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Benefits of hash-based signatures

I Old idea: 1979 Lamport one-time signatures.

I 1979 Merkle extends to more signatures;
many further improvements in years since.

I Security thoroughly analyzed.

I Only one prerequisite: a good hash function, e.g. SHA3-512, . . .
Hash functions map long strings to fixed-length strings.

H : {0, 1}∗ → {0, 1}n.

Signature schemes use hash functions in handling m.

I Cryptographic hash functions are computationally
I preimage resistant: function is one way;
I second preimage resistant:

given x ,H(x) cannot find x ′ 6= x with H(x ′) = H(x);
I collision resistant: cannot find x ′ 6= x with H(x ′) = H(x).

Quantum computers affect the hardness only marginally
finding preimages in 2n/2 instead of 2n (Grover, not Shor).
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A signature scheme for empty messages: key generation

First part of signempty.py

import os; from hashlib import sha3_256;

def keypair():

secret = sha3_256(os.urandom(32))

public = sha3_256(secret)

return public,secret

>>> import signempty; import binascii;

>>> pk,sk = signempty.keypair()

>>> binascii.hexlify(pk)

b’a447bc8d7c661f85defcf1bbf8bad77bfc6191068a8b658c99c7ef4cbe37cf9f’

>>> binascii.hexlify(sk)

b’a4a1334a6926d04c4aa7cd98231f4b644be90303e4090c358f2946f1c257687a’
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A signature scheme for empty messages:
signing, verification

Rest of signempty.py

def sign(message,secret):

if message != ’’: raise Exception(’nonempty message’)

signedmessage = secret

return signedmessage

def open(signedmessage,public):

if sha3_256(signedmessage) != public:

raise Exception(’bad signature’)

message = ’’

return message

>>> sm = signempty.sign(’’,sk)

>>> signempty.open(sm,pk)

’’
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A signature scheme for 1-bit messages:
key generation, signing

First part of signbit.py

import signempty

def keypair():

p0,s0 = signempty.keypair()

p1,s1 = signempty.keypair()

return p0+p1,s0+s1

def sign(message,secret):

if message == 0:

return (’0’ , signempty.sign(’’,secret[0:32]))

if message == 1:

return (’1’ , signempty.sign(’’,secret[32:64]))

raise Exception(’message must be 0 or 1’)
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A signature scheme for 1-bit messages: verification

Rest of signbit.py

def open(signedmessage,public):

if signedmessage[0] == ’0’:

signempty.open(signedmessage[1],public[0:32])

return 0

if signedmessage[0] == ’1’:

signempty.open(signedmessage[1],public[32:64])

return 1

raise Exception(’message must be 0 or 1’)

>>> import signbit

>>> pk,sk = signbit.keypair()

>>> sm = signbit.sign(1,sk)

>>> signbit.open(sm,pk)

1
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A signature scheme for 4-bit messages: key generation

First part of sign4bits.py

import signbit

def keypair():

p0,s0 = signbit.keypair()

p1,s1 = signbit.keypair()

p2,s2 = signbit.keypair()

p3,s3 = signbit.keypair()

return p0+p1+p2+p3,s0+s1+s2+s3
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A signature scheme for 4-bit messages: sign & verify

Rest of sign4bits.py

def sign(m,secret):

if type(m) != int: raise Exception(’message must be int’)

if m < 0 or m > 15:

raise Exception(’message must be between 0 and 15’)

sm0 = signbit.sign(1 & (m >> 0),secret[0:64])

sm1 = signbit.sign(1 & (m >> 1),secret[64:128])

sm2 = signbit.sign(1 & (m >> 2),secret[128:192])

sm3 = signbit.sign(1 & (m >> 3),secret[192:256])

return sm0+sm1+sm2+sm3

def open(sm,public):

m0 = signbit.open(sm[0:2],public[0:64])

m1 = signbit.open(sm[2:4],public[64:128])

m2 = signbit.open(sm[4:6],public[128:192])

m3 = signbit.open(sm[6:],public[192:256])

return m0 + 2*m1 + 4*m2 + 8*m3
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Do not use one secret key to sign two messages!

>>> import sign4bits

>>> pk,sk = sign4bits.keypair()

>>> sm11 = sign4bits.sign(11,sk)

>>> sign4bits.open(sm11,pk)

11

>>> sm7 = sign4bits.sign(7,sk)

>>> sign4bits.open(sm7,pk)

7

>>> forgery = sm7[:6] + sm11[6:]

>>> sign4bits.open(forgery,pk)

15
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Lamport’s 1-time signature system
Sign arbitrary-length message by signing its 256-bit hash:

def keypair():

keys = [signbit.keypair() for n in range(256)]

public,secret = zip(*keys)

return public,secret

def sign(message,secret):

msg = message.to_bytes(200, byteorder="little")

h = sha3_256(msg)

hbits = [1 & (h[i//8])>>(i%8) for i in range(256)]

sigs = [signbit.sign(hbits[i],secret[i]) for i in range(256)]

return sigs, message

def open(sm,public):

message = sm[1]

msg = message.to_bytes(200, byteorder="little")

h = sha3_256(msg)

hbits = [1 & (h[i//8])>>(i%8) for i in range(256)]

for i in range(256):

if hbits[i] != signbit.open(sm[0][i],public[i]):

raise Exception(’bit %d of hash does not match’ % i)

return message
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Want to sign 4 bits with just 32 bytes

I Lamport’s signatures have 2× 256 hash outputs (each 32 bytes) as
public key and the signature has 256 times 32 bytes.

I Define
H i (x) = H(H i−1(x)) = H(H(. . . (H(x))))︸ ︷︷ ︸

i times

.

I Pick random sk, compute pk= H16(sk).

I For message m reveal s = Hm(sk) as signature.

I To verify check that pk= H16−m(s).



Weak Winternitz
def keypair():

secret = sha3_256(os.urandom(32))

public = sha3_256(secret)

for i in range(16): public = sha3_256(public)

return public,secret

def sign(m,secret):

if type(m) != int: raise Exception(’message must be int’)

if m < 0 or m > 15: raise Exception(’message must be between 0 and 15’)

sign = secret

for i in range(m): sign = sha3_256(sign)

return sign, m

def open(sm,public):

if type(sm[1]) != int: raise Exception(’message must be int’)

if sm[1] < 0 or sm[1] > 15: raise Exception(’message must be between 0 and 15’)

check = sm[0]

for i in range(16-sm[1]): check = sha3_256(check)

if sha3_256(check) != public: raise Exception(’bad signature’)

return sm[1]



Want to sign 4 bits with just 32 bytes
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public key and the signature has 256 times 32 bytes.

I Define
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i times
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Eve can take H(s) as signature on m + 1 (for m < 15).

I Fix by doubling the key-sizes again, running one chain forward, one
in reverse.
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Slow Winternitz 1-time signature system for 4 bits
Could stop at 15 iterations, but convenient to reuse code here:

import weak_winternitz

def keypair():

keys = [weak_winternitz.keypair() for n in range(2)]

public,secret = zip(*keys)

return public,secret

def sign(m,secret):

sign0 = weak_winternitz.sign(m,secret[0])

sign1 = weak_winternitz.sign(16-m,secret[1])

return sign0, sign1, m

def open(sm,public):

m0 = weak_winternitz.open(sm[0],public[0])

m1 = weak_winternitz.open(sm[1],public[1])

if m0 != sm[2] or m1 != (16-sm[2]): raise Exception(’Invalid signature’)

return sm[2]
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Winternitz 1-time signature system
I Define parameter w . Each chain will run for 2w steps.

I For signing a 256-bit hash this needs t1 = d256/we chains.
Write m in base 2w (integers of w bits):

m = (mt1−1, . . . ,m1,m0)

(zero–padding if necessary).

I Put

c =
t1−1∑
i=0

(2w −mi )

Note that c ≤ t12w .

I The checksum c gets larger if mi is smaller.

I Write c in base 2w . This takes t2 = 1 + db(log2 t1c+ 1)/we
w -bit integers

c = (ct2−1, . . . , c1, c0).

I Publish t1 + t2 public keys, sign with chains of lengths

mt1−1, . . . ,m1,m0, ct2−1, . . . , c1, c0.
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Winternitz 1-time signature system for w = 8
I Define parameter w = 8. Each chain will run for 28 = 256 steps.

I For signing a 256-bit hash this needs t1 = d256/8e = 32 chains.
Write m in base 28 (integers of 8 bits):

m = (m31, . . . ,m1,m0)

(zero–padding if necessary).

I Put

c =
31∑
i=0

(28 −mi )

Note that c ≤ 32 · 28 = 213.

I The checksum c gets larger if mi is smaller.

I Write c in base 28. This takes t2 = 1 + d(5 + 1)/8e = 2
8-bit integers

c = (c1, c0).

I Publish t1 + t2 = 34 public keys, sign with chains of lengths

m31, . . . ,m1,m0, c1, c0.
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Merkle’s (e.g.) 8-time signature system

Hash 8 one-time public keys into a single Merkle public key P15.

P15 = H(P13,P14)

P13 = H(P9,P10)

44

P14 = H(P11,P12)

jj

P9 = H(P1,P2)

::

P10 = H(P3,P4)

dd

P11 = H(P5,P6)

::

P12 = H(P7,P8)

dd

P1

CC

P2

[[

P3

CC

P4

[[

P5

CC

P6

[[

P7

CC

P8

[[

S1

OO

S2

OO

S3

OO

S4

OO

S5

OO

S6

OO

S7

OO

S8

OO

Si → Pi can be Lamport or Winternitz one-time signature system.
Each such pair (Si ,Pi ) may be used only once.
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Signature in 8-time Merkle hash tree

Signature of first message: (sign(m,S1),P1,P2,P10,P14).

P15 = H(P13,P14)

P13 = H(P9,P10)

44

P14 = H(P11,P12)

jj

P9 = H(P1,P2)

::

P10 = H(P3,P4)

dd

P11 = H(P5,P6)

::

P12 = H(P7,P8)

dd

P1

CC

P2

[[

P3

CC

P4

[[

P5

CC

P6

[[

P7

CC

P8

[[

S1

OO

S2

OO

S3

OO

S4

OO

S5

OO

S6

OO

S7

OO

S8

OO

Verify signature sign(m,S1) with public key P1 (provided in signature).
Link P1 against public key P15 by computing P ′9 = H(P1,P2),
P ′13 = H(P ′9,P10), and comparing H(P ′13,P14) with P15.
Reject if H(P ′13,P14) 6= P15 of if the signature verification failed.
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Improvements to Merkle’s scheme

I Each key is good only for fixed number of messages, typically 2n.

I The public key is very short: just one hash output.
But each signature contains n public keys along with the one-time
signature.

I Computing the public key requires computing and storing 2n

one-time signature keys.

I Can trade time for space by computing the secret keys Si
deterministically from a short secret seed.
Very little storage for the seed but more time in signature generation.

I Can build trees of trees where each leaf of the top tree signs the root
of a tree below it. Only the top tree is needed in key generation.
This increases the signature length (one one-time signature per tree)
and signing time. See PhD thesis of Andreas Hülsing for an
optimized schedule of what to store and when to precompute.
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Stateful hash-based signatures

I Only one prerequisite: a good hash function, e.g. SHA3-512.
Hash functions map long strings to fixed-length strings.
Signature schemes use hash functions in handling plaintext.

I Old idea: 1979 Lamport one-time signatures.

I 1979 Merkle extends to more signatures.

Pros:

I Post quantum

I Only need secure hash
function

I Security well understood

I Fast

I We can count: OS update,
code signing, . . . naturally keep
state.

Cons:

I Biggish signature
though some tradeoffs possible

I Stateful, i.e., ever reusing a
subkey breaks security.
Adam Langley “for most
environments it’s a huge
foot-cannon.”
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Standardization progress
I CFRG has published 2 RFCs: RFC 8391 and RFC 8554

I NIST has gone through two rounds of requests for public input,
most are positive and recommend standardizing XMSS and LMS.
Only concern is about statefulness in general.

I ISO SC27 JTC1 WG2 has started a study period on stateful
hash-based signatures.
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Stateless hash-based signatures

I Idea from 1987 Goldreich:
I Signer builds huge tree of certificate authorities.
I Signature includes certificate chain.
I Each CA is a hash of master secret and tree position.

This is deterministic, so don’t need to store results.
I Random bottom-level CA signs message.

Many bottom-level CAs, so one-time signature is safe.

I 0.6 MB: Goldreich’s signature with
good 1-time signature scheme.

I 1.2 MB: average Debian package size.

I 1.8 MB: average web page in Alexa Top 1000000.

I 0.041 MB: SPHINCS signature, new optimization of Goldreich.
Modular, guaranteed as strong as its components (hash, PRNG).
Well-known components chosen for 2128 post-quantum security.
sphincs.cr.yp.to
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NIST submission SPHINCS+

I Signature based on hash functions.

I Requires only a secure hash function, no further assumptions.

I Based on ideas of Lamport (1979) and Merkle (1979).

I Developed starting from SPHINCS with
I improve multi-signature,
I smaller keys,
I Option for shorter signatures (30kB instead of 41kB) if “only” 250

messages signed.

I Three versions (using different hash functions)
I SPHINCS+-SHA3 (with SHAKE256),
I SPHINCS+-SHA2 (with SHA-256),
I SPHINCS+-Haraka (with Haraka, a hash function for short inputs).

More info at https://sphincs.org/.
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Initial recommendations

I Symmetric encryption Thoroughly analyzed, 256-bit keys:

I AES-256
I Salsa20 with a 256-bit key

Evaluating: Serpent-256, . . .

I Symmetric authentication Information-theoretic MACs:

I GCM using a 96-bit nonce and a 128-bit authenticator
I Poly1305

I Public-key encryption McEliece with binary Goppa codes:

I length n = 6960, dimension k = 5413, t = 119 errors

Evaluating: QC-MDPC, Stehlé-Steinfeld NTRU, . . .

I Public-key signatures Hash-based (minimal assumptions):

I XMSS with any of the parameters specified in CFRG draft
I SPHINCS-256

Evaluating: HFEv-, . . .

Tanja Lange Hash-based signatures 25


