
Elliptic-curve

cryptography

Tanja Lange

Technische Universiteit Eindhoven

13 November 2020

with some slides by

Daniel J. Bernstein

Diffie-Hellman key exchange

Pick some generator P ,

i.e. some group element

(using additive notation here).

Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key

aP
&&NNNNNNN

Bob’s
public key

b P
xxppppppp

{Alice;Bob}’s
shared secret

ab P

=
{Bob;Alice}’s
shared secret

b aP

Diffie-Hellman key exchange

Pick some generator P ,

i.e. some group element

(using additive notation here).

Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key

aP
&&NNNNNNN

Bob’s
public key

b P
xxppppppp

{Alice;Bob}’s
shared secret

ab P

=
{Bob;Alice}’s
shared secret

b aP

What does P look like &

how to compute P +Q?

The clock

y

x

OO

//

This is the curve x2 + y2 = 1.

Warning:

This is not an elliptic curve.

“Elliptic curve” 6= “ellipse.”

Examples of points on this curve:

Examples of points on this curve:

(0; 1) = “12:00”.

Examples of points on this curve:

(0; 1) = “12:00”.

(0;−1) = “6:00”.

Examples of points on this curve:

(0; 1) = “12:00”.

(0;−1) = “6:00”.

(1; 0) = “3:00”.

Examples of points on this curve:

(0; 1) = “12:00”.

(0;−1) = “6:00”.

(1; 0) = “3:00”.

(−1; 0) = “9:00”.

Examples of points on this curve:

(0; 1) = “12:00”.

(0;−1) = “6:00”.

(1; 0) = “3:00”.

(−1; 0) = “9:00”.

(
p

3=4; 1=2) =

Examples of points on this curve:

(0; 1) = “12:00”.

(0;−1) = “6:00”.

(1; 0) = “3:00”.

(−1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

Examples of points on this curve:

(0; 1) = “12:00”.

(0;−1) = “6:00”.

(1; 0) = “3:00”.

(−1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

(1=2;−
p

3=4) =

Examples of points on this curve:

(0; 1) = “12:00”.

(0;−1) = “6:00”.

(1; 0) = “3:00”.

(−1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

(1=2;−
p

3=4) = “5:00”.

(−1=2;−
p

3=4) =

Examples of points on this curve:

(0; 1) = “12:00”.

(0;−1) = “6:00”.

(1; 0) = “3:00”.

(−1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

(1=2;−
p

3=4) = “5:00”.

(−1=2;−
p

3=4) = “7:00”.

Examples of points on this curve:

(0; 1) = “12:00”.

(0;−1) = “6:00”.

(1; 0) = “3:00”.

(−1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

(1=2;−
p

3=4) = “5:00”.

(−1=2;−
p

3=4) = “7:00”.

(
p

1=2;
p

1=2) = “1:30”.

(3=5; 4=5). (−3=5; 4=5).

Examples of points on this curve:

(0; 1) = “12:00”.

(0;−1) = “6:00”.

(1; 0) = “3:00”.

(−1; 0) = “9:00”.

(
p

3=4; 1=2) = “2:00”.

(1=2;−
p

3=4) = “5:00”.

(−1=2;−
p

3=4) = “7:00”.

(
p

1=2;
p

1=2) = “1:30”.

(3=5; 4=5). (−3=5; 4=5).

(3=5;−4=5). (−3=5;−4=5).

(4=5; 3=5). (−4=5; 3=5).

(4=5;−3=5). (−4=5;−3=5).

Many more.

Addition on the clock:
y

x

OO

//

neutral = (0; 1)
• P1 = (x1; y1)•�������

¸1
P2 = (x2; y2)•iiiiiii

P3 = (x3; y3)•PPPPPPP

x2 + y2 = 1, parametrized by

x = sin¸, y = cos¸.

Addition on the clock:
y

x

OO

//

neutral = (0; 1)
• P1 = (x1; y1)•�������

¸1
P2 = (x2; y2)•iiiiiii

P3 = (x3; y3)•PPPPPPP

x2 + y2 = 1, parametrized by

x = sin¸, y = cos¸. Recall

(sin(¸1 + ¸2); cos(¸1 + ¸2)) =

Addition on the clock:
y

x

OO

//

neutral = (0; 1)
• P1 = (x1; y1)•�������

¸1
P2 = (x2; y2)•iiiiiii

P3 = (x3; y3)•PPPPPPP

x2 + y2 = 1, parametrized by

x = sin¸, y = cos¸. Recall

(sin(¸1 + ¸2); cos(¸1 + ¸2)) =

(sin¸1 cos¸2 + cos¸1 sin¸2;

Addition on the clock:
y

x

OO

//

neutral = (0; 1)
• P1 = (x1; y1)•�������

¸1
P2 = (x2; y2)•iiiiiii

P3 = (x3; y3)•PPPPPPP

x2 + y2 = 1, parametrized by

x = sin¸, y = cos¸. Recall

(sin(¸1 + ¸2); cos(¸1 + ¸2)) =

(sin¸1 cos¸2 + cos¸1 sin¸2;

cos¸1 cos¸2 − sin¸1 sin¸2).

Adding two points corresponds

to adding the angles ¸1 and ¸2.

Angles modulo 360◦ are a group,

so points on clock are a group.

Neutral element: angle ¸ = 0;

point (0; 1); “12:00”.

The point with ¸ = 180◦

has order 2 and equals 6:00.

3:00 and 9:00 have order 4.

Inverse of point with ¸

is point with −¸
since ¸+ (−¸) = 0.

There are many more points

where angle ¸ is not “nice.”

Addition on the clock:
y

x

OO

//

neutral = (0; 1)
• P1 = (x1; y1)•�������

¸1
P2 = (x2; y2)•iiiiiii

P3 = (x3; y3)•PPPPPPP

x2 + y2 = 1, parametrized by

x = sin¸, y = cos¸. Recall

(sin(¸1 + ¸2); cos(¸1 + ¸2)) =

(sin¸1 cos¸2 + cos¸1 sin¸2;

cos¸1 cos¸2 − sin¸1 sin¸2).

Clock addition without sin, cos:
y

x

OO

//

neutral = (0; 1)
• P1 = (x1; y1)•�������

P2 = (x2; y2)•iiiiiii

P3 = (x3; y3)•PPPPPPP

Use Cartesian coordinates for

addition. Addition formula

for the clock x2 + y2 = 1:

sum (x1; y1) + (x2; y2) = (x3; y3)

Clock addition without sin, cos:
y

x

OO

//

neutral = (0; 1)
• P1 = (x1; y1)•�������

P2 = (x2; y2)•iiiiiii

P3 = (x3; y3)•PPPPPPP

Use Cartesian coordinates for

addition. Addition formula

for the clock x2 + y2 = 1:

sum (x1; y1) + (x2; y2) = (x3; y3)

= (x1y2 + y1x2; y1y2 − x1x2).

Note (x1; y1) + (−x1; y1) = (0; 1).

kP = P + P + · · ·+ P| {z }
k copies

for k ≥ 0.

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;−
p

3=4)

= (−1=2;−
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;−
p

3=4) + (−1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

„
3

5
;

4

5

«
=

„
24

25
;

7

25

«
.

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;−
p

3=4)

= (−1=2;−
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;−
p

3=4) + (−1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

„
3

5
;

4

5

«
=

„
24

25
;

7

25

«
.

3

„
3

5
;

4

5

«
=

„
117

125
;
−44

125

«
.

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;−
p

3=4)

= (−1=2;−
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;−
p

3=4) + (−1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

„
3

5
;

4

5

«
=

„
24

25
;

7

25

«
.

3

„
3

5
;

4

5

«
=

„
117

125
;
−44

125

«
.

4

„
3

5
;

4

5

«
=

„
336

625
;
−527

625

«
.

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;−
p

3=4)

= (−1=2;−
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;−
p

3=4) + (−1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

„
3

5
;

4

5

«
=

„
24

25
;

7

25

«
.

3

„
3

5
;

4

5

«
=

„
117

125
;
−44

125

«
.

4

„
3

5
;

4

5

«
=

„
336

625
;
−527

625

«
.

(x1; y1) + (0; 1) =

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;−
p

3=4)

= (−1=2;−
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;−
p

3=4) + (−1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

„
3

5
;

4

5

«
=

„
24

25
;

7

25

«
.

3

„
3

5
;

4

5

«
=

„
117

125
;
−44

125

«
.

4

„
3

5
;

4

5

«
=

„
336

625
;
−527

625

«
.

(x1; y1) + (0; 1) = (x1; y1).

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;−
p

3=4)

= (−1=2;−
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;−
p

3=4) + (−1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

„
3

5
;

4

5

«
=

„
24

25
;

7

25

«
.

3

„
3

5
;

4

5

«
=

„
117

125
;
−44

125

«
.

4

„
3

5
;

4

5

«
=

„
336

625
;
−527

625

«
.

(x1; y1) + (0; 1) = (x1; y1).

(x1; y1) + (−x1; y1) =

Examples of clock addition:

“2:00” + “5:00”

= (
p

3=4; 1=2) + (1=2;−
p

3=4)

= (−1=2;−
p

3=4) = “7:00”.

“5:00” + “9:00”

= (1=2;−
p

3=4) + (−1; 0)

= (
p

3=4; 1=2) = “2:00”.

2

„
3

5
;

4

5

«
=

„
24

25
;

7

25

«
.

3

„
3

5
;

4

5

«
=

„
117

125
;
−44

125

«
.

4

„
3

5
;

4

5

«
=

„
336

625
;
−527

625

«
.

(x1; y1) + (0; 1) = (x1; y1).

(x1; y1) + (−x1; y1) = (0; 1).

Clocks over finite fields

·
·
·
·

·
·
·

·
·
·
·

·
·
·

·
·
·
·

·
·
·

·
·
·
·

·
·
·

·
·
·
·

·
·
·

·
·
·
·

·
·
·

·
·
·
·

·
·
·

•

•
••

•

•

•

•

Clock(F7) =˘
(x; y) ∈ F7 × F7 : x2 + y2 = 1

¯
.

Here F7 = {0; 1; 2; 3; 4; 5; 6}
= {0; 1; 2; 3;−3;−2;−1}
with +;−;× modulo 7.

E.g. 2 · 5 = 3 and 3=2 = 5 in F7.

Clock cryptography

The “Clock Diffie–Hellman

protocol”:

Standardize large prime p &

base point (x; y) ∈ Clock(Fp).

Alice chooses big secret a,

computes her public key a(x; y).

Bob chooses big secret b,

computes his public key b (x; y).

Alice computes a(b (x; y)).

Bob computes b (a(x; y)).

They use this shared secret

to encrypt with AES-GCM etc.

Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key
a(X; Y)

&&NNNNNN

Bob’s
public key
b (X; Y)

xxpppppp

{Alice;Bob}’s
shared secret
ab (X; Y)

=
{Bob;Alice}’s
shared secret
b a(X; Y)

Alice’s
secret key a

��

��

Bob’s
secret key b

��

��

Alice’s
public key
a(X; Y)

&&NNNNNN

Bob’s
public key
b (X; Y)

xxpppppp

{Alice;Bob}’s
shared secret
ab (X; Y)

=
{Bob;Alice}’s
shared secret
b a(X; Y)

Warning #1:

Many p are unsafe!

Warning #2:

Clocks aren’t elliptic!

To match RSA-3072 security

need p ≈ 21536.

Addition on an Edwards curve

Change the curve on which Alice

and Bob work.

y

x

OO

//

neutral = (0; 1)
•

P1 = (x1; y1)•����
P2 = (x2; y2)•fffff
P3 = (x3; y3)•[[[[[[

x2 + y2 = 1− 30x2y2.

Sum of (x1; y1) and (x2; y2) is

((x1y2+y1x2)=(1−30x1x2y1y2),

(y1y2−x1x2)=(1+30x1x2y1y2)).

The clock again, for comparison:

y

x

OO

//

neutral = (0; 1)
• P1 = (x1; y1)•�������

P2 = (x2; y2)•iiiiiii

P3 = (x3; y3)•PPPPPPP

x2 + y2 = 1.

Sum of (x1; y1) and (x2; y2) is

(x1y2 + y1x2,

y1y2 − x1x2).

Addition on an Edwards curve

Change the curve on which Alice

and Bob work.

y

x

OO

//

neutral = (0; 1)
•

P1 = (x1; y1)•����
P2 = (x2; y2)•fffff
P3 = (x3; y3)•[[[[[[

x2 + y2 = 1− 30x2y2.

Sum of (x1; y1) and (x2; y2) is

((x1y2+y1x2)=(1−30x1x2y1y2),

(y1y2−x1x2)=(1+30x1x2y1y2)).

“Hey, there were divisions

in the Edwards addition law!

What if the denominators are 0?”

Answer: They aren’t!

If xi = 0 or yi = 0 then

1± 30x1x2y1y2 = 1 6= 0.

If x2 + y2 = 1− 30x2y2

then 30x2y2 < 1

so
√

30 |xy| < 1.

“Hey, there were divisions

in the Edwards addition law!

What if the denominators are 0?”

Answer: They aren’t!

If xi = 0 or yi = 0 then

1± 30x1x2y1y2 = 1 6= 0.

If x2 + y2 = 1− 30x2y2

then 30x2y2 < 1

so
√

30 |xy| < 1.

If x2
1 + y2

1 = 1− 30x2
1y

2
1

and x2
2 + y2

2 = 1− 30x2
2y

2
2

then
√

30 |x1y1| < 1

and
√

30 |x2y2| < 1

“Hey, there were divisions

in the Edwards addition law!

What if the denominators are 0?”

Answer: They aren’t!

If xi = 0 or yi = 0 then

1± 30x1x2y1y2 = 1 6= 0.

If x2 + y2 = 1− 30x2y2

then 30x2y2 < 1

so
√

30 |xy| < 1.

If x2
1 + y2

1 = 1− 30x2
1y

2
1

and x2
2 + y2

2 = 1− 30x2
2y

2
2

then
√

30 |x1y1| < 1

and
√

30 |x2y2| < 1

so 30 |x1y1x2y2| < 1

so 1± 30x1x2y1y2 > 0.

The Edwards addition law

(x1; y1) + (x2; y2) =

((x1y2+y1x2)=(1−30x1x2y1y2),

(y1y2−x1x2)=(1+30x1x2y1y2))

is a group law for the curve

x2 + y2 = 1− 30x2y2.

Some calculation required:

addition result is on curve;

addition law is associative.

Other parts of proof are easy:

addition law is commutative;

(0; 1) is neutral element;

(x1; y1) + (−x1; y1) = (0; 1).

Edwards curves mod p

Choose an odd prime p.

Choose a non-square d ∈ Fp.

{(x; y) ∈ Fp × Fp :

x2 + y2 = 1 + dx2y2}
is a “complete Edwards curve”.

Roughly p+ 1 pairs (x; y).

def edwardsadd(P1,P2):

x1,y1 = P1

x2,y2 = P2

x3 = (x1*y2+y1*x2)/ \

(1+d*x1*x2*y1*y2)

y3 = (y1*y2-x1*x2)/ \

(1-d*x1*x2*y1*y2)

return x3,y3

Denominators are never 0.

But need different proof;

“x2 + y2 > 0” doesn’t work.

Denominators are never 0.

But need different proof;

“x2 + y2 > 0” doesn’t work.

Answer: Can prove that

the denominators are never 0.

Addition law is complete.

Denominators are never 0.

But need different proof;

“x2 + y2 > 0” doesn’t work.

Answer: Can prove that

the denominators are never 0.

Addition law is complete.

This proof relies on

choosing non-square d.

Denominators are never 0.

But need different proof;

“x2 + y2 > 0” doesn’t work.

Answer: Can prove that

the denominators are never 0.

Addition law is complete.

This proof relies on

choosing non-square d.

If we instead choose square d:

curve is still elliptic, and

addition seems to work,

but there are failure cases,

often exploitable by attackers.

Safe code is more complicated.

Edwards curves are cool

ECDSA

Users can sign messages

using Edwards curves.

Take a point P on an Edwards

curve modulo a prime p > 2.

ECDSA signer needs to know

the order of P .

There are only finitley many other

points; about p in total.

Adding P to itself will eventually

reach (0; 1); let ‘ be the smallest

integer > 0 with ‘P = (0; 1).

This ‘ is the order of P .

The signature scheme has as

system parameters a curve E; a

base point P ; and a hash function

h with output length at least

blog2 ‘c+ 1.

Alice’s secret key is an integer a

and her public key is PA = aP .

To sign message m,

Alice computes h(m);

picks random k;

computes R = kP = (x1; y1);

puts r ≡ y1 mod ‘; computes

s ≡ k−1(h(m) + r · a) mod ‘.

The signature on m is (r; s).

Anybody can verify signature

given m and (r; s):

Compute w1 ≡ s−1h(m) mod ‘

and w2 ≡ s−1 · r mod ‘.

Check whether the y-coordinate

of w1P +w2PA equals r modulo ‘

and if so, accept signature.

Alice’s signatures are valid:

w1P +w2PA =

(s−1h(m))P + (s−1 · r)PA =

(s−1(h(m) + ra))P = kP

and so the y-coordinate of this

expression equals r,

the y-coordinate of kP .

Attacker’s view on signatures

Anybody can produce an R = kP .

Alice’s private key is only used in

s ≡ k−1(h(m) + r · a) mod ‘.

Can fake signatures if one can

break the DLP, i.e., if one can

compute a from PA.

Sometimes attacks are easier: : :

If k is known for some m; (r; s)

then a ≡ (sk− h(m))=r mod ‘.

If two signatures m1; (r; s1) and

m2; (r; s2) have the same value

for r: assume k1 = k2; observe

s1 − s2 = k−1
1 (h(m1) + ra −

(h(m2) + ra)); compute k =

(s1 − s2)=(h(m1) − h(m2)).

Continue as above.

If bits of many k’s are known

(biased PRNG) can attack

s ≡ k−1(h(m) + r · a) mod ‘

as hidden number problem

using lattice basis reduction.

Malicious signer

Alice can set up her public key so

that two messages of her choice

share the same signature,

i.e., she can claim to have

signed m1 or m2 at will:

R = (x1; y1) and −R = (−x1; y1)

have the same y-coordinate.

Thus, (r; s) fits R = kP ,

s ≡ k−1(h(m1) + ra) mod ‘ and

−R = (−k)P ,

s ≡ −k−1(h(m2) + ra) mod ‘ if

a ≡ −(h(m1)+h(m2))=2r mod ‘.

Malicious signer

Alice can set up her public key so

that two messages of her choice

share the same signature,

i.e., she can claim to have

signed m1 or m2 at will:

R = (x1; y1) and −R = (−x1; y1)

have the same y-coordinate.

Thus, (r; s) fits R = kP ,

s ≡ k−1(h(m1) + ra) mod ‘ and

−R = (−k)P ,

s ≡ −k−1(h(m2) + ra) mod ‘ if

a ≡ −(h(m1)+h(m2))=2r mod ‘.

(Easy tweak: include bit of x1.)

More elliptic curves

Edwards curves are elliptic.

Easiest way to understand

elliptic curves is Edwards.

Geometrically, all elliptic curves

are Edwards curves.

Algebraically,

more elliptic curves exist

(not always point of order 4).

Every odd-char curve can be

expressed as Weierstrass curve

v2 = u3 + a2u
2 + a4u+ a6.

Warning: “Weierstrass” has

different meaning in char 2.

Addition on Weierstrass curve

v2 = u3 + u2 + u+ 1

•
P1

•P2

•−(P1 + P2)
99999999999999999999 •P1 + P2

u
//

vOO

Slope – = (v2 − v1)=(u2 − u1).

Note that u1 6= u2.

Doubling on Weierstrass curve

v2 = u3 − u

•
P1

•
−2P1

lllllllllllllllllllll

• 2P1

u
//

vOO

Slope – = (3u2
1 − 1)=(2v1).

In most cases

(u1; v1) + (u2; v2) =

(u3; v3) where (u3; v3) =

(–2−u1−u2; –(u1−u3)−v1):

u1 6= u2, “addition” (alert!):

– = (v2 − v1)=(u2 − u1).

Total cost 1I + 2M + 1S.

(u1; v1) = (u2; v2) and v1 6= 0,

“doubling” (alert!):

– = (3u2
1 + 2a2u1 + a4)=(2v1).

Total cost 1I + 2M + 2S.

Also handle some exceptions:

(u1; v1) = (u2;−v2); ∞ as input.

Messy to implement and test.

Birational equivalence

Starting from point (x; y)

on x2 + y2 = 1 + dx2y2:

Define A = 2(1 + d)=(1− d),

B = 4=(1− d);

u = (1 + y)=(B(1− y)),

v = u=x = (1 + y)=(Bx(1− y)).

(Skip a few exceptional points.)

Then (u; v) is a point on

a Weierstrass curve:

v2 = u3 + (A=B)u2 + (1=B2)u.

Easily invert this map:

x = u=v, y = (Bu− 1)=(Bu+ 1).

Attacker can transform Edwards

curve to Weierstrass curve and

vice versa; n(x; y) 7→ n(u; v).

⇒ Same discrete-log security!

Can choose curve representation

so that implementation of attack

is faster/easier.

System designer can choose curve

representation so that protocol

runs fastest; no need to worry

about security degradation.

Elliptic-curve groups

P1

P2

−P1 − P2

P1 + P2

2P1

−2P1

History

Euler

Observationes de Comparatione

Arcuum Curvarum

Irrectificabilium

1=y = (1− nx2)=(1− x2)

matches

x2 + y2 = 1 + nx2y2:

Gauss

General addition formulas for

1 = s2 + c2 + s2c2

Harold M. Edwards

Bulletin of the AMS,

44, 393–422, 2007

Every elliptic curve

can be written as

x2 + y2 = a2(1 + x2y2); a5 6= a

over some extension field.

Security requirements

We want elliptic curve E=Fp with

#E(Fp) almost prime,

e.g., #E(Fp) = 4 · ‘.

p ≈ ‘ of ≈ 256 bits.

Other conditions:

E should be ordinary, i.e.,

#E(Fp) 6= p+ 1.

E should not be anomalous,

i.e., #E(Fp) 6= p.

For more properties,

and considerations about

secure implementations see

https://safecurves.cr.yp.to/

