Exploring the parameter space
in lattice attacks

Daniel J. Bernstein
Tanja Lange

Based on attack survey from
2019 Bernstein—Chuengsatiansup—
Lange—van Vredendaal.

Some hard lattice meta-problems:
e Analyze cost of known attacks.
e Optimize attack parameters.

e Compare different attacks.

e Evaluate crypto parameters.

e Evaluate crypto designs.



sntrup761 evaluations from
"NTRU Prime: round 2" Table 2:

lgnoring cost of memory:

363
230
153
153

185
169
139
139

enum, ignoring hybrid
enum, including hybrid
sieving, ignoring hybrid
sieving, including hybrid

Accounting for cost of memory:

363
277
203
203

185
169
203
130

enum, ignoring hybrid
enum, Including hybrid
sieving, ignoring hybrid
sieving, including hybrid

Security levels:
pre-quantum
. ‘post—quantum




Analysis of typical lattice attack
has complications at four layers,
and at interfaces between layers.
This talk emphasizes top layer.

Analysis of lattices
to attack cryptosystems

T

“Approximate-SVP”
analysis
R

“SVP”
analysis
R

Model of computation




Three typical attack problems

Define R = Z[x]/(x"%! — x — 1);
“small” = all coeffs in {—1,0, 1}
w = 2360; g = 4591.

Attacker wants to find
small weight-w secret a € K.

Problem 1: Public G € R/qg with
aG + e =0. Small secret e € R.

Problem 2: Public G € R/q and
aG + e = A. Small secret e € R.

Problem 3: Public G, Gy € R/q.
Public aG1 + e1, aGy + e>.
Small secrets e, & € R.



Examples of target cryptosystems
Secret key: small a; small e.

Public key reveals multiplier G
and approximation A = aG + e.

Public key for “NTRU"” (1996
Hoffstein—Pipher-Silverman):
G=—e/a, and A= 0.



Examples of target cryptosystems

Secret key: small a; small e.

Public key reveals multiplier G
and approximation A = aG + e.

Public key for “NTRU"” (1996
Hoffstein—Pipher-Silverman):
G=—e/a, and A= 0.

Public key for “Ring-LWE" (2010

Lyubashevsky—Peikert—Regev):
random G, and A = aG + e.




Examples of target cryptosystems
Secret key: small a; small e.

Public key reveals multiplier G
and approximation A = aG + e.

Public key for “NTRU"” (1996
Hoffstein—Pipher-Silverman):
G=—e/a, and A= 0.

Public key for “Ring-LWE" (2010

Lyubashevsky—Peikert—Regev):
random G, and A = aG + e.

Recognize similarity + credits:

"NTRU” = Quotient NTRU.
“Ring-LWE" = Product NTRU.
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Input small b, small d.

Ciphertext: B = 3bG + d.
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Encryption for Quotient NTRU:
Input small b, small d.

Ciphertext: B = 3bG + d.

Encryption for Product NTRU:
Input encoded message M.
Randomly generate

small b, small d, small c.
Ciphertext: B = bG + d

and C = bA+ M + c.

2019 Bernstein “Comparing
proofs of security for lattice-based
encryption” includes survey of

G, a, e, c, M details and variants
iIn NISTPQC submissions.



| attices

Rewrite each problem as finding

short nonzero so

ution to system

of homogeneous R /q equations.

Problem 1: Find
with aG + e =0,

(a, €) € R?
given G € R/q.



| attices

Rewrite each problem as finding

short nonzero so

ution to system

of homogeneous R /q equations.

Problem 1: Find
with aG + e =0,

Problem 2: Find

(a, €) € R?
given G € R/q.

(a,t, e) € R

with aG + e = At,
given G,A€ R/q.



| attices

Rewrite each problem as finding

short nonzero so

ution to system

of homogeneous R /q equations.

Problem 1: Find
with aG + e =0,

Problem 2: Find

(a, €) € R?
given G € R/q.

(a,t, e) € R

with aG + e = At,
given G,A€ R/q.

Problem 3: Find

(a, t1, 2, €1, ) € R> with

aGi+e1 = A1ty

aGr + e = Arty,

given G, A1, Gy, Ay € R/q.
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Recognize each solution space

as a full-rank lattice:

Problem 1: Lattice is image of
the map (3,7) — (&, gr — aG)
from R? to R?.

Problem 2: Lattice is
image of the map (a,t,7) —
(a, t, At + gr — aG).

Problem 3: Lattice is image of

the map (3, t;, tr, 11, ) —
(a, t1, t2, A1t1 + g1 — 3Gy,
Axty + qry — aGo).
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Module structure

Each of these lattices is an R-

module, and thus has, generically,
many Independent short vectors.

e.g. In Problem 2:
Lattice has short (a, t, e).

Lattice has short (xa, xt, xe).
| attice has short (><251,x2t,x2 ).
etc.

Many more lattice vectors
are fairly short combinations
of independent vectors:

e.g., ((x+1)a, (x+ 1)t,(x+ 1)e).
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1999 May, for Problem 1: Force
a stretch of coefficients of a to
be 0. This reduces lattice rank,
speeding up various attacks,
despite lower success chance.

(Always a speedup? Seems to be
a slowdown if g is very large:

see 2016 Kirchner—Fouque.)

Other problems: same speedup.
e.g. 'Bai—Galbraith embedding”
for Problem 2: Force t € Z; force
a few coefficients of a to be 0.

(Slowdown if g is very large?
Literature misses module option!)
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Standard analysis for Problem 1

Uniform random small weight-w
secret a has length «/w =~ 17.

Uniform random small secret

e has length usually close to
\/1522/3 ~ 23. (Impact of
variations? Partial answer: 2020

Dachman-Soled—Ducas—Gong—
Rossi. Is fixed weight safer?)

Lattice has rank 2 - 761 = 1522.
Attack parameter: k = 13.
Force k positions in a to be O:
restrict to sublattice of rank 15009.
Pr[a is in sublattice] ~ 0.2%.



Attacker is just as happy to find
another solution such as (xa, xe).
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Attacker is just as happy to find

another solution such as (xa, xe).

Standard analysis for, e.g.,
Z[x]/(x"®1 —1): Each (¥a, xXe)
has chance ~0.2% of being in
sublattice. These 761 chances
are independent. (No, they
aren't; also, total Pr depends on

attacker's choice of positions.
See 2001 May-Silverman.)

lgnore bigger solutions (aa, ae).
(How hard are these to find?)

Pretend this analysis applies to
Z[x]/(x® —x —1). (It doesn't.)



Write equation e = gr — aG
as 761 equations on coefficients.
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Write equation e = gr — aG

as 761 equations on coefficients.
Attack parameter: m = 600.

lgnore 761 — m = 161 equations:
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d = 1509 — 161 = 1348: det g°%°.
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Write equation e = gr — aG

as 761 equations on coefficients.
Attack parameter: m = 600.

lgnore 761 — m = 161 equations:

l.e., project e onto 600 positions.
(1999 May.) Sublattice rank
d = 1509 — 161 = 1348; det q°%0.

Attack parameter: A = 1.331876.
Rescaling (1997 Coppersmith—
Shamir): Assign weight X\ to
positions in a. Increases length
of a to A\y/w = 23; increases det
to A748g5%%0  (Is this X optimal?
Interaction with e size variation?)
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Huge space of attack lattices.

For each of these lattices, try to
figure out cost of (e.g.) BKZ-8
and chance it finds short vector.
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Cost-analysis challenges

Huge space of attack lattices.

For each of these lattices, try to
figure out cost of (e.g.) BKZ-8
and chance it finds short vector.

Accurate experiments are slow.
Need accurate fast estimates!
Efforts to simplify are error-prone;
e.g. "conservative lower bound”
(3/2)B/2 on (pre-q) cost is broken
for all sutficiently large sizes.

Hybrid attacks (2008 Howgrave-
Graham, ..., 2018 Wunderer):
often faster; different analysis.



