
Isogeny-Based Cryptography

Tanja Lange
(with lots of slides by Lorenz Panny)

Eindhoven University of Technology

20 & 21 July 2020

Diffie–Hellman key exchange ’76

Public parameters:
I a finite group G (traditionally F∗p , today elliptic curves)

I an element g ∈ G of prime order q

Alice public Bob

a
random←−−− {0...q−1} b

random←−−− {0...q−1}

g a gb

s := (gb)a s := (g a)b

Fundamental reason this works: ·a and ·b commute!

Tanja Lange Isogeny-Based Cryptography 2

Diffie–Hellman key exchange ’76

Public parameters:
I a finite group G (traditionally F∗p , today elliptic curves)

I an element g ∈ G of prime order q

Alice public Bob

a
random←−−− {0...q−1} b

random←−−− {0...q−1}

g a gb

s := (gb)a s := (g a)b

Fundamental reason this works: ·a and ·b commute!

Tanja Lange Isogeny-Based Cryptography 2

Diffie–Hellman key exchange ’76

Public parameters:
I a finite group G (traditionally F∗p , today elliptic curves)

I an element g ∈ G of prime order q

Alice public Bob

a
random←−−− {0...q−1} b

random←−−− {0...q−1}

g a gb

s := (gb)a s := (g a)b

Fundamental reason this works: ·a and ·b commute!

Tanja Lange Isogeny-Based Cryptography 2

Diffie–Hellman: Bob vs. Eve

Bob
1. Set t ← g .

2. Set t ← t · g .
3. Set t ← t · g .
4. Set t ← t · g .
...

b−2. Set t ← t · g .
b−1. Set t ← t · g .

b. Publish B ← t · g .

Is this a good idea?

Effort for both: O(#G). Bob needs to be smarter.
(There also exist better attacks)

Tanja Lange Isogeny-Based Cryptography 3

Diffie–Hellman: Bob vs. Eve

Bob
1. Set t ← g .

2. Set t ← t · g .
3. Set t ← t · g .
4. Set t ← t · g .
...

b−2. Set t ← t · g .
b−1. Set t ← t · g .

b. Publish B ← t · g .

Is this a good idea?

Effort for both: O(#G). Bob needs to be smarter.
(There also exist better attacks)

Tanja Lange Isogeny-Based Cryptography 3

Diffie–Hellman: Bob vs. Eve

Bob
1. Set t ← g .

2. Set t ← t · g .
3. Set t ← t · g .
4. Set t ← t · g .
...

b−2. Set t ← t · g .
b−1. Set t ← t · g .

b. Publish B ← t · g .

Attacker Eve
1. Set t ← g . If t = B return 1.

2. Set t ← t · g . If t = B return 2.

3. Set t ← t · g . If t = B return 3.

4. Set t ← t · g . If t = B return 3.

...

b−2. Set t ← t · g . If t = B return b−2.
b−1. Set t ← t · g . If t = B return b−1.

b. Set t ← t · g . If t = B return b.

b+1. Set t ← t · g . If t = B return b + 1.

b+2. Set t ← t · g . If t = B return b + 2.

...

Effort for both: O(#G). Bob needs to be smarter.
(There also exist better attacks)

Tanja Lange Isogeny-Based Cryptography 3

Diffie–Hellman: Bob vs. Eve

Bob
1. Set t ← g .

2. Set t ← t · g .
3. Set t ← t · g .
4. Set t ← t · g .
...

b−2. Set t ← t · g .
b−1. Set t ← t · g .

b. Publish B ← t · g .

Attacker Eve
1. Set t ← g . If t = B return 1.

2. Set t ← t · g . If t = B return 2.

3. Set t ← t · g . If t = B return 3.

4. Set t ← t · g . If t = B return 3.

...

b−2. Set t ← t · g . If t = B return b−2.
b−1. Set t ← t · g . If t = B return b−1.

b. Set t ← t · g . If t = B return b.

b+1. Set t ← t · g . If t = B return b + 1.

b+2. Set t ← t · g . If t = B return b + 2.

...

Effort for both: O(#G). Bob needs to be smarter.
(There also exist better attacks)

Tanja Lange Isogeny-Based Cryptography 3

Square-and-multiply-and-square-and-multiply-and-square-and-multiply

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Reminder: DH in group with #G = 23. Bob computes g13.

Fast mixing: paths of length log(# nodes) to everywhere.

Tanja Lange Isogeny-Based Cryptography 4

Square-and-

multiply

-and-square-and-multiply-and-square-and-multiply

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Reminder: DH in group with #G = 23. Bob computes g13.

Fast mixing: paths of length log(# nodes) to everywhere.

Tanja Lange Isogeny-Based Cryptography 4

Square-and-multiply

-and-square-and-multiply-and-square-and-multiply

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Reminder: DH in group with #G = 23. Bob computes g13.

Fast mixing: paths of length log(# nodes) to everywhere.

Tanja Lange Isogeny-Based Cryptography 4

Square-and-multiply-and-square-and-multiply

-and-square-and-multiply

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Reminder: DH in group with #G = 23. Bob computes g13.

Fast mixing: paths of length log(# nodes) to everywhere.

Tanja Lange Isogeny-Based Cryptography 4

Square-and-multiply-and-square-and-multiply-and-square-and-multiply

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Reminder: DH in group with #G = 23. Bob computes g13.

Fast mixing: paths of length log(# nodes) to everywhere.

Tanja Lange Isogeny-Based Cryptography 4

Square-and-multiply as graphs

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Reminder: DH in group with #G = 23. Bob computes g13.

Fast mixing: paths of length log(# nodes) to everywhere.

Tanja Lange Isogeny-Based Cryptography 4

Square-and-multiply as graphs

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Reminder: DH in group with #G = 23. Bob computes g13.

Fast mixing: paths of length log(# nodes) to everywhere.

Tanja Lange Isogeny-Based Cryptography 4

Square-and-multiply as graphs

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Reminder: DH in group with #G = 23. Bob computes g13.

Fast mixing: paths of length log(# nodes) to everywhere.

Tanja Lange Isogeny-Based Cryptography 4

Square-and-multiply as graphs

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Reminder: DH in group with #G = 23. Bob computes g13.

Fast mixing: paths of length log(# nodes) to everywhere.

Tanja Lange Isogeny-Based Cryptography 4

Square-and-multiply as a graph

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Reminder: DH in group with #G = 23. Bob computes g13.

Fast mixing: paths of length log(# nodes) to everywhere.

Tanja Lange Isogeny-Based Cryptography 4

Square-and-multiply as a graph

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

Reminder: DH in group with #G = 23. Bob computes g13.

Fast mixing: paths of length log(# nodes) to everywhere.

Tanja Lange Isogeny-Based Cryptography 4

Exponential separation

Constructive computation:
With square-and-multiply, applying b takes Θ(log2 #G).

Attack costs:
For well-chosen groups, recovering b takes Θ(

√
#G).

(For less-well chosen groups the attacks are faster.)

As √
#G = 20.5 log2 #G

attacks are exponentially harder.

On a sufficiently large quantum computer, Shor’s algorithm quantumly
computes b from gb in any group in polynomial time.
Isogeny graphs to the rescue!

Tanja Lange Isogeny-Based Cryptography 5

Exponential separation until quantum computers come

Constructive computation:
With square-and-multiply, applying b takes Θ(log2 #G).

Attack costs:
For well-chosen groups, recovering b takes Θ(

√
#G).

(For less-well chosen groups the attacks are faster.)

As √
#G = 20.5 log2 #G

attacks are exponentially harder.

On a sufficiently large quantum computer, Shor’s algorithm quantumly
computes b from gb in any group in polynomial time.

Isogeny graphs to the rescue!

Tanja Lange Isogeny-Based Cryptography 5

Exponential separation until quantum computers come

Constructive computation:
With square-and-multiply, applying b takes Θ(log2 #G).

Attack costs:
For well-chosen groups, recovering b takes Θ(

√
#G).

(For less-well chosen groups the attacks are faster.)

As √
#G = 20.5 log2 #G

attacks are exponentially harder.

On a sufficiently large quantum computer, Shor’s algorithm quantumly
computes b from gb in any group in polynomial time.
Isogeny graphs to the rescue!

Tanja Lange Isogeny-Based Cryptography 5

Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!

Tanja Lange Isogeny-Based Cryptography 6

Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!

Tanja Lange Isogeny-Based Cryptography 6

Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!

Tanja Lange Isogeny-Based Cryptography 6

Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!

Tanja Lange Isogeny-Based Cryptography 6

Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!

Tanja Lange Isogeny-Based Cryptography 6

Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No efficient∗ algorithms to recover paths from endpoints.
(Both classical and quantum!)

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved “directions” to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!

Tanja Lange Isogeny-Based Cryptography 6

Topic of this lecture

I Isogenies are well-behaved maps between elliptic curves.

 Isogeny graph: Nodes are curves, edges are isogenies.
(We usually care about subgraphs with certain properties.)

I Isogenies give rise to post-quantum Diffie–Hellman
(and more!)

Tanja Lange Isogeny-Based Cryptography 7

Topic of this lecture

I Isogenies are well-behaved maps between elliptic curves.

 Isogeny graph: Nodes are curves, edges are isogenies.
(We usually care about subgraphs with certain properties.)

I Isogenies give rise to post-quantum Diffie–Hellman
(and more!)

Tanja Lange Isogeny-Based Cryptography 7

The beauty and the beast

Components of well-chosen isogeny graphs look like this:

Which of these is good for crypto?

Both.

Tanja Lange Isogeny-Based Cryptography 8

The beauty and the beast

Components of well-chosen isogeny graphs look like this:

Which of these is good for crypto?

Both.

Tanja Lange Isogeny-Based Cryptography 8

The beauty and the beast

Components of well-chosen isogeny graphs look like this:

Which of these is good for crypto? Both.

Tanja Lange Isogeny-Based Cryptography 8

The beauty and the beast

At this time, there are two distinct families of systems:

q = p

CSIDH ["si:­saId]
https://csidh.isogeny.org

q = p2

SIDH
https://sike.org

Tanja Lange Isogeny-Based Cryptography 8

https://csidh.isogeny.org
https://sike.org

CSIDH ["si:­saId]

(Castryck, Lange, Martindale, Panny, Renes; 2018)

Tanja Lange Isogeny-Based Cryptography 9

Why CSIDH?

I Closest thing we have in PQC to normal DH key exchange:
Keys can be reused, blinded; no difference between initiator
&responder.

I Public keys are represented by some A ∈ Fp; p fixed prime.
I Alice computes and distributes her public key A.

Bob computes and distributes his public key B.
I Alice and Bob do computations on each other’s public keys

to obtain shared secret.
I Fancy math: computations start on some elliptic curve

EA : y2 = x3 + Ax2 + x , use isogenies to move to a different curve.
I Computations need arithmetic (add, mult, div) modulo p and

elliptic-curve computations.

Tanja Lange Isogeny-Based Cryptography 10

Math slide #1: Elliptic curves (nodes)

An elliptic curve over Fp is given by an equation

E : y2 = x3 + ax + b, with 4a3 − 27b2 6= 0.

A point P = (x , y) on E is a solution to this equation
or the point ∞ at infinity.

E is an abelian group: we can “add” and “subtract” points.
I The neutral element is ∞.
I The inverse of (x , y) is (x ,−y).
I The sum of P1 = (x1, y1) and P2 = (x2, y2) is P3 = (x3, y3) =(

λ2 − x1 − x2, λ(x1 − x3)− y1
)

where λ = (y2 − y1)/(x2 − x1) if x1 6= x2
and λ = (3x2

1 + a)/(2y1) if P1 = P2 6= −P1.
Takeaway: Computations in Fp, some formulas.
Other curve shapes, such as Montgomery curves y2 = x3 + Ax2 + x are
faster.

Tanja Lange Isogeny-Based Cryptography 11

Math slide #1: Elliptic curves (nodes)

An elliptic curve over Fp is given by an equation

E : y2 = x3 + ax + b, with 4a3 − 27b2 6= 0.

A point P = (x , y) on E is a solution to this equation
or the point ∞ at infinity.

E is an abelian group: we can “add” and “subtract” points.
I The neutral element is ∞.
I The inverse of (x , y) is (x ,−y).
I The sum of P1 = (x1, y1) and P2 = (x2, y2) is P3 = (x3, y3) =(

λ2 − x1 − x2, λ(x1 − x3)− y1
)

where λ = (y2 − y1)/(x2 − x1) if x1 6= x2
and λ = (3x2

1 + a)/(2y1) if P1 = P2 6= −P1.
Takeaway: Computations in Fp, some formulas.
Other curve shapes, such as Montgomery curves y2 = x3 + Ax2 + x are
faster.

Tanja Lange Isogeny-Based Cryptography 11

Math slide #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E → E ′

I given by rational functions
I that is a group homomorphism.

The degree of a separable isogeny is the size of its kernel.

Tanja Lange Isogeny-Based Cryptography 12

Math slide #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E → E ′

I given by rational functions
I that is a group homomorphism.

The degree of a separable isogeny is the size of its kernel.

Example #1: For each m 6= 0, the multiplication-by-m map

[m] : E → E

is a degree-m2 isogeny. If m 6= 0 in the base field, its kernel is

E [m] ∼= Z/m × Z/m.

Tanja Lange Isogeny-Based Cryptography 12

Math slide #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E → E ′

I given by rational functions
I that is a group homomorphism.

The degree of a separable isogeny is the size of its kernel.

Example #2: For any a and b, the map ι : (x , y) 7→ (−x ,
√
−1 · y)

defines a degree-1 isogeny of the elliptic curves

{y2 = x3 + ax + b} −→ {y2 = x3 + ax − b} .

It is an isomorphism; its kernel is {∞}.

Tanja Lange Isogeny-Based Cryptography 12

Math slide #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E → E ′

I given by rational functions
I that is a group homomorphism.

The degree of a separable isogeny is the size of its kernel.

Example #3:

(x , y) 7→
(

x3−4x2+30x−12
(x−2)2 , x

3−6x2−14x+35
(x−2)3 · y

)
defines a degree-3 isogeny of the elliptic curves

{y2 = x3 + x} −→ {y2 = x3 − 3x + 3}

over F71. Its kernel is {(2, 9), (2,−9),∞}.

Tanja Lange Isogeny-Based Cryptography 12

CSIDH in one slide

I Choose some small odd primes `1, ..., `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Let X = {y2 = x3+Ax2+x over Fp with p+1 points}.
I Look at the `i -isogenies defined over Fp within X .

m
ag
ic
m
at
h
ha
pp
en
s!

p = 419
`1 = 3
`2 = 5
`3 = 7

I Walking “left” and “right” on any `i -subgraph is efficient.
I We can represent E ∈ X as a single coefficient A ∈ Fp.

Tanja Lange Isogeny-Based Cryptography 13

CSIDH in one slide

I Choose some small odd primes `1, ..., `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.

I Let X = {y2 = x3+Ax2+x over Fp with p+1 points}.
I Look at the `i -isogenies defined over Fp within X .

m
ag
ic
m
at
h
ha
pp
en
s!

p = 419
`1 = 3
`2 = 5
`3 = 7

I Walking “left” and “right” on any `i -subgraph is efficient.
I We can represent E ∈ X as a single coefficient A ∈ Fp.

Tanja Lange Isogeny-Based Cryptography 13

CSIDH in one slide

I Choose some small odd primes `1, ..., `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Let X = {y2 = x3+Ax2+x over Fp with p+1 points}.

I Look at the `i -isogenies defined over Fp within X .

m
ag
ic
m
at
h
ha
pp
en
s!

p = 419
`1 = 3
`2 = 5
`3 = 7

I Walking “left” and “right” on any `i -subgraph is efficient.
I We can represent E ∈ X as a single coefficient A ∈ Fp.

Tanja Lange Isogeny-Based Cryptography 13

CSIDH in one slide

I Choose some small odd primes `1, ..., `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Let X = {y2 = x3+Ax2+x over Fp with p+1 points}.
I Look at the `i -isogenies defined over Fp within X .

m
ag
ic
m
at
h
ha
pp
en
s!

p = 419
`1 = 3
`2 = 5
`3 = 7

I Walking “left” and “right” on any `i -subgraph is efficient.
I We can represent E ∈ X as a single coefficient A ∈ Fp.

Tanja Lange Isogeny-Based Cryptography 13

CSIDH in one slide

I Choose some small odd primes `1, ..., `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Let X = {y2 = x3+Ax2+x over Fp with p+1 points}.
I Look at the `i -isogenies defined over Fp within X .

m
ag
ic
m
at
h
ha
pp
en
s!

p = 419
`1 = 3
`2 = 5
`3 = 7

I Walking “left” and “right” on any `i -subgraph is efficient.
I We can represent E ∈ X as a single coefficient A ∈ Fp.

Tanja Lange Isogeny-Based Cryptography 13

CSIDH in one slide

I Choose some small odd primes `1, ..., `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Let X = {y2 = x3+Ax2+x over Fp with p+1 points}.
I Look at the `i -isogenies defined over Fp within X .

m
ag
ic
m
at
h
ha
pp
en
s!

p = 419
`1 = 3
`2 = 5
`3 = 7

I Walking “left” and “right” on any `i -subgraph is efficient.

I We can represent E ∈ X as a single coefficient A ∈ Fp.

Tanja Lange Isogeny-Based Cryptography 13

CSIDH in one slide

I Choose some small odd primes `1, ..., `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Let X = {y2 = x3+Ax2+x over Fp with p+1 points}.
I Look at the `i -isogenies defined over Fp within X .

m
ag
ic
m
at
h
ha
pp
en
s!

p = 419
`1 = 3
`2 = 5
`3 = 7

I Walking “left” and “right” on any `i -subgraph is efficient.
I We can represent E ∈ X as a single coefficient A ∈ Fp.

Tanja Lange Isogeny-Based Cryptography 13

Walking in the CSIDH graph

Taking a “positive” step on the `i -subgraph.
1. Find a point (x , y) ∈ E of order `i with x , y ∈ Fp.

The order of any (x , y) ∈ E divides p + 1, so [(p + 1)/`i](x , y) =∞
or a point of order `i .
Sample a new point if you get ∞.

2. Compute the isogeny with kernel 〈(x , y)〉 (see next slide).

Taking a “negative” step on the `i -subgraph.
1. Find a point (x , y) ∈ E of order `i with x ∈ Fp but y /∈ Fp.

This uses scalar multiplication by (p + 1)/`i .

2. Compute the isogeny with kernel 〈(x , y)〉 (see next slide).

Upshot: With “x-only’ arithmetic” everything happens over Fp.

=⇒ Efficient to implement!

Tanja Lange Isogeny-Based Cryptography 14

Walking in the CSIDH graph

Taking a “positive” step on the `i -subgraph.
1. Find a point (x , y) ∈ E of order `i with x , y ∈ Fp.

The order of any (x , y) ∈ E divides p + 1, so [(p + 1)/`i](x , y) =∞
or a point of order `i .
Sample a new point if you get ∞.

2. Compute the isogeny with kernel 〈(x , y)〉 (see next slide).

Taking a “negative” step on the `i -subgraph.
1. Find a point (x , y) ∈ E of order `i with x ∈ Fp but y /∈ Fp.

This uses scalar multiplication by (p + 1)/`i .

2. Compute the isogeny with kernel 〈(x , y)〉 (see next slide).

Upshot: With “x-only’ arithmetic” everything happens over Fp.

=⇒ Efficient to implement!

Tanja Lange Isogeny-Based Cryptography 14

Walking in the CSIDH graph

Taking a “positive” step on the `i -subgraph.
1. Find a point (x , y) ∈ E of order `i with x , y ∈ Fp.

The order of any (x , y) ∈ E divides p + 1, so [(p + 1)/`i](x , y) =∞
or a point of order `i .
Sample a new point if you get ∞.

2. Compute the isogeny with kernel 〈(x , y)〉 (see next slide).

Taking a “negative” step on the `i -subgraph.
1. Find a point (x , y) ∈ E of order `i with x ∈ Fp but y /∈ Fp.

This uses scalar multiplication by (p + 1)/`i .

2. Compute the isogeny with kernel 〈(x , y)〉 (see next slide).

Upshot: With “x-only’ arithmetic” everything happens over Fp.

=⇒ Efficient to implement!

Tanja Lange Isogeny-Based Cryptography 14

Math slide #3: Isogenies and kernels

For any finite subgroup G of E , there exists a unique1

separable isogeny ϕG : E → E ′ with kernel G .

The curve E ′ is called E/G . (≈ quotient groups)

If G is defined over k , then ϕG and E/G are also defined over k .

Vélu ’71:
Formulas for computing E/G and evaluating ϕG at a point.

Complexity: Θ(#G) only suitable for small degrees.

Vélu operates in the field where the points in G live.
 need to make sure extensions stay small for desired #G
 this is why we use special p and curves with p + 1 points!

Not all k-rational points of E/G are in the image of k-rational points on
E ; but #E (k) #E/G (k).

1(up to isomorphism of E ′)

Math slide #3: Isogenies and kernels

For any finite subgroup G of E , there exists a unique1

separable isogeny ϕG : E → E ′ with kernel G .

The curve E ′ is called E/G . (≈ quotient groups)

If G is defined over k , then ϕG and E/G are also defined over k .

Vélu ’71:
Formulas for computing E/G and evaluating ϕG at a point.

Complexity: Θ(#G) only suitable for small degrees.

Vélu operates in the field where the points in G live.
 need to make sure extensions stay small for desired #G
 this is why we use special p and curves with p + 1 points!

Not all k-rational points of E/G are in the image of k-rational points on
E ; but #E (k) #E/G (k).

1(up to isomorphism of E ′)

Math slide #3: Isogenies and kernels

For any finite subgroup G of E , there exists a unique1

separable isogeny ϕG : E → E ′ with kernel G .

The curve E ′ is called E/G . (≈ quotient groups)

If G is defined over k , then ϕG and E/G are also defined over k .

Vélu ’71:
Formulas for computing E/G and evaluating ϕG at a point.

Complexity: Θ(#G) only suitable for small degrees.

Vélu operates in the field where the points in G live.
 need to make sure extensions stay small for desired #G
 this is why we use special p and curves with p + 1 points!

Not all k-rational points of E/G are in the image of k-rational points on
E ; but #E (k) #E/G (k).

1(up to isomorphism of E ′)

CSIDH key exchange

Alice Bob
[, , ,] [, , ,]

Tanja Lange Isogeny-Based Cryptography 16

CSIDH key exchange

Alice Bob
[
↑
, , ,] [

↑
, , ,]

Tanja Lange Isogeny-Based Cryptography 16

CSIDH key exchange

Alice Bob
[,

↑
, ,] [,

↑
, ,]

Tanja Lange Isogeny-Based Cryptography 16

CSIDH key exchange

Alice Bob
[, ,

↑
,] [, ,

↑
,]

Tanja Lange Isogeny-Based Cryptography 16

CSIDH key exchange

Alice Bob
[, , ,

↑
] [, , ,

↑
]

Tanja Lange Isogeny-Based Cryptography 16

CSIDH key exchange

Alice Bob
[, , ,] [, , ,]

Tanja Lange Isogeny-Based Cryptography 16

CSIDH key exchange

Alice Bob
[
↑
, , ,] [

↑
, , ,]

Tanja Lange Isogeny-Based Cryptography 16

CSIDH key exchange

Alice Bob
[,

↑
, ,] [,

↑
, ,]

Tanja Lange Isogeny-Based Cryptography 16

CSIDH key exchange

Alice Bob
[, ,

↑
,] [, ,

↑
,]

Tanja Lange Isogeny-Based Cryptography 16

CSIDH key exchange

Alice Bob
[, , ,

↑
] [, , ,

↑
]

Tanja Lange Isogeny-Based Cryptography 16

CSIDH key exchange

Alice Bob
[, , ,] [, , ,]

Tanja Lange Isogeny-Based Cryptography 16

Abstract from Diffie-Hellman dataflow

“CSIDH: an efficient post-quantum
commutative group action”

Cycles are compatible: [right then left] = [left then right]
 only need to keep track of total step counts for each `i .

Example: [, , , , , , ,] just becomes (+1, 0,−3) ∈ Z3.

There is a group action of (Zn,+) on our set of curves X !

Many paths are “useless”. Fun fact: Quotienting out trivial actions yields
the ideal-class group cl(Z[

√
−p]).

Tanja Lange Isogeny-Based Cryptography 17

Abstract from Diffie-Hellman dataflow

“CSIDH: an efficient post-quantum
commutative group action”

Cycles are compatible: [right then left] = [left then right]
 only need to keep track of total step counts for each `i .

Example: [, , , , , , ,] just becomes (+1, 0,−3) ∈ Z3.

There is a group action of (Zn,+) on our set of curves X !

Many paths are “useless”. Fun fact: Quotienting out trivial actions yields
the ideal-class group cl(Z[

√
−p]).

Tanja Lange Isogeny-Based Cryptography 17

Abstract from Diffie-Hellman dataflow

“CSIDH: an efficient post-quantum
commutative group action”

Cycles are compatible: [right then left] = [left then right]
 only need to keep track of total step counts for each `i .

Example: [, , , , , , ,] just becomes (+1, 0,−3) ∈ Z3.

There is a group action of (Zn,+) on our set of curves X !

Many paths are “useless”. Fun fact: Quotienting out trivial actions yields
the ideal-class group cl(Z[

√
−p]).

Tanja Lange Isogeny-Based Cryptography 17

Abstract from Diffie-Hellman dataflow

“CSIDH: an efficient post-quantum
commutative group action”

Cycles are compatible: [right then left] = [left then right]
 only need to keep track of total step counts for each `i .

Example: [, , , , , , ,] just becomes (+1, 0,−3) ∈ Z3.

There is a group action of (Zn,+) on our set of curves X !

Many paths are “useless”. Fun fact: Quotienting out trivial actions yields
the ideal-class group cl(Z[

√
−p]).

Tanja Lange Isogeny-Based Cryptography 17

Math slide #4: Quadratic twists Not my fault . . .

E ′/k is a twist elliptic curve E”/k if E is isomorphic to E ′ over k̄ .

For E : y2 = x3 + Ax2 + x over Fp with p ≡ 3 mod 4
E ′ : −y2 = x3 + Ax2 + x is isomorphic to E via

(x , y) 7→ (x ,
√
−1y).

This map is defined over Fp2 , so this is a quadratic twist.

Picking (x , y) on E with x ∈ Fp, y 6= Fp implicitly picks point in E ′(Fp).

E ′ is not in the isogeny graph, does not have the right shape.

E ′ is isomorphic to E ′′ : y2 = x3−Ax2 + x via (x , y) 7→ (−x , y) over Fp.

Tanja Lange Isogeny-Based Cryptography 18

Math slide #4: Quadratic twists Not my fault . . .

E ′/k is a twist elliptic curve E”/k if E is isomorphic to E ′ over k̄ .

For E : y2 = x3 + Ax2 + x over Fp with p ≡ 3 mod 4
E ′ : −y2 = x3 + Ax2 + x is isomorphic to E via

(x , y) 7→ (x ,
√
−1y).

This map is defined over Fp2 , so this is a quadratic twist.

Picking (x , y) on E with x ∈ Fp, y 6= Fp implicitly picks point in E ′(Fp).

E ′ is not in the isogeny graph, does not have the right shape.

E ′ is isomorphic to E ′′ : y2 = x3−Ax2 + x via (x , y) 7→ (−x , y) over Fp.

Tanja Lange Isogeny-Based Cryptography 18

Math slide #4: Quadratic twists Not my fault . . .

E ′/k is a twist elliptic curve E”/k if E is isomorphic to E ′ over k̄ .

For E : y2 = x3 + Ax2 + x over Fp with p ≡ 3 mod 4
E ′ : −y2 = x3 + Ax2 + x is isomorphic to E via

(x , y) 7→ (x ,
√
−1y).

This map is defined over Fp2 , so this is a quadratic twist.

Picking (x , y) on E with x ∈ Fp, y 6= Fp implicitly picks point in E ′(Fp).

E ′ is not in the isogeny graph, does not have the right shape.

E ′ is isomorphic to E ′′ : y2 = x3−Ax2 + x via (x , y) 7→ (−x , y) over Fp.

Tanja Lange Isogeny-Based Cryptography 18

Graphs of elliptic curves
E0E158

E410

E368

E404

E75

E144

E191

E174

E413

E379

E124
E199

E390 E29
E220

E295

E40

E6

E245

E228

E275

E344

E15

E51

E9

E261

Nodes: Supersingular elliptic curves EA : y2 = x3 + Ax2 + x over F419.

Each EA on the left has E−A on the right.
Negative direction means: flip to twist, go positive direction, flip back.

Tanja Lange Isogeny-Based Cryptography 19

Graphs of elliptic curves
E0E158

E410

E368

E404

E75

E144

E191

E174

E413

E379

E124
E199

E390 E29
E220

E295

E40

E6

E245

E228

E275

E344

E15

E51

E9

E261

Nodes: Supersingular elliptic curves EA : y2 = x3 + Ax2 + x over F419.
Each EA on the left has E−A on the right.
Negative direction means: flip to twist, go positive direction, flip back.

Tanja Lange Isogeny-Based Cryptography 19

Math slide #5: Vélu’s formulas

Let P have prime order ` on EA.
For 1 ≤ k < ` let xk be the x-coordinate of [k]P.
Let

τ =
`−1∏
i=1

xi , σ =
`−1∑
i=1

(
xi −

1
xi

)
Then the ` isogeny from EA maps to EB with B = τ(A− 3σ).

Main operation is to compute the xk , just some elliptic-curve additions.

Note that [`− k]P = −[k]P and both have the same x-coordinate.

Implementations often use projective formulas to avoid (or delay)
inverstions.

Tanja Lange Isogeny-Based Cryptography 20

Math slide #6: Class groups
Reminder: X = {y2 = x3+Ax2+x over Fp with p+1 points}.
All curves in X have Fp-endomorphism ring O = Z[

√
−p].

Let π the Frobenius endomorphism. Ideal in O above `i .

li = (`i , π − 1).

Moving + in X with `i isogeny ⇐⇒ action of li on X .

More precisely:
Subgroup corresponding to li is E [li] = E (Fp)[`i].
(Note that ker(π − 1) is just the Fp-rational points!)

Subgroup corresponding to li is

E [li] = {P ∈ E [`i] | π(P) = −P}.

For Montgomery curves,

E [li] = {(x , y) ∈ E [`i] | x ∈ Fp; y /∈ Fp} ∪ {∞}.

Tanja Lange Isogeny-Based Cryptography 21

Math slide #6: Class groups
Reminder: X = {y2 = x3+Ax2+x over Fp with p+1 points}.
All curves in X have Fp-endomorphism ring O = Z[

√
−p].

Let π the Frobenius endomorphism. Ideal in O above `i .

li = (`i , π − 1).

Moving + in X with `i isogeny ⇐⇒ action of li on X .

More precisely:
Subgroup corresponding to li is E [li] = E (Fp)[`i].
(Note that ker(π − 1) is just the Fp-rational points!)

Subgroup corresponding to li is

E [li] = {P ∈ E [`i] | π(P) = −P}.

For Montgomery curves,

E [li] = {(x , y) ∈ E [`i] | x ∈ Fp; y /∈ Fp} ∪ {∞}.

Tanja Lange Isogeny-Based Cryptography 21

Math slide #6: Class groups
Reminder: X = {y2 = x3+Ax2+x over Fp with p+1 points}.
All curves in X have Fp-endomorphism ring O = Z[

√
−p].

Let π the Frobenius endomorphism. Ideal in O above `i .

li = (`i , π − 1).

Moving + in X with `i isogeny ⇐⇒ action of li on X .

More precisely:
Subgroup corresponding to li is E [li] = E (Fp)[`i].
(Note that ker(π − 1) is just the Fp-rational points!)

Subgroup corresponding to li is

E [li] = {P ∈ E [`i] | π(P) = −P}.

For Montgomery curves,

E [li] = {(x , y) ∈ E [`i] | x ∈ Fp; y /∈ Fp} ∪ {∞}.

Tanja Lange Isogeny-Based Cryptography 21

Math slide #7: Commutative group action

cl(O) acts on X . For most ideal classes the kernel is big and formulas are
expensive to compute.

I = l10
1 l−7

2 l27
3

is a “big” ideal, but we can compute the action iteratively.

cl(O) is commutative2 so we get a commutative group action..

The choice for CSIDH:
Let K = {[le11 · · · le1n] | (e1, ..., en) is ‘short’} ⊆ cl(O).
The action of K on X is very efficient!
Pick K as the keyspace

2Important to use the Fp-endomorphism ring.

Cryptographic group actions

Like in the CSIDH example, we generally get a DH-like key exchange
from a commutative group action G × S → S :

Alice public Bob

a
random←−−− G b

random←−−− G

a ∗ s b ∗ s

key := a ∗ (b ∗ s) key := b ∗ (a ∗ s)

Tanja Lange Isogeny-Based Cryptography 23

Why no Shor?

Shor computes α from h = gα by finding the kernel of the map

f : Z2 → G , (x , y) 7→ g x ·
↑
hy

For general group actions, we cannot compose x ∗ s and y ∗ (b ∗ s).

For CSIDH this would require composing two elliptic curves in some form
compatible with the action of G .

Tanja Lange Isogeny-Based Cryptography 24

CSIDH security

Core problem:
Given E ,E ′ ∈ X , find a smooth-degree isogeny E → E ′.

Size of key space:
I About

√
p of all A ∈ Fp are valid keys.

(More precisely #cl(Z[
√
−p]) keys.)

Without quantum computer:
I Meet-in-the-middle variants: Time O(4

√
p).

(2016 Delfs–Galbraith)

With quantum computer:
I Abellian hidden-shift algorithms apply

(2014 Childs–Jao–Soukharev)
I Kuperberg’s algoirhtm has subexponential complexity.

CSIDH security:
I Public-key validation:

Quickly check that EA : y2 = x3 + Ax2 + x has p + 1 points.

Tanja Lange Isogeny-Based Cryptography 25

CSIDH security

Core problem:
Given E ,E ′ ∈ X , find a smooth-degree isogeny E → E ′.

Size of key space:
I About

√
p of all A ∈ Fp are valid keys.

(More precisely #cl(Z[
√
−p]) keys.)

Without quantum computer:
I Meet-in-the-middle variants: Time O(4

√
p).

(2016 Delfs–Galbraith)

With quantum computer:
I Abellian hidden-shift algorithms apply

(2014 Childs–Jao–Soukharev)
I Kuperberg’s algoirhtm has subexponential complexity.

CSIDH security:
I Public-key validation:

Quickly check that EA : y2 = x3 + Ax2 + x has p + 1 points.
Tanja Lange Isogeny-Based Cryptography 25

CSIDH-512 https://csidh.isogeny.org/
Definition:

I p =
∏74

i=1 `i − 1 with `1, . . . , `73 first 73 odd primes. `74 = 587.
I Exponents −5 ≤ ei ≤ 5 for all 1 ≤ i ≤ 74.

Sizes:
I Private keys: 32 bytes. (37 in current software for simplicity.)
I Public keys: 64 bytes (just one Fp element).

Performance on typical Intel Skylake laptop core:
I Clock cycles: about 12 · 107 per operation.
I Somewhat more for constant-time implementations.

Security:
I Pre-quantum: at least 128 bits.

I Post-quantum: complicated.
Recent work analyzing cost: see https://quantum.isogeny.org.
Several papers analyzing Kuperberg. (2018 Biasse–Iezzi-Jacobson,
2018-2020 Bonnetain–Schrottenloher, 2020 Peikert)
https://csidh.isogeny.org/analysis.html

Tanja Lange Isogeny-Based Cryptography 26

https://csidh.isogeny.org/
https://quantum.isogeny.org
https://csidh.isogeny.org/analysis.html

CSIDH-512 https://csidh.isogeny.org/
Definition:

I p =
∏74

i=1 `i − 1 with `1, . . . , `73 first 73 odd primes. `74 = 587.
I Exponents −5 ≤ ei ≤ 5 for all 1 ≤ i ≤ 74.

Sizes:
I Private keys: 32 bytes. (37 in current software for simplicity.)
I Public keys: 64 bytes (just one Fp element).

Performance on typical Intel Skylake laptop core:
I Clock cycles: about 12 · 107 per operation.
I Somewhat more for constant-time implementations.

Security:
I Pre-quantum: at least 128 bits.
I Post-quantum: complicated.

Recent work analyzing cost: see https://quantum.isogeny.org.
Several papers analyzing Kuperberg. (2018 Biasse–Iezzi-Jacobson,
2018-2020 Bonnetain–Schrottenloher, 2020 Peikert)
https://csidh.isogeny.org/analysis.html

Tanja Lange Isogeny-Based Cryptography 26

https://csidh.isogeny.org/
https://quantum.isogeny.org
https://csidh.isogeny.org/analysis.html

CSIDH vs. Kuperberg
Kuperberg’s algorithm consists of two components:

1. Evaluate the group action many times. (“oracle calls”)
2. Combine the results in a certain way. (“sieving”)

I The algorithm admits many different tradeoffs.
I Oracle calls are expensive.
I The sieving phase has classical and quantum operations.

How to compare costs?
(Is one qubit operation ≈ one bit operation? a hundred? millions?)

=⇒ It is still rather unclear how to choose CSIDH parameters.

...but all known attacks cost exp
(
(log p)1/2+o(1)

)
!

Recent improvements to sieving target the o(1).

Kuperberg applies to all commutative group actions.

Tanja Lange Isogeny-Based Cryptography 27

CSIDH vs. Kuperberg
Kuperberg’s algorithm consists of two components:

1. Evaluate the group action many times. (“oracle calls”)
2. Combine the results in a certain way. (“sieving”)

I The algorithm admits many different tradeoffs.
I Oracle calls are expensive.
I The sieving phase has classical and quantum operations.

How to compare costs?
(Is one qubit operation ≈ one bit operation? a hundred? millions?)

=⇒ It is still rather unclear how to choose CSIDH parameters.

...but all known attacks cost exp
(
(log p)1/2+o(1)

)
!

Recent improvements to sieving target the o(1).

Kuperberg applies to all commutative group actions.

Tanja Lange Isogeny-Based Cryptography 27

CSIDH vs. Kuperberg
Kuperberg’s algorithm consists of two components:

1. Evaluate the group action many times. (“oracle calls”)
2. Combine the results in a certain way. (“sieving”)

I The algorithm admits many different tradeoffs.
I Oracle calls are expensive.
I The sieving phase has classical and quantum operations.

How to compare costs?
(Is one qubit operation ≈ one bit operation? a hundred? millions?)

=⇒ It is still rather unclear how to choose CSIDH parameters.

...but all known attacks cost exp
(
(log p)1/2+o(1)

)
!

Recent improvements to sieving target the o(1).

Kuperberg applies to all commutative group actions.

Tanja Lange Isogeny-Based Cryptography 27

CSIDH vs. Kuperberg
Kuperberg’s algorithm consists of two components:

1. Evaluate the group action many times. (“oracle calls”)
2. Combine the results in a certain way. (“sieving”)

I The algorithm admits many different tradeoffs.
I Oracle calls are expensive.
I The sieving phase has classical and quantum operations.

How to compare costs?
(Is one qubit operation ≈ one bit operation? a hundred? millions?)

=⇒ It is still rather unclear how to choose CSIDH parameters.

...but all known attacks cost exp
(
(log p)1/2+o(1)

)
!

Recent improvements to sieving target the o(1).

Kuperberg applies to all commutative group actions.

Tanja Lange Isogeny-Based Cryptography 27

SIDH – avoid commutativity

The supersingular isogeny graph over Fp2 looks differently.

Nodes are isomorphism classes of elliptic curves taken any extension field.
(All isooprhism classes of supersingular elliptic curves defined over Fp2).

Tanja Lange Isogeny-Based Cryptography 28

SIDH: High-level view (2011 Jao–De Feo)
Promblem: quadratic twists are identified, `+ 1 isogenies of degree `
from any curve, no more sense of direction.

E E/A

E/B E/〈A,B〉

ϕA

ϕB ϕB′

ϕA′

I Alice & Bob pick secret subgroups A and B of E .
I Alice computes ϕA : E → E/A; Bob computes ϕB : E → E/B.

(These isogenies correspond to walking on the isogeny graph.)

I Alice and Bob transmit the values E/A and E/B.
I Alice somehow obtains A′ := ϕB(A). (Similar for Bob.)

I They both compute the shared secret
(E/B)/A′ ∼= E/〈A,B〉 ∼= (E/A)/B ′.

I Key is an isomorphism class; make this useable taking j-invariant.

Tanja Lange Isogeny-Based Cryptography 29

SIDH: High-level view (2011 Jao–De Feo)
Promblem: quadratic twists are identified, `+ 1 isogenies of degree `
from any curve, no more sense of direction.

E E/A

E/B E/〈A,B〉

ϕA

ϕB ϕB′

ϕA′

I Alice & Bob pick secret subgroups A and B of E .
I Alice computes ϕA : E → E/A; Bob computes ϕB : E → E/B.

(These isogenies correspond to walking on the isogeny graph.)

I Alice and Bob transmit the values E/A and E/B.
I Alice somehow obtains A′ := ϕB(A). (Similar for Bob.)

I They both compute the shared secret
(E/B)/A′ ∼= E/〈A,B〉 ∼= (E/A)/B ′.

I Key is an isomorphism class; make this useable taking j-invariant.

Tanja Lange Isogeny-Based Cryptography 29

SIDH: High-level view (2011 Jao–De Feo)
Promblem: quadratic twists are identified, `+ 1 isogenies of degree `
from any curve, no more sense of direction.

E E/A

E/B E/〈A,B〉

ϕA

ϕB ϕB′

ϕA′

I Alice & Bob pick secret subgroups A and B of E .

I Alice computes ϕA : E → E/A; Bob computes ϕB : E → E/B.
(These isogenies correspond to walking on the isogeny graph.)

I Alice and Bob transmit the values E/A and E/B.
I Alice somehow obtains A′ := ϕB(A). (Similar for Bob.)

I They both compute the shared secret
(E/B)/A′ ∼= E/〈A,B〉 ∼= (E/A)/B ′.

I Key is an isomorphism class; make this useable taking j-invariant.

Tanja Lange Isogeny-Based Cryptography 29

SIDH: High-level view (2011 Jao–De Feo)
Promblem: quadratic twists are identified, `+ 1 isogenies of degree `
from any curve, no more sense of direction.

E E/A

E/B E/〈A,B〉

ϕA

ϕB ϕB′

ϕA′

I Alice & Bob pick secret subgroups A and B of E .
I Alice computes ϕA : E → E/A; Bob computes ϕB : E → E/B.

(These isogenies correspond to walking on the isogeny graph.)

I Alice and Bob transmit the values E/A and E/B.
I Alice somehow obtains A′ := ϕB(A). (Similar for Bob.)

I They both compute the shared secret
(E/B)/A′ ∼= E/〈A,B〉 ∼= (E/A)/B ′.

I Key is an isomorphism class; make this useable taking j-invariant.

Tanja Lange Isogeny-Based Cryptography 29

SIDH: High-level view (2011 Jao–De Feo)
Promblem: quadratic twists are identified, `+ 1 isogenies of degree `
from any curve, no more sense of direction.

E E/A

E/B E/〈A,B〉

ϕA

ϕB ϕB′

ϕA′

I Alice & Bob pick secret subgroups A and B of E .
I Alice computes ϕA : E → E/A; Bob computes ϕB : E → E/B.

(These isogenies correspond to walking on the isogeny graph.)

I Alice and Bob transmit the values E/A and E/B.

I Alice somehow obtains A′ := ϕB(A). (Similar for Bob.)

I They both compute the shared secret
(E/B)/A′ ∼= E/〈A,B〉 ∼= (E/A)/B ′.

I Key is an isomorphism class; make this useable taking j-invariant.

Tanja Lange Isogeny-Based Cryptography 29

SIDH: High-level view (2011 Jao–De Feo)
Promblem: quadratic twists are identified, `+ 1 isogenies of degree `
from any curve, no more sense of direction.

E E/A

E/B E/〈A,B〉

ϕA

ϕB ϕB′

ϕA′

I Alice & Bob pick secret subgroups A and B of E .
I Alice computes ϕA : E → E/A; Bob computes ϕB : E → E/B.

(These isogenies correspond to walking on the isogeny graph.)

I Alice and Bob transmit the values E/A and E/B.
I Alice somehow obtains A′ := ϕB(A). (Similar for Bob.)

I They both compute the shared secret
(E/B)/A′ ∼= E/〈A,B〉 ∼= (E/A)/B ′.

I Key is an isomorphism class; make this useable taking j-invariant.

Tanja Lange Isogeny-Based Cryptography 29

SIDH: High-level view (2011 Jao–De Feo)
Promblem: quadratic twists are identified, `+ 1 isogenies of degree `
from any curve, no more sense of direction.

E E/A

E/B E/〈A,B〉

ϕA

ϕB ϕB′

ϕA′

I Alice & Bob pick secret subgroups A and B of E .
I Alice computes ϕA : E → E/A; Bob computes ϕB : E → E/B.

(These isogenies correspond to walking on the isogeny graph.)

I Alice and Bob transmit the values E/A and E/B.
I Alice somehow obtains A′ := ϕB(A). (Similar for Bob.)

I They both compute the shared secret
(E/B)/A′ ∼= E/〈A,B〉 ∼= (E/A)/B ′.

I Key is an isomorphism class; make this useable taking j-invariant.

Tanja Lange Isogeny-Based Cryptography 29

SIDH’s auxiliary points
Previous slide: “Alice somehow obtains A′ := ϕB(A).”

Alice knows only A, Bob knows only ϕB .

Solution: ϕB is a group homomorphism!
I Alice picks A as 〈P + [a]Q〉 for fixed public P,Q ∈ E .
I Bob includes ϕB(P) and ϕB(Q) in his public key.

=⇒ Now Alice can compute A′ as 〈ϕB(P) + [a]ϕB(Q)〉!

P

Q

A

ϕB(P)

ϕB(Q)

A′ϕB

Using images of P and Q also lets Alice keep direction in iterative
computation of ϕA.

Tanja Lange Isogeny-Based Cryptography 30

SIDH’s auxiliary points
Previous slide: “Alice somehow obtains A′ := ϕB(A).”

Alice knows only A, Bob knows only ϕB .

Solution: ϕB is a group homomorphism!

I Alice picks A as 〈P + [a]Q〉 for fixed public P,Q ∈ E .
I Bob includes ϕB(P) and ϕB(Q) in his public key.

=⇒ Now Alice can compute A′ as 〈ϕB(P) + [a]ϕB(Q)〉!

P

Q

A

ϕB(P)

ϕB(Q)

A′ϕB

Using images of P and Q also lets Alice keep direction in iterative
computation of ϕA.

Tanja Lange Isogeny-Based Cryptography 30

SIDH’s auxiliary points
Previous slide: “Alice somehow obtains A′ := ϕB(A).”

Alice knows only A, Bob knows only ϕB .

Solution: ϕB is a group homomorphism!
I Alice picks A as 〈P + [a]Q〉 for fixed public P,Q ∈ E .
I Bob includes ϕB(P) and ϕB(Q) in his public key.

=⇒ Now Alice can compute A′ as 〈ϕB(P) + [a]ϕB(Q)〉!

P

Q

A

ϕB(P)

ϕB(Q)

A′ϕB

Using images of P and Q also lets Alice keep direction in iterative
computation of ϕA.

Tanja Lange Isogeny-Based Cryptography 30

SIDH in one slide

Public parameters:
I large prime p = 2n3m − 1, supersingular E/Fp2 with (p + 1)2 points.
I bases (P,Q) and (R,S) of E [2n] and E [3m].

Want these points defined over Fp2 for efficiency.
Parameter chioce ensures this. Recall E [k] ∼= Z/k × Z/k .

Alice public Bob

a
random←−−− {0...2n−1} b

random←−−− {0...3m−1}

A := 〈P + [a]Q〉
compute ϕA : E → E/A

B := 〈R + [b]S〉
compute ϕB : E → E/B

E/A, ϕA(R), ϕA(S) E/B, ϕB(P), ϕB(Q)

A′ := 〈ϕB(P) + [a]ϕB(Q)〉
s := j

(
(E/B)/A′

) B ′ := 〈ϕA(R) + [b]ϕA(S)〉
s := j

(
(E/A)/B ′

)
Tanja Lange Isogeny-Based Cryptography 31

Decomposing smooth isogenies

I In SIDH, #A = 2n and #B = 3m are “crypto-sized”
Vélu’s formulas take Θ(#G) to compute ϕG : E → E/G .

!! Evaluate ϕG as a chain of small-degree isogenies:
For G ∼= Z/`k , set kerψi := [`k−i](ψi−1 ◦ · · · ◦ ψ1)(G).

E E1 . . . Ek−1 E/G
ψ1

ϕG

ψ2 ψk−1 ψk

 Complexity: O(k2 · `). Exponentially smaller than `k !
“Optimal strategy” improves this to O(k log k · `).

I BTW: The choice of p makes sure everything stays over Fp2 .

Tanja Lange Isogeny-Based Cryptography 32

Decomposing smooth isogenies

I In SIDH, #A = 2n and #B = 3m are “crypto-sized”
Vélu’s formulas take Θ(#G) to compute ϕG : E → E/G .

!! Evaluate ϕG as a chain of small-degree isogenies:
For G ∼= Z/`k , set kerψi := [`k−i](ψi−1 ◦ · · · ◦ ψ1)(G).

E E1 . . . Ek−1 E/G
ψ1

ϕG

ψ2 ψk−1 ψk

 Complexity: O(k2 · `). Exponentially smaller than `k !
“Optimal strategy” improves this to O(k log k · `).

I BTW: The choice of p makes sure everything stays over Fp2 .

Tanja Lange Isogeny-Based Cryptography 32

Decomposing smooth isogenies

I In SIDH, #A = 2n and #B = 3m are “crypto-sized”
Vélu’s formulas take Θ(#G) to compute ϕG : E → E/G .

!! Evaluate ϕG as a chain of small-degree isogenies:
For G ∼= Z/`k , set kerψi := [`k−i](ψi−1 ◦ · · · ◦ ψ1)(G).

E E1 . . . Ek−1 E/G
ψ1

ϕG

ψ2 ψk−1 ψk

 Complexity: O(k2 · `). Exponentially smaller than `k !
“Optimal strategy” improves this to O(k log k · `).

I BTW: The choice of p makes sure everything stays over Fp2 .

Tanja Lange Isogeny-Based Cryptography 32

Decomposing smooth isogenies

I In SIDH, #A = 2n and #B = 3m are “crypto-sized”
Vélu’s formulas take Θ(#G) to compute ϕG : E → E/G .

!! Evaluate ϕG as a chain of small-degree isogenies:
For G ∼= Z/`k , set kerψi := [`k−i](ψi−1 ◦ · · · ◦ ψ1)(G).

E E1 . . . Ek−1 E/G
ψ1

ϕG

ψ2 ψk−1 ψk

 Complexity: O(k2 · `). Exponentially smaller than `k !
“Optimal strategy” improves this to O(k log k · `).

I BTW: The choice of p makes sure everything stays over Fp2 .

Tanja Lange Isogeny-Based Cryptography 32

Security of SIDH

The SIDH graph has size bp/12c+ ε.
Each secret isogeny ϕA, ϕB is a walk of about log p/2 steps.
Alice & Bob can choose from about

√
p secret keys each,

so their keys are in small corners of the key space.

Classical attacks:
I Cannot reuse keys without extra caution. (next slide)

I Meet-in-the-middle: Õ(p1/4) time & space.
I Collision finding: Õ(p3/8/

√
memory/cores).

Quantum attacks:
I Claw finding: claimed Õ(p1/6). 2019 Jaques–Schank: Õ(p1/4):

“An adversary with enough quantum memory to run Tani’s algorithm
with the query-optimal parameters could break SIKE faster by using
the classical control hardware to run van Oorschot–Wiener.”

Tanja Lange Isogeny-Based Cryptography 33

Security of SIDH

The SIDH graph has size bp/12c+ ε.
Each secret isogeny ϕA, ϕB is a walk of about log p/2 steps.
Alice & Bob can choose from about

√
p secret keys each,

so their keys are in small corners of the key space.

Classical attacks:
I Cannot reuse keys without extra caution. (next slide)

I Meet-in-the-middle: Õ(p1/4) time & space.
I Collision finding: Õ(p3/8/

√
memory/cores).

Quantum attacks:
I Claw finding: claimed Õ(p1/6). 2019 Jaques–Schank: Õ(p1/4):

“An adversary with enough quantum memory to run Tani’s algorithm
with the query-optimal parameters could break SIKE faster by using
the classical control hardware to run van Oorschot–Wiener.”

Tanja Lange Isogeny-Based Cryptography 33

Security of SIDH

The SIDH graph has size bp/12c+ ε.
Each secret isogeny ϕA, ϕB is a walk of about log p/2 steps.
Alice & Bob can choose from about

√
p secret keys each,

so their keys are in small corners of the key space.

Classical attacks:
I Cannot reuse keys without extra caution. (next slide)

I Meet-in-the-middle: Õ(p1/4) time & space.
I Collision finding: Õ(p3/8/

√
memory/cores).

Quantum attacks:
I Claw finding: claimed Õ(p1/6). 2019 Jaques–Schank: Õ(p1/4):

“An adversary with enough quantum memory to run Tani’s algorithm
with the query-optimal parameters could break SIKE faster by using
the classical control hardware to run van Oorschot–Wiener.”

Tanja Lange Isogeny-Based Cryptography 33

Thou shalt not reuse SIDH keys

I Recall: Bob sends P ′ := ϕB(P) and Q ′ := ϕB(Q) to Alice.
She computes A′ = 〈P ′ + [a]Q ′〉 and, from that, obtains s.

I Bob cheats and sends Q ′′ := Q ′ + [2n−1]P ′ instead of Q ′.
Alice computes A′′ = 〈P ′ + [a]Q ′′〉.
If a = 2u : [a]Q ′′ = [a]Q ′ + [u][2n]P ′ = [a]Q ′.
If a = 2u+1:
[a]Q ′′ = [a]Q ′ + [u][2n]P ′ + [2n−1]P ′ = [a]Q ′ + [2n−1]P ′.

=⇒ Bob learns the parity of a.

Similarly, he can completely recover a in O(n) queries.

Validating that Bob is honest is ≈ as hard as breaking SIDH.

=⇒ only usable with ephemeral keys or as a KEM “SIKE.”.

Tanja Lange Isogeny-Based Cryptography 34

Thou shalt not reuse SIDH keys

I Recall: Bob sends P ′ := ϕB(P) and Q ′ := ϕB(Q) to Alice.
She computes A′ = 〈P ′ + [a]Q ′〉 and, from that, obtains s.

I Bob cheats and sends Q ′′ := Q ′ + [2n−1]P ′ instead of Q ′.
Alice computes A′′ = 〈P ′ + [a]Q ′′〉.

If a = 2u : [a]Q ′′ = [a]Q ′ + [u][2n]P ′ = [a]Q ′.
If a = 2u+1:
[a]Q ′′ = [a]Q ′ + [u][2n]P ′ + [2n−1]P ′ = [a]Q ′ + [2n−1]P ′.

=⇒ Bob learns the parity of a.

Similarly, he can completely recover a in O(n) queries.

Validating that Bob is honest is ≈ as hard as breaking SIDH.

=⇒ only usable with ephemeral keys or as a KEM “SIKE.”.

Tanja Lange Isogeny-Based Cryptography 34

Thou shalt not reuse SIDH keys

I Recall: Bob sends P ′ := ϕB(P) and Q ′ := ϕB(Q) to Alice.
She computes A′ = 〈P ′ + [a]Q ′〉 and, from that, obtains s.

I Bob cheats and sends Q ′′ := Q ′ + [2n−1]P ′ instead of Q ′.
Alice computes A′′ = 〈P ′ + [a]Q ′′〉.
If a = 2u : [a]Q ′′ = [a]Q ′ + [u][2n]P ′ = [a]Q ′.
If a = 2u+1:
[a]Q ′′ = [a]Q ′ + [u][2n]P ′ + [2n−1]P ′ = [a]Q ′ + [2n−1]P ′.

=⇒ Bob learns the parity of a.

Similarly, he can completely recover a in O(n) queries.

Validating that Bob is honest is ≈ as hard as breaking SIDH.

=⇒ only usable with ephemeral keys or as a KEM “SIKE.”.

Tanja Lange Isogeny-Based Cryptography 34

Thou shalt not reuse SIDH keys

I Recall: Bob sends P ′ := ϕB(P) and Q ′ := ϕB(Q) to Alice.
She computes A′ = 〈P ′ + [a]Q ′〉 and, from that, obtains s.

I Bob cheats and sends Q ′′ := Q ′ + [2n−1]P ′ instead of Q ′.
Alice computes A′′ = 〈P ′ + [a]Q ′′〉.
If a = 2u : [a]Q ′′ = [a]Q ′ + [u][2n]P ′ = [a]Q ′.
If a = 2u+1:
[a]Q ′′ = [a]Q ′ + [u][2n]P ′ + [2n−1]P ′ = [a]Q ′ + [2n−1]P ′.

=⇒ Bob learns the parity of a.

Similarly, he can completely recover a in O(n) queries.

Validating that Bob is honest is ≈ as hard as breaking SIDH.

=⇒ only usable with ephemeral keys or as a KEM “SIKE.”.

Tanja Lange Isogeny-Based Cryptography 34

Thou shalt not reuse SIDH keys

I Recall: Bob sends P ′ := ϕB(P) and Q ′ := ϕB(Q) to Alice.
She computes A′ = 〈P ′ + [a]Q ′〉 and, from that, obtains s.

I Bob cheats and sends Q ′′ := Q ′ + [2n−1]P ′ instead of Q ′.
Alice computes A′′ = 〈P ′ + [a]Q ′′〉.
If a = 2u : [a]Q ′′ = [a]Q ′ + [u][2n]P ′ = [a]Q ′.
If a = 2u+1:
[a]Q ′′ = [a]Q ′ + [u][2n]P ′ + [2n−1]P ′ = [a]Q ′ + [2n−1]P ′.

=⇒ Bob learns the parity of a.

Similarly, he can completely recover a in O(n) queries.

Validating that Bob is honest is ≈ as hard as breaking SIDH.

=⇒ only usable with ephemeral keys or as a KEM “SIKE.”.

Tanja Lange Isogeny-Based Cryptography 34

Thou shalt not reuse SIDH keys

I Recall: Bob sends P ′ := ϕB(P) and Q ′ := ϕB(Q) to Alice.
She computes A′ = 〈P ′ + [a]Q ′〉 and, from that, obtains s.

I Bob cheats and sends Q ′′ := Q ′ + [2n−1]P ′ instead of Q ′.
Alice computes A′′ = 〈P ′ + [a]Q ′′〉.
If a = 2u : [a]Q ′′ = [a]Q ′ + [u][2n]P ′ = [a]Q ′.
If a = 2u+1:
[a]Q ′′ = [a]Q ′ + [u][2n]P ′ + [2n−1]P ′ = [a]Q ′ + [2n−1]P ′.

=⇒ Bob learns the parity of a.

Similarly, he can completely recover a in O(n) queries.

Validating that Bob is honest is ≈ as hard as breaking SIDH.

=⇒ only usable with ephemeral keys or as a KEM “SIKE.”.

Tanja Lange Isogeny-Based Cryptography 34

Comparison & open problems
Key bits where all known attacks take 2λ operations
(naive serial attack metric, ignoring memory cost):

pre-quantum post-quantum
SIDH, SIKE (24 + o(1))λ (36 + o(1))λ
compressed (14 + o(1))λ (21 + o(1))λ
CRS, CSIDH (4 + o(1))λ superlinear
ECDH (2 + o(1))λ exponential

• What CSIDH key sizes are needed for
post-quantum security level 264? 296? 2128?

• How is attack affected by occasional errors
and non-uniform distributions over the group?

• How expensive is each CSIDH query?
See our 2019 Eurocrypt paper—full 56-page version at
https://quantum.isogeny.org/
with detailed analysis and many optimizations.

• What about memory, using parallel AT metric?
• Find more attacks on SIDH. See “How to not break SIDH”

https://eprint.iacr.org/2019/558.

Tanja Lange Isogeny-Based Cryptography 35

https://quantum.isogeny.org/
https://eprint.iacr.org/2019/558

Comparison & open problems
Key bits where all known attacks take 2λ operations
(naive serial attack metric, ignoring memory cost):

pre-quantum post-quantum
SIDH, SIKE (24 + o(1))λ (36 + o(1))λ
compressed (14 + o(1))λ (21 + o(1))λ
CRS, CSIDH (4 + o(1))λ superlinear
ECDH (2 + o(1))λ exponential

• What CSIDH key sizes are needed for
post-quantum security level 264? 296? 2128?

• How is attack affected by occasional errors
and non-uniform distributions over the group?

• How expensive is each CSIDH query?
See our 2019 Eurocrypt paper—full 56-page version at
https://quantum.isogeny.org/
with detailed analysis and many optimizations.

• What about memory, using parallel AT metric?
• Find more attacks on SIDH. See “How to not break SIDH”

https://eprint.iacr.org/2019/558.

Tanja Lange Isogeny-Based Cryptography 35

https://quantum.isogeny.org/
https://eprint.iacr.org/2019/558

Comparison & open problems
Key bits where all known attacks take 2λ operations
(naive serial attack metric, ignoring memory cost):

pre-quantum post-quantum
SIDH, SIKE (24 + o(1))λ (36 + o(1))λ
compressed (14 + o(1))λ (21 + o(1))λ
CRS, CSIDH (4 + o(1))λ superlinear
ECDH (2 + o(1))λ exponential

• What CSIDH key sizes are needed for
post-quantum security level 264? 296? 2128?

• How is attack affected by occasional errors
and non-uniform distributions over the group?

• How expensive is each CSIDH query?
See our 2019 Eurocrypt paper—full 56-page version at
https://quantum.isogeny.org/
with detailed analysis and many optimizations.

• What about memory, using parallel AT metric?
• Find more attacks on SIDH. See “How to not break SIDH”

https://eprint.iacr.org/2019/558.
Tanja Lange Isogeny-Based Cryptography 35

https://quantum.isogeny.org/
https://eprint.iacr.org/2019/558

