
Hash-based signatures

Tanja Lange
(with some slides by Daniel J. Bernstein)

Eindhoven University of Technology

20 July 2020



Benefits of hash-based signatures

I Old idea: 1979 Lamport one-time signatures.

I 1979 Merkle extends to more signatures;
many further improvements in years since.

I Security thoroughly analyzed.

I Only one prerequisite: a good hash function, e.g. SHA3-512, . . .
Hash functions map long strings to fixed-length strings.

H : {0, 1}∗ → {0, 1}n.

Signature schemes use hash functions in handling m.

I Cryptographic hash functions are computationally
I preimage resistant: function is one way;
I second preimage resistant:

given x ,H(x) cannot find x ′ 6= x with H(x ′) = H(x);
I collision resistant: cannot find x ′ 6= x with H(x ′) = H(x).

Quantum computers affect the hardness only marginally
finding preimages in 2n/2 instead of 2n (Grover, not Shor).

Tanja Lange Hash-based signatures 2



A signature scheme for empty messages: key generation

First part of signempty.py

import os; from hashlib import sha3_256;

def keypair():

secret = sha3_256(os.urandom(32))

public = sha3_256(secret)

return public,secret

>>> import signempty; import binascii;

>>> pk,sk = signempty.keypair()

>>> binascii.hexlify(pk)

b’a447bc8d7c661f85defcf1bbf8bad77bfc6191068a8b658c99c7ef4cbe37cf9f’

>>> binascii.hexlify(sk)

b’a4a1334a6926d04c4aa7cd98231f4b644be90303e4090c358f2946f1c257687a’

Tanja Lange Hash-based signatures 3



A signature scheme for empty messages: key generation

First part of signempty.py

import os; from hashlib import sha3_256;

def keypair():

secret = sha3_256(os.urandom(32))

public = sha3_256(secret)

return public,secret

>>> import signempty; import binascii;

>>> pk,sk = signempty.keypair()

>>> binascii.hexlify(pk)

b’a447bc8d7c661f85defcf1bbf8bad77bfc6191068a8b658c99c7ef4cbe37cf9f’

>>> binascii.hexlify(sk)

b’a4a1334a6926d04c4aa7cd98231f4b644be90303e4090c358f2946f1c257687a’

Tanja Lange Hash-based signatures 3



A signature scheme for empty messages: key generation

First part of signempty.py

import os; from hashlib import sha3_256;

def keypair():

secret = sha3_256(os.urandom(32))

public = sha3_256(secret)

return public,secret

>>> import signempty; import binascii;

>>> pk,sk = signempty.keypair()

>>> binascii.hexlify(pk)

b’a447bc8d7c661f85defcf1bbf8bad77bfc6191068a8b658c99c7ef4cbe37cf9f’

>>> binascii.hexlify(sk)

b’a4a1334a6926d04c4aa7cd98231f4b644be90303e4090c358f2946f1c257687a’

Tanja Lange Hash-based signatures 3



A signature scheme for empty messages:
signing, verification

Rest of signempty.py

def sign(message,secret):

if message != ’’: raise Exception(’nonempty message’)

signedmessage = secret

return signedmessage

def open(signedmessage,public):

if sha3_256(signedmessage) != public:

raise Exception(’bad signature’)

message = ’’

return message

>>> sm = signempty.sign(’’,sk)

>>> signempty.open(sm,pk)

’’

Tanja Lange Hash-based signatures 4



A signature scheme for empty messages:
signing, verification

Rest of signempty.py

def sign(message,secret):

if message != ’’: raise Exception(’nonempty message’)

signedmessage = secret

return signedmessage

def open(signedmessage,public):

if sha3_256(signedmessage) != public:

raise Exception(’bad signature’)

message = ’’

return message

>>> sm = signempty.sign(’’,sk)

>>> signempty.open(sm,pk)

’’

Tanja Lange Hash-based signatures 4



A signature scheme for 1-bit messages:
key generation, signing

First part of signbit.py

import signempty

def keypair():

p0,s0 = signempty.keypair()

p1,s1 = signempty.keypair()

return p0+p1,s0+s1

def sign(message,secret):

if message == 0:

return (’0’ , signempty.sign(’’,secret[0:32]))

if message == 1:

return (’1’ , signempty.sign(’’,secret[32:64]))

raise Exception(’message must be 0 or 1’)

Tanja Lange Hash-based signatures 5



A signature scheme for 1-bit messages:
key generation, signing

First part of signbit.py

import signempty

def keypair():

p0,s0 = signempty.keypair()

p1,s1 = signempty.keypair()

return p0+p1,s0+s1

def sign(message,secret):

if message == 0:

return (’0’ , signempty.sign(’’,secret[0:32]))

if message == 1:

return (’1’ , signempty.sign(’’,secret[32:64]))

raise Exception(’message must be 0 or 1’)

Tanja Lange Hash-based signatures 5



A signature scheme for 1-bit messages: verification

Rest of signbit.py

def open(signedmessage,public):

if signedmessage[0] == ’0’:

signempty.open(signedmessage[1],public[0:32])

return 0

if signedmessage[0] == ’1’:

signempty.open(signedmessage[1],public[32:64])

return 1

raise Exception(’message must be 0 or 1’)

>>> import signbit

>>> pk,sk = signbit.keypair()

>>> sm = signbit.sign(1,sk)

>>> signbit.open(sm,pk)

1

Tanja Lange Hash-based signatures 6



A signature scheme for 1-bit messages: verification

Rest of signbit.py

def open(signedmessage,public):

if signedmessage[0] == ’0’:

signempty.open(signedmessage[1],public[0:32])

return 0

if signedmessage[0] == ’1’:

signempty.open(signedmessage[1],public[32:64])

return 1

raise Exception(’message must be 0 or 1’)

>>> import signbit

>>> pk,sk = signbit.keypair()

>>> sm = signbit.sign(1,sk)

>>> signbit.open(sm,pk)

1

Tanja Lange Hash-based signatures 6



A signature scheme for 4-bit messages: key generation

First part of sign4bits.py

import signbit

def keypair():

p0,s0 = signbit.keypair()

p1,s1 = signbit.keypair()

p2,s2 = signbit.keypair()

p3,s3 = signbit.keypair()

return p0+p1+p2+p3,s0+s1+s2+s3

Tanja Lange Hash-based signatures 7



A signature scheme for 4-bit messages: sign & verify

Rest of sign4bits.py

def sign(m,secret):

if type(m) != int: raise Exception(’message must be int’)

if m < 0 or m > 15:

raise Exception(’message must be between 0 and 15’)

sm0 = signbit.sign(1 & (m >> 0),secret[0:64])

sm1 = signbit.sign(1 & (m >> 1),secret[64:128])

sm2 = signbit.sign(1 & (m >> 2),secret[128:192])

sm3 = signbit.sign(1 & (m >> 3),secret[192:256])

return sm0+sm1+sm2+sm3

def open(sm,public):

m0 = signbit.open(sm[0:2],public[0:64])

m1 = signbit.open(sm[2:4],public[64:128])

m2 = signbit.open(sm[4:6],public[128:192])

m3 = signbit.open(sm[6:],public[192:256])

return m0 + 2*m1 + 4*m2 + 8*m3

Tanja Lange Hash-based signatures 8



Do not use one secret key to sign two messages!

>>> import sign4bits

>>> pk,sk = sign4bits.keypair()

>>> sm11 = sign4bits.sign(11,sk)

>>> sign4bits.open(sm11,pk)

11

>>> sm7 = sign4bits.sign(7,sk)

>>> sign4bits.open(sm7,pk)

7

>>> forgery = sm7[:6] + sm11[6:]

>>> sign4bits.open(forgery,pk)

15

Tanja Lange Hash-based signatures 9



Lamport’s 1-time signature system
Sign arbitrary-length message by signing its 256-bit hash:

def keypair():

keys = [signbit.keypair() for n in range(256)]

public,secret = zip(*keys)

return public,secret

def sign(message,secret):

msg = message.to_bytes(200, byteorder="little")

h = sha3_256(msg)

hbits = [1 & (h[i//8])>>(i%8) for i in range(256)]

sigs = [signbit.sign(hbits[i],secret[i]) for i in range(256)]

return sigs, message

def open(sm,public):

message = sm[1]

msg = message.to_bytes(200, byteorder="little")

h = sha3_256(msg)

hbits = [1 & (h[i//8])>>(i%8) for i in range(256)]

for i in range(256):

if hbits[i] != signbit.open(sm[0][i],public[i]):

raise Exception(’bit %d of hash does not match’ % i)

return message

Tanja Lange Hash-based signatures 10



Want to sign 4 bits with just 32 bytes

I Lamport’s signatures have 2× 256 hash outputs (each 32 bytes) as
public key and the signature has 256 times 32 bytes.

I Define
H i (x) = H(H i−1(x)) = H(H(. . . (H(x))))︸ ︷︷ ︸

i times

.

I Pick random sk, compute pk= H16(sk).

I For message m reveal s = Hm(sk) as signature.

I To verify check that pk= H16−m(s).



Weak Winternitz
def keypair():

secret = sha3_256(os.urandom(32))

public = sha3_256(secret)

for i in range(16): public = sha3_256(public)

return public,secret

def sign(m,secret):

if type(m) != int: raise Exception(’message must be int’)

if m < 0 or m > 15: raise Exception(’message must be between 0 and 15’)

sign = secret

for i in range(m): sign = sha3_256(sign)

return sign, m

def open(sm,public):

if type(sm[1]) != int: raise Exception(’message must be int’)

if sm[1] < 0 or sm[1] > 15: raise Exception(’message must be between 0 and 15’)

check = sm[0]

for i in range(16-sm[1]): check = sha3_256(check)

if sha3_256(check) != public: raise Exception(’bad signature’)

return sm[1]



Want to sign 4 bits with just 32 bytes

I Lamport’s signatures have 2× 256 hash outputs (each 32 bytes) as
public key and the signature has 256 times 32 bytes.

I Define
H i (x) = H(H i−1(x)) = H(H(. . . (H(x))))︸ ︷︷ ︸

i times

.

I Pick random sk, compute pk= H16(sk).

I For message m reveal s = Hm(sk) as signature.

I To verify check that pk= H16−m(s).

I This works – but is insecure!

Eve can take H(s) as signature on m + 1 (for m < 15).

I Fix by doubling the key-sizes again, running one chain forward, one
in reverse.



Want to sign 4 bits with just 32 bytes

I Lamport’s signatures have 2× 256 hash outputs (each 32 bytes) as
public key and the signature has 256 times 32 bytes.

I Define
H i (x) = H(H i−1(x)) = H(H(. . . (H(x))))︸ ︷︷ ︸

i times

.

I Pick random sk, compute pk= H16(sk).

I For message m reveal s = Hm(sk) as signature.

I To verify check that pk= H16−m(s).

I This works – but is insecure!
Eve can take H(s) as signature on m + 1 (for m < 15).

I Fix by doubling the key-sizes again, running one chain forward, one
in reverse.



Want to sign 4 bits with just 32 bytes

I Lamport’s signatures have 2× 256 hash outputs (each 32 bytes) as
public key and the signature has 256 times 32 bytes.

I Define
H i (x) = H(H i−1(x)) = H(H(. . . (H(x))))︸ ︷︷ ︸

i times

.

I Pick random sk, compute pk= H16(sk).

I For message m reveal s = Hm(sk) as signature.

I To verify check that pk= H16−m(s).

I This works – but is insecure!
Eve can take H(s) as signature on m + 1 (for m < 15).

I Fix by doubling the key-sizes again, running one chain forward, one
in reverse.



Slow Winternitz 1-time signature system for 4 bits
Could stop at 15 iterations, but convenient to reuse code here:

import weak_winternitz

def keypair():

keys = [weak_winternitz.keypair() for n in range(2)]

public,secret = zip(*keys)

return public,secret

def sign(m,secret):

sign0 = weak_winternitz.sign(m,secret[0])

sign1 = weak_winternitz.sign(16-m,secret[1])

return sign0, sign1, m

def open(sm,public):

m0 = weak_winternitz.open(sm[0],public[0])

m1 = weak_winternitz.open(sm[1],public[1])

if m0 != sm[2] or m1 != (16-sm[2]): raise Exception(’Invalid signature’)

return sm[2]

Tanja Lange Hash-based signatures 14



Winternitz 1-time signature system
I Define parameter w . Each chain will run for 2w steps.

I For signing a 256-bit hash this needs t1 = d256/we chains.
Write m in base 2w (integers of w bits):

m = (mt1−1, . . . ,m1,m0)

(zero–padding if necessary).

I Put

c =
t1−1∑
i=0

(2w −mi )

Note that c ≤ t12w .

I The checksum c gets larger if mi is smaller.

I Write c in base 2w . This takes t2 = 1 + db(log2 t1c+ 1)/we
w -bit integers

c = (ct2−1, . . . , c1, c0).

I Publish t1 + t2 public keys, sign with chains of lengths

mt1−1, . . . ,m1,m0, ct2−1, . . . , c1, c0.

Tanja Lange Hash-based signatures 15



Winternitz 1-time signature system for w = 8
I Define parameter w = 8. Each chain will run for 28 = 256 steps.

I For signing a 256-bit hash this needs t1 = d256/8e = 32 chains.
Write m in base 28 (integers of 8 bits):

m = (m31, . . . ,m1,m0)

(zero–padding if necessary).

I Put

c =
31∑
i=0

(28 −mi )

Note that c ≤ 32 · 28 = 213.

I The checksum c gets larger if mi is smaller.

I Write c in base 28. This takes t2 = 1 + d(5 + 1)/8e = 2
8-bit integers

c = (c1, c0).

I Publish t1 + t2 = 34 public keys, sign with chains of lengths

m31, . . . ,m1,m0, c1, c0.

Tanja Lange Hash-based signatures 16



Merkle’s (e.g.) 8-time signature system

Hash 8 one-time public keys into a single Merkle public key P15.

P15 = H(P13,P14)

P13 = H(P9,P10)

44

P14 = H(P11,P12)

jj

P9 = H(P1,P2)

::

P10 = H(P3,P4)

dd

P11 = H(P5,P6)

::

P12 = H(P7,P8)

dd

P1

CC

P2

[[

P3

CC

P4

[[

P5

CC

P6

[[

P7

CC

P8

[[

S1

OO

S2

OO

S3

OO

S4

OO

S5

OO

S6

OO

S7

OO

S8

OO

Si → Pi can be Lamport or Winternitz one-time signature system.
Each such pair (Si ,Pi ) may be used only once.

Tanja Lange Hash-based signatures 17



Signature in 8-time Merkle hash tree

Signature of first message: (sign(m,S1),P1,P2,P10,P14).

P15 = H(P13,P14)

P13 = H(P9,P10)

44

P14 = H(P11,P12)

jj

P9 = H(P1,P2)

::

P10 = H(P3,P4)

dd

P11 = H(P5,P6)

::

P12 = H(P7,P8)

dd

P1

CC

P2

[[

P3

CC

P4

[[

P5

CC

P6

[[

P7

CC

P8

[[

S1

OO

S2

OO

S3

OO

S4

OO

S5

OO

S6

OO

S7

OO

S8

OO

Verify signature sign(m,S1) with public key P1 (provided in signature).
Link P1 against public key P15 by computing P ′9 = H(P1,P2),
P ′13 = H(P ′9,P10), and comparing H(P ′13,P14) with P15.
Reject if H(P ′13,P14) 6= P15 of if the signature verification failed.

Tanja Lange Hash-based signatures 18



Signature in 8-time Merkle hash tree

Signature of first message: (sign(m,S1),P1,P2,P10,P14).

P15 = H(P13,P14)

P13 = H(P9,P10)

44

P14 = H(P11,P12)

jj

P9 = H(P1,P2)

::

P10 = H(P3,P4)

dd

P11 = H(P5,P6)

::

P12 = H(P7,P8)

dd

P1

CC

P2

[[

P3

CC

P4

[[

P5

CC

P6

[[

P7

CC

P8

[[

S1

OO

S2

OO

S3

OO

S4

OO

S5

OO

S6

OO

S7

OO

S8

OO

Verify signature sign(m,S1) with public key P1 (provided in signature).
Link P1 against public key P15 by computing P ′9 = H(P1,P2),
P ′13 = H(P ′9,P10), and comparing H(P ′13,P14) with P15.
Reject if H(P ′13,P14) 6= P15 of if the signature verification failed.

Tanja Lange Hash-based signatures 18



Improvements to Merkle’s scheme

I Each key is good only for fixed number of messages, typically 2n.

I The public key is very short: just one hash output.
But each signature contains n public keys along with the one-time
signature.

I Computing the public key requires computing and storing 2n

one-time signature keys.

I Can trade time for space by computing the secret keys Si
deterministically from a short secret seed.
Very little storage for the seed but more time in signature generation.

I Can build trees of trees where each leaf of the top tree signs the root
of a tree below it. Only the top tree is needed in key generation.
This increases the signature length (one one-time signature per tree)
and signing time. See PhD thesis of Andreas Hülsing for an
optimized schedule of what to store and when to precompute.

Tanja Lange Hash-based signatures 19

https://huelsing.net/wordpress/


Improvements to Merkle’s scheme

I Each key is good only for fixed number of messages, typically 2n.

I The public key is very short: just one hash output.
But each signature contains n public keys along with the one-time
signature.

I Computing the public key requires computing and storing 2n

one-time signature keys.

I Can trade time for space by computing the secret keys Si
deterministically from a short secret seed.
Very little storage for the seed but more time in signature generation.

I Can build trees of trees where each leaf of the top tree signs the root
of a tree below it. Only the top tree is needed in key generation.
This increases the signature length (one one-time signature per tree)
and signing time. See PhD thesis of Andreas Hülsing for an
optimized schedule of what to store and when to precompute.

Tanja Lange Hash-based signatures 19

https://huelsing.net/wordpress/


Improvements to Merkle’s scheme

I Each key is good only for fixed number of messages, typically 2n.

I The public key is very short: just one hash output.
But each signature contains n public keys along with the one-time
signature.

I Computing the public key requires computing and storing 2n

one-time signature keys.

I Can trade time for space by computing the secret keys Si
deterministically from a short secret seed.
Very little storage for the seed but more time in signature generation.

I Can build trees of trees where each leaf of the top tree signs the root
of a tree below it. Only the top tree is needed in key generation.
This increases the signature length (one one-time signature per tree)
and signing time. See PhD thesis of Andreas Hülsing for an
optimized schedule of what to store and when to precompute.

Tanja Lange Hash-based signatures 19

https://huelsing.net/wordpress/


Stateful hash-based signatures

I Only one prerequisite: a good hash function, e.g. SHA3-512.
Hash functions map long strings to fixed-length strings.
Signature schemes use hash functions in handling plaintext.

I Old idea: 1979 Lamport one-time signatures.

I 1979 Merkle extends to more signatures.

Pros:

I Post quantum

I Only need secure hash
function

I Security well understood

I Fast

I We can count: OS update,
code signing, . . . naturally keep
state.

Cons:

I Biggish signature
though some tradeoffs possible

I Stateful, i.e., ever reusing a
subkey breaks security.
Adam Langley “for most
environments it’s a huge
foot-cannon.”

Tanja Lange Hash-based signatures 20

https://www.imperialviolet.org/2013/07/18/hashsig.html
https://www.imperialviolet.org/2013/07/18/hashsig.html
https://www.imperialviolet.org/2013/07/18/hashsig.html


Stateful hash-based signatures

I Only one prerequisite: a good hash function, e.g. SHA3-512.
Hash functions map long strings to fixed-length strings.
Signature schemes use hash functions in handling plaintext.

I Old idea: 1979 Lamport one-time signatures.

I 1979 Merkle extends to more signatures.

Pros:

I Post quantum

I Only need secure hash
function

I Security well understood

I Fast

I We can count: OS update,
code signing, . . . naturally keep
state.

Cons:

I Biggish signature
though some tradeoffs possible

I Stateful, i.e., ever reusing a
subkey breaks security.
Adam Langley “for most
environments it’s a huge
foot-cannon.”

Tanja Lange Hash-based signatures 20

https://www.imperialviolet.org/2013/07/18/hashsig.html
https://www.imperialviolet.org/2013/07/18/hashsig.html
https://www.imperialviolet.org/2013/07/18/hashsig.html


Standardization progress
I CFRG has published 2 RFCs: RFC 8391 and RFC 8554

I NIST has gone through two rounds of requests for public input,
most are positive and recommend standardizing XMSS and LMS.
Only concern is about statefulness in general.

I ISO SC27 JTC1 WG2 has started a study period on stateful
hash-based signatures.

Tanja Lange Hash-based signatures 21

https://tools.ietf.org/html/rfc8391
https://tools.ietf.org/html/rfc8554
https://tools.ietf.org/html/rfc8391
https://tools.ietf.org/html/rfc8554
https://csrc.nist.gov/projects/stateful-hash-based-signatures


Standardization progress

I CFRG has published 2 RFCs: RFC 8391 and RFC 8554

I NIST has gone through two rounds of requests for public input,
most are positive and recommend standardizing XMSS and LMS.
Only concern is about statefulness in general.

I ISO SC27 JTC1 WG2 has started a study period on stateful
hash-based signatures.

Tanja Lange Hash-based signatures 21

https://tools.ietf.org/html/rfc8391
https://tools.ietf.org/html/rfc8554
https://csrc.nist.gov/projects/stateful-hash-based-signatures


Standardization progress

I CFRG has published 2 RFCs: RFC 8391 and RFC 8554

I NIST has gone through two rounds of requests for public input,
most are positive and recommend standardizing XMSS and LMS.
Only concern is about statefulness in general.

I ISO SC27 JTC1 WG2 has started a study period on stateful
hash-based signatures.

Tanja Lange Hash-based signatures 21

https://tools.ietf.org/html/rfc8391
https://tools.ietf.org/html/rfc8554
https://csrc.nist.gov/projects/stateful-hash-based-signatures


Stateless hash-based signatures

I Idea from 1987 Goldreich:
I Signer builds huge tree of certificate authorities.
I Signature includes certificate chain.
I Each CA is a hash of master secret and tree position.

This is deterministic, so don’t need to store results.
I Random bottom-level CA signs message.

Many bottom-level CAs, so one-time signature is safe.

I 0.6 MB: Goldreich’s signature with
good 1-time signature scheme.

I 1.2 MB: average Debian package size.

I 1.8 MB: average web page in Alexa Top 1000000.

I 0.041 MB: SPHINCS signature, new optimization of Goldreich.
Modular, guaranteed as strong as its components (hash, PRNG).
Well-known components chosen for 2128 post-quantum security.
sphincs.cr.yp.to

Tanja Lange Hash-based signatures 22

https://sphincs.cr.yp.to


Stateless hash-based signatures

I Idea from 1987 Goldreich:
I Signer builds huge tree of certificate authorities.
I Signature includes certificate chain.
I Each CA is a hash of master secret and tree position.

This is deterministic, so don’t need to store results.
I Random bottom-level CA signs message.

Many bottom-level CAs, so one-time signature is safe.

I 0.6 MB: Goldreich’s signature with
good 1-time signature scheme.

I 1.2 MB: average Debian package size.

I 1.8 MB: average web page in Alexa Top 1000000.

I 0.041 MB: SPHINCS signature, new optimization of Goldreich.
Modular, guaranteed as strong as its components (hash, PRNG).
Well-known components chosen for 2128 post-quantum security.
sphincs.cr.yp.to

Tanja Lange Hash-based signatures 22

https://sphincs.cr.yp.to


Stateless hash-based signatures

I Idea from 1987 Goldreich:
I Signer builds huge tree of certificate authorities.
I Signature includes certificate chain.
I Each CA is a hash of master secret and tree position.

This is deterministic, so don’t need to store results.
I Random bottom-level CA signs message.

Many bottom-level CAs, so one-time signature is safe.

I 0.6 MB: Goldreich’s signature with
good 1-time signature scheme.

I 1.2 MB: average Debian package size.

I 1.8 MB: average web page in Alexa Top 1000000.

I 0.041 MB: SPHINCS signature, new optimization of Goldreich.
Modular, guaranteed as strong as its components (hash, PRNG).
Well-known components chosen for 2128 post-quantum security.
sphincs.cr.yp.to

Tanja Lange Hash-based signatures 22

https://sphincs.cr.yp.to


NIST submission SPHINCS+

I Signature based on hash functions.

I Requires only a secure hash function, no further assumptions.

I Based on ideas of Lamport (1979) and Merkle (1979).

I Developed starting from SPHINCS with
I improve multi-signature,
I smaller keys,
I Option for shorter signatures (30kB instead of 41kB) if “only” 250

messages signed.

I Three versions (using different hash functions)
I SPHINCS+-SHA3 (with SHAKE256),
I SPHINCS+-SHA2 (with SHA-256),
I SPHINCS+-Haraka (with Haraka, a hash function for short inputs).

More info at https://sphincs.org/.

Tanja Lange Hash-based signatures 23

https://sphincs.org/


Initial recommendations of long-term secure
post-quantum systems

Daniel Augot, Lejla Batina, Daniel J. Bernstein, Joppe Bos,
Johannes Buchmann, Wouter Castryck, Orr Dunkelman,

Tim Güneysu, Shay Gueron, Andreas Hülsing,
Tanja Lange, Mohamed Saied Emam Mohamed,

Christian Rechberger, Peter Schwabe, Nicolas Sendrier,
Frederik Vercauteren, Bo-Yin Yang

Tanja Lange Hash-based signatures 24



Initial recommendations

I Symmetric encryption Thoroughly analyzed, 256-bit keys:

I AES-256
I Salsa20 with a 256-bit key

Evaluating: Serpent-256, . . .

I Symmetric authentication Information-theoretic MACs:

I GCM using a 96-bit nonce and a 128-bit authenticator
I Poly1305

I Public-key encryption McEliece with binary Goppa codes:

I length n = 6960, dimension k = 5413, t = 119 errors

Evaluating: QC-MDPC, Stehlé-Steinfeld NTRU, . . .

I Public-key signatures Hash-based (minimal assumptions):

I XMSS with any of the parameters specified in CFRG draft
I SPHINCS-256

Evaluating: HFEv-, . . .

Tanja Lange Hash-based signatures 25


