
Hash-based signatures II
Stateful and stateless signatures

Daniel J. Bernstein12 and Tanja Lange3

1University of Illinois at Chicago

2Ruhr University Bochum

3Eindhoven University of Technology

14 May 2021

Merkle’s (e.g.) 8-time signature system

Hash 8 one-time public keys into a single Merkle public key P15.

P15 = H(P13,P14)

P13 = H(P9,P10)

44

P14 = H(P11,P12)

jj

P9 = H(P1,P2)

::

P10 = H(P3,P4)

dd

P11 = H(P5,P6)

::

P12 = H(P7,P8)

dd

P1

CC

P2

[[

P3

CC

P4

[[

P5

CC

P6

[[

P7

CC

P8

[[

S1

OO

S2

OO

S3

OO

S4

OO

S5

OO

S6

OO

S7

OO

S8

OO

Si → Pi can be Lamport or Winternitz one-time signature system.
Each such pair (Si ,Pi) may be used only once.

Daniel J. Bernstein & Tanja Lange Hash-based signatures II 2

Signature in 8-time Merkle hash tree

Signature of first message: (sign(m,S1),P1,P2,P10,P14).

P15 = H(P13,P14)

P13 = H(P9,P10)

44

P14 = H(P11,P12)

jj

P9 = H(P1,P2)

::

P10 = H(P3,P4)

dd

P11 = H(P5,P6)

::

P12 = H(P7,P8)

dd

P1

CC

P2

[[

P3

CC

P4

[[

P5

CC

P6

[[

P7

CC

P8

[[

S1

OO

S2

OO

S3

OO

S4

OO

S5

OO

S6

OO

S7

OO

S8

OO

Verify signature sign(m,S1) with public key P1 (provided in signature).
Link P1 against public key P15 by computing P ′9 = H(P1,P2),
P ′13 = H(P ′9,P10), and comparing H(P ′13,P14) with P15.
Reject if H(P ′13,P14) 6= P15 of if the signature verification failed.

Daniel J. Bernstein & Tanja Lange Hash-based signatures II 3

Signature in 8-time Merkle hash tree

Signature of first message: (sign(m,S1),P1,P2,P10,P14).

P15 = H(P13,P14)

P13 = H(P9,P10)

44

P14 = H(P11,P12)

jj

P9 = H(P1,P2)

::

P10 = H(P3,P4)

dd

P11 = H(P5,P6)

::

P12 = H(P7,P8)

dd

P1

CC

P2

[[

P3

CC

P4

[[

P5

CC

P6

[[

P7

CC

P8

[[

S1

OO

S2

OO

S3

OO

S4

OO

S5

OO

S6

OO

S7

OO

S8

OO

Verify signature sign(m,S1) with public key P1 (provided in signature).
Link P1 against public key P15 by computing P ′9 = H(P1,P2),
P ′13 = H(P ′9,P10), and comparing H(P ′13,P14) with P15.
Reject if H(P ′13,P14) 6= P15 of if the signature verification failed.

Daniel J. Bernstein & Tanja Lange Hash-based signatures II 3

Signature in 8-time Merkle hash tree

Signature of sixth message:

P15 = H(P13,P14)

P13 = H(P9,P10)

44

P14 = H(P11,P12)

jj

P9 = H(P1,P2)

::

P10 = H(P3,P4)

dd

P11 = H(P5,P6)

::

P12 = H(P7,P8)

dd

P1

CC

P2

[[

P3

CC

P4

[[

P5

CC

P6

[[

P7

CC

P8

[[

S1

OO

S2

OO

S3

OO

S4

OO

S5

OO

S6

OO

S7

OO

S8

OO

Daniel J. Bernstein & Tanja Lange Hash-based signatures II 4

Signature in 8-time Merkle hash tree

Signature of sixth message: (sign(m′,S6),P6,P5,P12,P13).

P15 = H(P13,P14)

P13 = H(P9,P10)

44

P14 = H(P11,P12)

jj

P9 = H(P1,P2)

::

P10 = H(P3,P4)

dd

P11 = H(P5,P6)

::

P12 = H(P7,P8)

dd

P1

CC

P2

[[

P3

CC

P4

[[

P5

CC

P6

[[

P7

CC

P8

[[

S1

OO

S2

OO

S3

OO

S4

OO

S5

OO

S6

OO

S7

OO

S8

OO

Daniel J. Bernstein & Tanja Lange Hash-based signatures II 4

Improvements to Merkle’s scheme

I Each public key (root of the tree) is good only for fixed number of
messages, typically 2n.

I The public key is very short: just one hash output.
But each signature contains n public keys along with the one-time
signature.

I Computing the public key requires computing and storing 2n

one-time signature keys.

Daniel J. Bernstein & Tanja Lange Hash-based signatures II 5

Trees of Merkle trees

P15 = H(P13,P14)

P13 = H(P9,P10)

44

P14 = H(P11,P12)

jj

P9 = H(P1,P2)

::

P10 = H(P3,P4)

dd

P11 = H(P5,P6)

::

P12 = H(P7,P8)

dd

P1

CC

P2

[[

P3

CC

P4

[[

P5

CC

P6

[[

P7

CC

P8

[[

S1

OO

S2

OO

S3

OO

S4

OO

S5

OO

S6

OO

S7

OO

S8

OO

Daniel J. Bernstein & Tanja Lange Hash-based signatures II 6

Trees of Merkle trees

PK

◦

44

◦

jj

◦

::

◦

dd

◦

::

◦

dd

T1

CC

T2

[[

T3

CC

T4

[[

T5

CC

T6

[[

T7

CC

T8

[[

Ti are one-time signature keys.
↑ indicates input to hash function.

Daniel J. Bernstein & Tanja Lange Hash-based signatures II 6

Trees of Merkle trees PK

◦

44

◦

jj

◦

::

◦

dd

◦

::

◦

dd

T1

CC

T2

[[

T3

CC

T4

[[

T5

CC

��

T6

[[

T7

CC

T8

[[

PK5

◦

44

◦

jj

◦

::

◦

dd

◦

::

◦

dd

T5,1

CC

T5,2

[[

��

T5,3

CC

T5,4

[[

T5,5

CC

T5,6

[[

T5,7

CC

T5,8

[[

m
Ti and Ti,j are one-time signature keys.
⇓ indicates signing.

No need to know PK5 when generating the top tree.

Daniel J. Bernstein & Tanja Lange Hash-based signatures II 6

Trees of Merkle trees PK

◦

44

◦

jj

◦

::

◦

dd

◦

::

◦

dd

T1

CC

T2

[[

T3

CC

T4

[[

T5

CC

��

T6

[[

T7

CC

T8

[[

PK5

◦

44

◦

jj

◦

::

◦

dd

◦

::

◦

dd

T5,1

CC

T5,2

[[

��

T5,3

CC

T5,4

[[

T5,5

CC

T5,6

[[

T5,7

CC

T5,8

[[

m
Ti and Ti,j are one-time signature keys.
⇓ indicates signing.
No need to know PK5 when generating the top tree.

Daniel J. Bernstein & Tanja Lange Hash-based signatures II 6

Improvements to Merkle’s scheme

I Each public key (root of the tree) is good only for fixed number of
messages, typically 2n.

I The public key is very short: just one hash output.
But each signature contains n public keys along with the one-time
signature.

I Computing the public key requires computing and storing 2n

one-time signature keys.

I Can trade time for space by computing the secret keys Sij
deterministically from a short secret seed and location (i , j).
Very little storage for the seed but more time in signature generation.

I Building trees of trees increases the signature length (one extra
one-time signature per tree) and signing time. See PhD thesis of
Andreas Hülsing for an optimized schedule of what to store and
when to precompute.
Only the top tree is needed to generate the public key.

Daniel J. Bernstein & Tanja Lange Hash-based signatures II 7

https://huelsing.net/wordpress/

Improvements to Merkle’s scheme

I Each public key (root of the tree) is good only for fixed number of
messages, typically 2n.

I The public key is very short: just one hash output.
But each signature contains n public keys along with the one-time
signature.

I Computing the public key requires computing and storing 2n

one-time signature keys.

I Can trade time for space by computing the secret keys Sij
deterministically from a short secret seed and location (i , j).
Very little storage for the seed but more time in signature generation.

I Building trees of trees increases the signature length (one extra
one-time signature per tree) and signing time. See PhD thesis of
Andreas Hülsing for an optimized schedule of what to store and
when to precompute.
Only the top tree is needed to generate the public key.

Daniel J. Bernstein & Tanja Lange Hash-based signatures II 7

https://huelsing.net/wordpress/

Stateful hash-based signatures

I Only one prerequisite: a good hash function, e.g. SHA3-512.
Hash functions map long strings to fixed-length strings.
Signature schemes use hash functions in handling plaintext.

I Old idea: 1979 Lamport one-time signatures.

I 1979 Merkle extends to more signatures.

Pros:

I Post quantum

I Only need secure hash
function

I Security well understood

I Fast

I We can count: OS update,
code signing, . . . naturally keep
state.

Cons:

I Biggish signature
though some tradeoffs possible

I Stateful, i.e., ever reusing a
subkey breaks security.
Adam Langley “for most
environments it’s a huge
foot-cannon.”

Daniel J. Bernstein & Tanja Lange Hash-based signatures II 8

https://www.imperialviolet.org/2013/07/18/hashsig.html
https://www.imperialviolet.org/2013/07/18/hashsig.html
https://www.imperialviolet.org/2013/07/18/hashsig.html

Stateful hash-based signatures

I Only one prerequisite: a good hash function, e.g. SHA3-512.
Hash functions map long strings to fixed-length strings.
Signature schemes use hash functions in handling plaintext.

I Old idea: 1979 Lamport one-time signatures.

I 1979 Merkle extends to more signatures.

Pros:

I Post quantum

I Only need secure hash
function

I Security well understood

I Fast

I We can count: OS update,
code signing, . . . naturally keep
state.

Cons:

I Biggish signature
though some tradeoffs possible

I Stateful, i.e., ever reusing a
subkey breaks security.
Adam Langley “for most
environments it’s a huge
foot-cannon.”

Daniel J. Bernstein & Tanja Lange Hash-based signatures II 8

https://www.imperialviolet.org/2013/07/18/hashsig.html
https://www.imperialviolet.org/2013/07/18/hashsig.html
https://www.imperialviolet.org/2013/07/18/hashsig.html

Standardization progress
I CFRG has published 2 RFCs: RFC 8391 and RFC 8554

I NIST has standardized XMSS and LMS.
Only concern is about statefulness in general.

I ISO SC27 JTC1 WG2 has started a study period on stateful
hash-based signatures.

Daniel J. Bernstein & Tanja Lange Hash-based signatures II 9

https://tools.ietf.org/html/rfc8391
https://tools.ietf.org/html/rfc8554
https://tools.ietf.org/html/rfc8391
https://tools.ietf.org/html/rfc8554
https://csrc.nist.gov/projects/stateful-hash-based-signatures

Standardization progress

I CFRG has published 2 RFCs: RFC 8391 and RFC 8554

I NIST has standardized XMSS and LMS.
Only concern is about statefulness in general.

I ISO SC27 JTC1 WG2 has started a study period on stateful
hash-based signatures.

Daniel J. Bernstein & Tanja Lange Hash-based signatures II 9

https://tools.ietf.org/html/rfc8391
https://tools.ietf.org/html/rfc8554
https://csrc.nist.gov/projects/stateful-hash-based-signatures

Standardization progress

I CFRG has published 2 RFCs: RFC 8391 and RFC 8554

I NIST has standardized XMSS and LMS.
Only concern is about statefulness in general.

I ISO SC27 JTC1 WG2 has started a study period on stateful
hash-based signatures.

Daniel J. Bernstein & Tanja Lange Hash-based signatures II 9

https://tools.ietf.org/html/rfc8391
https://tools.ietf.org/html/rfc8554
https://csrc.nist.gov/projects/stateful-hash-based-signatures

Towards stateless signatures

I These signatures are stateful, need to remember which leaf signature
was used.

I Can we build trees so large that this is not a problem?

I By the birthday paradox we need2256 leaves!

I Cannot precompute this tree . . .

Daniel J. Bernstein & Tanja Lange Hash-based signatures II 10

Towards stateless signatures

I These signatures are stateful, need to remember which leaf signature
was used.

I Can we build trees so large that this is not a problem?

I By the birthday paradox we need2256 leaves!

I Cannot precompute this tree . . .

Daniel J. Bernstein & Tanja Lange Hash-based signatures II 10

Towards stateless signatures

I These signatures are stateful, need to remember which leaf signature
was used.

I Can we build trees so large that this is not a problem?

I By the birthday paradox we need2256 leaves!

I Cannot precompute this tree . . .

Daniel J. Bernstein & Tanja Lange Hash-based signatures II 10

Towards stateless signatures

I These signatures are stateful, need to remember which leaf signature
was used.

I Can we build trees so large that this is not a problem?

I By the birthday paradox we need2256 leaves!

I Cannot precompute this tree . . .

Daniel J. Bernstein & Tanja Lange Hash-based signatures II 10

Huge trees (1987 Goldreich), keys on demand (Levin)
Signer chooses random r ∈

{
2255, 2255 + 1, . . . , 2256 − 1

}
,

uses one-time public key Tr to sign message;
uses one-time public key Ti to sign (T2i ,T2i+1) for i < 2255.
Generates ith secret key deterministically as Hk(i) where k is master
secret. Important for efficiency

T1

u} !)
T2

z� ��
T3

�� �$
. .
.

{�

.
. . . .

�&
T2254

|� �%

...

�	

T2255−1

w� �'
T2255 T2255+1 · · · Tr

��

· · · T2256−2 T2256−1

m

Ti for small i gets used repeatedly (each time an m falls in that sub-tree)
but Hk(i) being deterministic means it signs the same value, so no break.

Daniel J. Bernstein & Tanja Lange Hash-based signatures II 11

Huge trees (1987 Goldreich), keys on demand (Levin)
Signer chooses random r ∈

{
2255, 2255 + 1, . . . , 2256 − 1

}
,

uses one-time public key Tr to sign message;
uses one-time public key Ti to sign (T2i ,T2i+1) for i < 2255.
Generates ith secret key deterministically as Hk(i) where k is master
secret. Important for efficiency

T1

u} !)
T2

z� ��
T3

�� �$
. .
.

{�

.
. . . .

�&
T2254

|� �%

...

�	

T2255−1

w� �'
T2255 T2255+1 · · · Tr

��

· · · T2256−2 T2256−1

m

Ti for small i gets used repeatedly (each time an m falls in that sub-tree)

but Hk(i) being deterministic means it signs the same value, so no break.

Daniel J. Bernstein & Tanja Lange Hash-based signatures II 11

Huge trees (1987 Goldreich), keys on demand (Levin)
Signer chooses random r ∈

{
2255, 2255 + 1, . . . , 2256 − 1

}
,

uses one-time public key Tr to sign message;
uses one-time public key Ti to sign (T2i ,T2i+1) for i < 2255.
Generates ith secret key deterministically as Hk(i) where k is master
secret. Important for efficiency

T1

u} !)
T2

z� ��
T3

�� �$
. .
.

{�

.
. . . .

�&
T2254

|� �%

...

�	

T2255−1

w� �'
T2255 T2255+1 · · · Tr

��

· · · T2256−2 T2256−1

m

Ti for small i gets used repeatedly (each time an m falls in that sub-tree)
but Hk(i) being deterministic means it signs the same value, so no break.
Daniel J. Bernstein & Tanja Lange Hash-based signatures II 11

Huge trees (1987 Goldreich), keys on demand (Levin)
Signer chooses random r ∈

{
2255, 2255 + 1, . . . , 2256 − 1

}
,

uses one-time public key Tr to sign message;
uses one-time public key Ti to sign (T2i ,T2i+1) for i < 2255.
Generates ith secret key deterministically as Hk(i) where k is master
secret. Important for efficiency and security.

T1

u} !)
T2

z� ��
T3

�� �$
. .
.

{�

.
. . . .

�&
T2254

|� �%

...

�	

T2255−1

w� �'
T2255 T2255+1 · · · Tr

��

· · · T2256−2 T2256−1

m

Ti for small i gets used repeatedly (each time an m falls in that sub-tree)
but Hk(i) being deterministic means it signs the same value, so no break.
Daniel J. Bernstein & Tanja Lange Hash-based signatures II 11

Use Goldreich to create stateless hash-based signatures

0.6 MB for hash-based Goldreich signature using
short-public-key Winternitz-16 one-time signatures.

Would dominate traffic in typical applications,
and add user-visible latency on typical network connections.

Example:
Debian operating system is designed for frequent upgrades.
At least one new signature for each upgrade.
Typical upgrade: one package or just a few packages.
1.2 MB average package size.
0.08 MB median package size.

Example:
HTTPS typically sends multiple signatures per page.
1.8 MB average web page in Alexa Top 1000000.

Daniel J. Bernstein & Tanja Lange Hash-based signatures II 12

Use Goldreich to create stateless hash-based signatures

0.6 MB for hash-based Goldreich signature using
short-public-key Winternitz-16 one-time signatures.

Would dominate traffic in typical applications,
and add user-visible latency on typical network connections.

Example:
Debian operating system is designed for frequent upgrades.
At least one new signature for each upgrade.
Typical upgrade: one package or just a few packages.
1.2 MB average package size.
0.08 MB median package size.

Example:
HTTPS typically sends multiple signatures per page.
1.8 MB average web page in Alexa Top 1000000.

Daniel J. Bernstein & Tanja Lange Hash-based signatures II 12

Use Goldreich to create stateless hash-based signatures

0.6 MB for hash-based Goldreich signature using
short-public-key Winternitz-16 one-time signatures.

Would dominate traffic in typical applications,
and add user-visible latency on typical network connections.

Example:
Debian operating system is designed for frequent upgrades.
At least one new signature for each upgrade.
Typical upgrade: one package or just a few packages.
1.2 MB average package size.
0.08 MB median package size.

Example:
HTTPS typically sends multiple signatures per page.
1.8 MB average web page in Alexa Top 1000000.

Daniel J. Bernstein & Tanja Lange Hash-based signatures II 12

Can we do with fewer leaves?

Reason for the large number: must never hit same leaf twice.

Leaf is chosen by hash function H(m).

Change definition of H to have many components

H(m) = (h0, h1, . . . , hk−1),

where each hi ∈ {0, 1, 2, . . . , t − 1} for some t.
Collisions mean that all hi match.

r -subset resilience
Let H(mj) = (hj,0, hj,1, . . . , hj,k−1).
H is r -subset-resilient if given H(m1),H(m2), . . . ,H(mr)
the probability of finding m′ with H(m′) = (h′0, h

′
1, . . . , h

′
k−1) and

hf ∈ {hj,i |0 ≤ i < k, 1 ≤ j ≤ r} for 0 ≤ f < k is negligible.

The same leaf public key can be used for r + 1 signatures
if H if r -subset-resilient.

Daniel J. Bernstein & Tanja Lange Hash-based signatures II 13

Can we do with fewer leaves?

Reason for the large number: must never hit same leaf twice.

Leaf is chosen by hash function H(m).

Change definition of H to have many components

H(m) = (h0, h1, . . . , hk−1),

where each hi ∈ {0, 1, 2, . . . , t − 1} for some t.
Collisions mean that all hi match.

r -subset resilience
Let H(mj) = (hj,0, hj,1, . . . , hj,k−1).
H is r -subset-resilient if given H(m1),H(m2), . . . ,H(mr)
the probability of finding m′ with H(m′) = (h′0, h

′
1, . . . , h

′
k−1) and

hf ∈ {hj,i |0 ≤ i < k, 1 ≤ j ≤ r} for 0 ≤ f < k is negligible.

The same leaf public key can be used for r + 1 signatures
if H if r -subset-resilient.

Daniel J. Bernstein & Tanja Lange Hash-based signatures II 13

Can we do with fewer leaves?

Reason for the large number: must never hit same leaf twice.

Leaf is chosen by hash function H(m).

Change definition of H to have many components

H(m) = (h0, h1, . . . , hk−1),

where each hi ∈ {0, 1, 2, . . . , t − 1} for some t.
Collisions mean that all hi match.

r -subset resilience
Let H(mj) = (hj,0, hj,1, . . . , hj,k−1).
H is r -subset-resilient if given H(m1),H(m2), . . . ,H(mr)
the probability of finding m′ with H(m′) = (h′0, h

′
1, . . . , h

′
k−1) and

hf ∈ {hj,i |0 ≤ i < k, 1 ≤ j ≤ r} for 0 ≤ f < k is negligible.

The same leaf public key can be used for r + 1 signatures
if H if r -subset-resilient.

Daniel J. Bernstein & Tanja Lange Hash-based signatures II 13

Can we do with fewer leaves?

Reason for the large number: must never hit same leaf twice.

Leaf is chosen by hash function H(m).

Change definition of H to have many components

H(m) = (h0, h1, . . . , hk−1),

where each hi ∈ {0, 1, 2, . . . , t − 1} for some t.
Collisions mean that all hi match.

r -subset resilience
Let H(mj) = (hj,0, hj,1, . . . , hj,k−1).
H is r -subset-resilient if given H(m1),H(m2), . . . ,H(mr)
the probability of finding m′ with H(m′) = (h′0, h

′
1, . . . , h

′
k−1) and

hf ∈ {hj,i |0 ≤ i < k , 1 ≤ j ≤ r} for 0 ≤ f < k is negligible.

The same leaf public key can be used for r + 1 signatures
if H if r -subset-resilient.

Daniel J. Bernstein & Tanja Lange Hash-based signatures II 13

Can we do with fewer leaves?

Reason for the large number: must never hit same leaf twice.

Leaf is chosen by hash function H(m).

Change definition of H to have many components

H(m) = (h0, h1, . . . , hk−1),

where each hi ∈ {0, 1, 2, . . . , t − 1} for some t.
Collisions mean that all hi match.

r -subset resilience
Let H(mj) = (hj,0, hj,1, . . . , hj,k−1).
H is r -subset-resilient if given H(m1),H(m2), . . . ,H(mr)
the probability of finding m′ with H(m′) = (h′0, h

′
1, . . . , h

′
k−1) and

hf ∈ {hj,i |0 ≤ i < k , 1 ≤ j ≤ r} for 0 ≤ f < k is negligible.

The same leaf public key can be used for r + 1 signatures
if H if r -subset-resilient.

Daniel J. Bernstein & Tanja Lange Hash-based signatures II 13

Few-times signature HORS
(Hash to Obtain Random Subset)

General parameters:

I Integer parameters k , t, `.

I Hash function H : {0, 1}∗ → {0, 1}k·log2 t .
I One-way function f : {0, 1}` → {0, 1}`.

KeyGen:

I Picks t strings si ∈ {0, 1}`, compute vi = f (si) for 0 ≤ i < t.

I Public key P = (v0, v1, . . . , vt−1); secret key S = (s0, s1, . . . , st−1).

Sign m ∈ {0, 1}∗:
I Compute H(m) = (h0, h1, . . . , hk−1), where each

hi ∈ {0, 1, 2, . . . , t − 1}.
I Signature on m is σ = (sh0 , sh1 , sh2 , . . . , shk−1

).

Verify:

I Compute H(m) = (h0, h1, . . . , hk−1) and
(f (sh0), f (sh1), f (sh2), . . . , f (shk−1

)).

I Verify that f (shi) = vhi for 0 ≤ i < t.

Daniel J. Bernstein & Tanja Lange Hash-based signatures II 14

HORS exercises, assume H is surjective

1. Let ` = 80, t = 25, and k = 3. How large (in bits) are the public
and secret keys? How large is a signature? How many different
signatures can the signer generate for a fixed key pair as H(m)
varies? Ignore that s-values could collide.

2. The same public key can be used for r + 1 signatures if H is
r -subset-resilient.
Even for r = 1, i.e. after seeing just one typical signature, an
attacker has an advantage at creating a fake signature. What are
the options beyond exact collisions in H?

3. Let ` = 80, t = 25, and k = 3. Let m be a message so that
H(m) = (h0, h1, h2) satisfies that hi 6= hj for i 6= j . You get to
specify messages that Alice signs. You may not ask Alice to sign m.
State the smallest number of HORS signatures you need to request
from Alice in order to construct a signature on m? How many calls
to H does this require on average? You should assume that H and f
do not have additional weaknesses beyond having too small
parameters. Explain how you could use under 1000 evaluations of H
if you are allowed to ask for two signatures.

Daniel J. Bernstein & Tanja Lange Hash-based signatures II 15

Ingredients of SPHINCS (and SPHINCS-256)

Drastically reduce tree height (to 60).

Replace one-time leaves with few-time leaves.

Optimize few-time signature size plus key size.
New few-time HORST (HORS with trees),
improving upon HORS.

Use hyper-trees (12 layers), as in GMSS.

Use masks, as in XMSS and XMSSMT,
for standard-model security proofs.

Optimize short-input (256-bit) hashing speed.
Use sponge hash (with ChaCha12 permutation).

Use fast stream cipher (again ChaCha12).

Vectorize hash software and cipher software.

See paper for details: sphincs.cr.yp.to

Updated version is NIST submission SPHINCS+
https://sphincs.org/.

Daniel J. Bernstein & Tanja Lange Hash-based signatures II 16

https://sphincs.cr.yp.to
https://sphincs.org/

