x + 247

v4 = 1009
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Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

817 0
540 0
247 1
1009 0

Tanja Lange S-unit attacks

o OO

O OO



Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.
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Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.
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Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.
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Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

14 0
263 0
247 1
192 0
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Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

14 0
16 -1
247 1

192 0
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Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

14 0
16 -1
55 1

192 0
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Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

14
16
55
137
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Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.
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Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.
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Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

14
16
28
27
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Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

14
16

1
27

Tanja Lange
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Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

14
16

1
11
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Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

14 0
2 -1
1 7

11 -2
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Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

2
-1
4
-2

== N W
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Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.
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Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

3 2
2 -1
-2 5
9 -1
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Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

3 2
2 -1
-2 5
6 -3
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Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

3 2
2 -1
-2 5
4 2
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Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

3 2
2 -1
-5 3
4 2
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Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

3 2
2 -1
-5 3

-1 5
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Doesn’t look so hard . ..

Naive lattice-basis reduction: Reduce largest row
by subtracting closest multiple of another row.

3 2 -1 5
2 -1 5 -3
-5 3 2 -1
-1 5 -3 -2

Last row matches the g = 2v; + 3vs — 5v3 — 2v4 = 2x3 + 3x2 — 5x + 1 from above (up to sign).

But this doesn't reach “short” when n is large.
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Lower bound on shortest nonzero element

Let K = Q(C2n) and let 1,03, tn—1,0-1,-,t_(n—1) be the embeddings of K into C.
ForzeClet|z|=+Vz-2Z.

Minkowski embedding:

Apply {t1,.. . tn=1,0—1,...,t_(s—1)} to the nonzero ideal | C R = Z[x]/(x" + 1).
Obtain an n-dim lattice of covolume v/n™ - #(R/1).

E.g., for n =4 as above 1009 — (1009, 1009, 1009, 1009);
X+ 247 v (G} 4 247, (3 + 247, ¢ % + 247, ¢ L + 247);
x2 4540 — (3 + 540, S + 540, (5 ° + 540, (5 2 + 540);
x3 + 817+ (3 + 817, 5 + 817,(; ° + 817,(; > + 817);

| <» 4-dim lattice of covolume 44/2.1009 ~ 11.27*
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Lower bound on shortest nonzero element

Let K = Q(C2n) and let 1,03, tn—1,0-1,-,t_(n—1) be the embeddings of K into C.
ForzeClet|z|=+Vz-2Z.

Minkowski embedding:
Apply {t1,.. . tn=1,0—1,...,t_(s—1)} to the nonzero ideal | C R = Z[x]/(x" + 1).
Obtain an n-dim lattice of covolume v/n™ - #(R/1).

E.g., for n =4 as above 1009 — (1009, 1009, 1009, 1009);
X+ 247 v (G} 4 247, (3 + 247, ¢ % + 247, ¢ L + 247);
x2 4540 — (3 + 540, S + 540, (5 ° + 540, (5 2 + 540);
x3 + 817+ (3 + 817, 5 + 817,(; ° + 817,(; > + 817);

| <» 4-dim lattice of covolume 44/2.1009 ~ 11.27*

Use this to bound length of g € | — {0} with [], |«(g)| = #(R/g) > #(R/I) so
lgll2 = /32, (&) = v/n(IT, |(g))*/" = V/ng#(R/1)*/" = (covol 1)1/,

In our example g = 2x3 +3x? —5x + 1
(263 +3¢2 —5¢ +1,2¢8 +3¢§ —5¢3 +1,2¢° +3¢3° =55 > +1,2¢5° + 3¢ 2 — 5¢g L + 1)

llglla = V4V22 +32+52 + 1 ~ 12.49 > 11.27.
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Upper bound on shortest nonzero element

1889 Minkowski “geometry of numbers” implies

lgll2 < 2(n/2)"/ "7 =/2(covol 1)1/7
for some g € | — {0}, i.e., some nonzero g € [ has
lgll2 -
= (covol N1/7 = < 2(n/2)1¥/np=1/2,
where 7 is called the “Hermite factor”.

Eg n=4 n <135 n=512: n <11.03.
Have 2(n/2)1Y/"n=1/2 x| /2n/er for large n.

This shows that very short elements exist.
But can we find them?
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Performance of known algorithms

Algorithm input: nonzero ideal | C R = Z[x]/(x" + 1).
Output: nonzero g = go + -+ g 1x" 1 € | with (g + -+ g2_1)"2 = - (A(R/I)/"

Algorithms using only additive structure of /:

e LLL (fast): 7t/ ~1.022.
® BKZ-80 (not hard): n'/" ~ 1.010.
® BKZ-160 (public attack): n*/" ~ 1.007.
® BKZ-300 (large-scale attack): n'/" ~ 1.005.

BKZ-5 repeatedly computes a shortest basis in a lattice of dimension 5.
Quality and cost increae with .

These algorithms work for arbitrary lattices.
Can we do better using ideal structure?
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Notation for infinite places of K = Q[x]/(x" + 1)

Define ¢, = exp(2wi/m) € C for nonzero m € Z.

For any ¢ € 1+ 2Z have (¢5,)" + 1 = 0 so there is a unique ring morphism
te 1 K — C taking x to (5,,.

All roots of x" +1in C: ¢L,,.... 206 Gk

All e : K — Ctoty e b1y b (n=1)s - -5 b—1-

Define |glc = |tc(g)? = te(g)i—c(g).

The maps g — |g|c are the infinite places of K.
All infinite places: g — |gl1,8 — |gl3,---,8 — |gln-1.
Same as: g [g| 1,8 > |g| 3. »8 > g]_n1.

e n
Y. et tenax" e =58+t ana).
ce{1,3,...,n—1}
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Notation for finite places of K = Q[x]/(x" + 1)

Nonzero ideals of R factor into prime ideals.

For each nonzero prime ideal P of R, define

glp = #(R/P)~ .
“Norm of P" is #(R/P).
The maps g — |g|p are the finite places of K.

For each prime number p:
Factor x” 4+ 1 in F,[x] to see the prime ideals of R containing p.

E.g. p=2: Prime ideal 2R+ (x + 1)R = (x + 1)R.

E.g. “unramified degree-1 primes”:

p € 14+ 2nZ = exactly n nth roots ry,...,r, of =1 in .
xX"+1=(x—n)x—r)...(x—ry) in Fy[x].

Prime ideals pR + (x — )R, ..., pR+ (x — ry)R.
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Notation for places g — |g]|, for, e.g., n=4, R = Z[x]/(x* + 1)

g=g+&x+gx’ +gx>, (s=exp(2mi/8):
1-1(g) = o+ 816 + &G 2 + &3¢

1(g) = go + &1Gs + 826 + &3 lgl = [u(g))?

1-3(g) = go + &1G5 > + 825 ° + g3¢ %

13(8) = 8o + &1G + &C5 + 83C5; lgls = |i3(g)

P17,2 = 17R+ (X - 2)R
P17,8 =17R + (X — 8)R
P17,,8 =17R + (X+ 8)R
P17,,2 =17R + (X+ 2)R
Pis3 =41R+ (x —3)R:
etc.
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lg|i7,8 = 17
|gl17,—g = 177 P17, —s8,
|gli7, o = 177 Pr—28,
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S-units of K = Q[x]/(x" + 1)

Assume oo C S C {places of K}.
Useful special case: S has all primes < y for some y.
[Warning: Often people rename S — oo as S.]

ge K isan S-unit & gR= H P*? for some ep
Pes
< |g|, =1forall v e{places of K} — S

< the vector v — log|g|, is 0 outside S.

S-unit lattice: set of such vectors v — log|g|,.

E.g. Temporarily allowing n =1, K = Q:
{{o0,2,3}-units in Q} = £223%. (“3-smooth”.)
Lattice: (log2, —log2,0)Z + (log 3,0, —log 3)Z.
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Special case: unit attacks

0. Define S = c0. {oo-units of K} = {units of R} = R*.
1. Input a nonzero ideal | of R.

2. Find a generator of /: some g with gR = I.

3. Find a unit v “close to g".

4. Output g/u.

This assumes R* is known and / is principal.

Quality of the output:
How small is g/u compared to /7
Most cryptosystems require approx SVP to be hard.

History: 2014 Bernstein: this is “reasonably well known among computational algebraic
number theorists” and is a threat to lattice-based cryptography.

2014 Campbell-Groves—Shepherd: exploit cyclotomic units to break a lattice-based system
from 2009 Gentry. Assume finding g with quantum algorithm.

2015 Cramer—Ducas—Peikert—Regev: asymptotic analysis of 2014 algorithm.
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S-unit attacks

0. Choose a finite set S of places including oco.

1. Input a nonzero ideal | of R.

2. Find an S-generator of /: some g with gR = I[]pc5 P*.

3. Find an S-unit u “close to g/I". This is an S-unit-lattice close-vector problem.
4. Output g/u.

Step 2 has a poly-time quantum algorithm from 2016 Biasse-Song,

building on unit-group algorithm from 2014 Eisentrager—Hallgren—Kitaev—Song.
Also has non-quantum algorithms running in subexponential time,

assuming standard heuristics; for analysis and speedups see 2014 Biasse—Fieker.

Critical for Step 3 speed: constructing short vectors in the S-unit lattice.

History: 2015 Bernstein: apply unit attacks to close principal multiple of /.

2016 Bernstein: S-unit attacks.

2017 Cramer—Ducas—Wesolowski: use cyclotomic structure in finding close principal multiples;
more analysis in 2019 Ducas—Plancon—Wesolowski.

2019 Pellet-Mary—Hanrot—Stehlé: first analysis of S-unit attacks.

See also 2020 Bernard—Roux-Langlois, 2021 Bernard—Lesavourey—Nguyen—Roux-Langlois.
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“Cyclotomic units” in R = Z[x]|/(x" + 1)

+1,4x,+x2, ..., £x"1 = F1/x are units.
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“Cyclotomic units” in R = Z[x]/(x" + 1)

+1,4x,+x2, ..., £x"1 = F1/x are units.

(1-x3)/1-x)=1+x+x*€R.
This is a unit since (1 — x)/(1 — x3) =
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“Cyclotomic units” in R = Z[x]/(x" + 1)

+1,4x,+x2, ..., £x"1 = F1/x are units.
(1-x3)/1-x)=1+x+x*€R.

This is a unit since (1 — x)/(1 — x3) = (1 — x>"+1) /(1 — x3) € R.

For c € 1 +2Z: R has automorphism o : x — x°.
oc(1+ x4+ x2) = 1+ x° + x°¢ is a unit.
Useful to symmetrize: define uc =1+ x° + x~¢.
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“Cyclotomic units” in R = Z[x]/(x" + 1)

+1,4x,+x2, ..., £x"1 = F1/x are units.
(1-x3)/1-x)=1+x+x*€R.

This is a unit since (1 — x)/(1 — x3) = (1 — x>"+1) /(1 — x3) € R.
For c € 1 +2Z: R has automorphism o : x — x°.

oc(1+ x4+ x2) = 1+ x° + x°¢ is a unit.
Useful to symmetrize: define uc =1+ x° + x~¢.

xZT1, u? has finite index in R*. Index is called h*.
Assume h* = 1. Proven, assuming GRH, for n € {2,4,8,...,256}; see 2014 Miller.
Heuristics say true for all powers of 2; see 2004 Buhler—Pomerance—Robertson, 2015 Miller.
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Unit lattice for n = 8

lur] = |1+ Ci6 + (g |2 ~ exp 2.093.
lur]z = |1+ G + () ~ exp 1.137.
lur]s = |1+ (36 + (o6 ) = exp —2.899.
luilz = |1+ ¢fg + (56’ |? = exp —0.330.

Define
Log. f = (log|fl1,log |f|s, log|f]s,log |f|7).
Log. u1 ~ (2.093,1.137, —2.899, —0.330).
Log. us ~ (1.137, —0.330, 2.093, —2.899).
Log. us ~ (—2.899,2.093, —0.330, 1.137).
Log,, u7 =~ (—0.330,—2.899,1.137,2.093).

Log., R* is lattice of dim n/2 — 1 = 3 in hyperplane

{(61,63,65,57) S R*: b1+ U3+ g + 47 = O}

Short lattice basis: Log u1, Log, us, Log,, us.
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Reducing modulo units

Assume [ is principal.

Start with generator g = go + g1x + -+ + gp_1x"" ! of /.

Compute Log,, g = (log gl log|gls; - - -, log |g[n—1)-
Replacing g with gu replaces |g|c with |g]|c|ulc.

Easy to track ||g|[5 = > lglc = (n/2)(g§ + -+ &7_1)-
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Reducing modulo units

Assume [ is principal.

Start with generator g = go + g1x + -+ + gp_1x"" ! of /.
Compute Log,, g = (log gl log|gls; - - -, log |g[n—1)-
Replacing g with gu replaces |g|c with |g|c|ulc.

Easy to track ||g|[3 = 3= lglc = (n/2)(g§ + - + &7-1)-
Try to reduce Log., g modulo unit lattice:

Adjust Log,, g by subtracting vectors from Log_ (R*).

Actually, precompute some combinations of basis vectors
and subtract closest vector within this set;
repeat several times; keep smallest g2 + --- + g2_;.

Note that unit hyperplane is orthogonal to norm:

#(R/1) = #(R/g) =11, |glc = exp>__log|g]c.
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Experiments for small n

Geometric average of n'/" over 100000 experiments:

n ‘ Model Attack Tweak

Shortest

4 1 1.01516 1.01518 1.01518
8 | 1.01968 1.01972 1.01696
16 | 1.01861 1.01860 1.01628

“Shortest”: Take /, find a shortest nonzero vector g,
output n = (g§ + - + go_1)"2/#(R/1)M/".

[Assuming BKZ-n software produces shortest nonzero vector.]

1.01518
1.01696
1.01627

“Attack”: Same /, find a generator, reduce mod unit lattice — g,

output (g8 + - + g2_, )2 /#(R/1)Y/".

“Model”: Take a hyperplane point, reduce mod unit lattice — Log g,

output (g8 + -+ + g2 1)"/2.

“Tweak”: Multiply by x + 1, reduce, repeat for /I, (x + 1)/, (x + 1)/, (x + 1)3/,(x + 1)*1,. ...

Often (x 4 1)¢g is closer to unit lattice than g.
(This is including a finite place of norm 2 in S.)
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Nice S-units for cyclotomics (as in this talk)

Can use Gauss sums and Jacobi sums.
For details and more credits see 2021 talk given by Bernstein at SIAM-AG.

For each prime number p € 1 + 2nZ, and each group morphism x : F; — (%, define
GaussX,(x) = Z x(a)¢p-
acly
Then GaussX () is an S-unit for S = co U p.

E.g. n=16, (onp = (32, p=97 € 1 4 2nZ:

There is a morphism x : F§; — C3Z2 with x(5) = (so.
Gaussp(x) = (487 + (32057 + (565 + -+ -
GaussX ,(X?) = ($2Ca7 + (52G87 + (52657 + - -

Stickelberger and augmented Stickelberger lattices used in 2019 Ducas—Plangon—Wesolowski
are exponent vectors in factorizations of (some) ratios of Gauss sums.
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Traditional method to find S-units: filtering

Take random small element v € R: e.g. u = x3 — x* 4+ x5 4 x?6 — x53,
1. Does #(R/u) factor into primes <y?
Needs fast computation of norms and factorization.

Lots of algorithmic speedups.
2. Is v an S-unit for S =0 U{P : #(R/P) < y}?

Small primes = fast non-quantum factorization.
[Helpful speedups: almost always #(R/P) € 1 + 2nZ. Batch factorization.]

Standard heuristics = y?t°(1) choices of u include y**+°() S_units, spanning all S-units, for
e appropriate n*/2t°(1) choice for log y,
® appropriate n'/2+°() choice for 3°; u?.

Total time exp(n'/2+to(),

Can tricks from NFS on extensions be applied to reach 1/3 + o(1)?
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Automorphisms and subrings

Apply each o, to quickly amplify each u found into, typically, n independent S-units.

What if u is invariant under (say) two o.?
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Automorphisms and subrings

Apply each o, to quickly amplify each u found into, typically, n independent S-units.

What if u is invariant under (say) two o.? Great!
Start with u from proper subrings. Makes #(R/u) much more likely to factor into small primes.
Examples of useful subrings of R = Z[x]/(x" + 1):

* Z[x3]/(x"+ 1) ={u € R : opy1(u) = u}.

* Rf={ueR:o_1(u) = u}.
Also use subrings to speed up #(R/u) computation: see
https://s-unit.attacks.cr.yp.to/norms.html.

Some rings (but not power-of-2 cyclotomics) have so many subrings that no other techniques
are needed: see 2014 Bernstein, 2017 Bauch—Bernstein—de Valence-Lange—van Vredendaal,
2018 Biasse-van Vredendaal, 2020 Lesavourey—Plantard—Susilo,

2020 Biasse—Fieker—Hofmann—Page.
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Overview: Constructing small S-units

Oc

S-units

square roots

Jaco@

’ulzl—&-x—i—x_l‘

in R in R+

GaussX

random ;
ratios
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Conjectured scalability: exp(n'/?+°(1))

Simple algorithm variant, skipping many speedups:

Take traditional log y € n/2t°o(1),
Take S =00 U{P: #(R/P) < y}.
Precompute
{5—unit ueR: >, u,-2 < n1/2+°(1)},
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Conjectured scalability: exp(n'/?+°(1))

Simple algorithm variant, skipping many speedups:
Take traditional log y € n/2+o(1),
Take S = o0 U{P: #(R/P) < y}.
Precompute
{S-unit ue R: 3=, u? < nl/2eW)},
To randomize, multiply / by some random primes in S. Can repeat y°(1) times.
Compute S-generator g of | (quantum or classical).

Clear denominators: Multiply by generators of P.P_. (this assumes h™ = 1)
= element of / that S-generates /.

Replace g with gu/v having log vector closest to /;
repeat until stable = short element of /.

Heuristics = 1 < n/2+°() time exp(n/2+o(1).
“Vector within ¢ of shortest in subexponential time.”

Compare to typical cryptographic assumption: 7 < n?t°(1) is hard to reach.
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Non-randomness of S-unit lattices

B
Number of points of a lattice L in a big ball B ~ vo .
covol L
For almost all lattices L (1956 Rogers, ..., 2019 Strémbergsson—Sédergren):

If vol B = covol L then length of shortest nonzero vector in L = radius of B.

2016 Laarhoven: analogous heuristics for effectiveness of reduction via subtracting off
short vectors from database. 2019 Pellet-Mary—Hanrot—Stehlé, 2021 Ducas—Pellet-Mary:
Apply these heuristics to S-unit lattices = very small chance that previous slide works.
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Non-randomness of S-unit lattices

B
Number of points of a lattice L in a big ball B ~ vo .
covol L
For almost all lattices L (1956 Rogers, ..., 2019 Strémbergsson—Sédergren):

If vol B = covol L then length of shortest nonzero vector in L = radius of B.

2016 Laarhoven: analogous heuristics for effectiveness of reduction via subtracting off
short vectors from database. 2019 Pellet-Mary—Hanrot—Stehlé, 2021 Ducas—Pellet-Mary:
Apply these heuristics to S-unit lattices = very small chance that previous slide works.

But all of these heuristics provably fail for the lattice Z9.
Are these accurate for S-unit lattices?

2021 Bernstein—Lange “Non-randomness of S-unit lattices”:

The standard length /reduction heuristics provably fail for S-unit lattices for (1) n =1, any S;
(2) each n as S grows (roughly what the previous slide uses); (3) minimal S, any n.

See https://s-unit.attacks.cr.yp.to/spherical.html.
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Evidence for the conjecture

For traditional logy € n'/2+°()  time budget exp(n'/2+o());
Standard smoothness heuristics = find short S-units spanning the S-unit lattice,
as in 2014 Biasse—Fieker; and find S-generator of /.

Various quantifications of the behavior of S-unit lattices
are much closer to Z? than to random lattices.
Model reduction as Z9 reduction = find short S-generator of /.

Full attack software now available: https://s-unit.attacks.cr.yp.to/filtered.html.
Numerical experiments are consistent with the heuristics.

Ongoing work: attack speedups; more precise S-unit models and predictions;
more numerical evidence for comparison to the models;
other fast S-unit constructions, exploiting more cyclotomic structure.
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