
Overview of Code-Based Crypto Assumptions

Tanja Lange
with some slides by Tung Chou and Christiane Peters

Eindhoven University of Technology

Quantum Cryptanalysis of Post-Quantum Cryptography



Hamming code

Parity check matrix (n = 7, k = 4):

H =




1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1




An error-free string of 7 bits b = (b0, b1, b2, b3, b4, b5, b6) satisfies these three
equations:

b0 +b1 +b3 +b4 = 0
b0 +b2 +b3 +b5 = 0

b1 +b2 +b3 +b6 = 0

If one error occurred, at least one of these equations will not hold.
Failure pattern uniquely identifies the error location,
e.g., 1, 0, 1 means

b1 flipped.

2



Hamming code

Parity check matrix (n = 7, k = 4):

H =




1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1




An error-free string of 7 bits b = (b0, b1, b2, b3, b4, b5, b6) satisfies these three
equations:

b0 +b1 +b3 +b4 = 0
b0 +b2 +b3 +b5 = 0

b1 +b2 +b3 +b6 = 0

If one error occurred, at least one of these equations will not hold.
Failure pattern uniquely identifies the error location,
e.g., 1, 0, 1 means b1 flipped.

2



Coding theory
I Names: code word c, error vector e, received word b = c + e.

length n, 2k code words, (n − k)× n parity-check matrix H .
I Very common to transform the matrix so that the right part has just 1 on

the diagonal (no need to store that).

H =




1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1


 




1 1 0 1
1 0 1 1
0 1 1 1




I Many special constructions discovered in 65 years of coding theory:
Fast decoding algorithm to find e given s = H · (c + e),
whenever e does not have too many bits set.

I 1978 Berlekamp–McEliece–Van Tilborg:
decoding problem is NP hard for random codes (random H).

I Use this difference in complexities for encryption.
3



Code-based encryption

I 1971 Goppa: Fast decoders for many matrices H .

I 1978 McEliece: Use Goppa codes for public-key crypto.
I Original parameters designed for 264 security.
I 2008 Bernstein–Lange–Peters: broken in ≈260 cycles.
I Easily scale up for higher security.

I 1986 Niederreiter: Simplified and smaller version of McEliece.

I 1962 Prange: simple attack idea guiding sizes in 1978 McEliece.
The McEliece system (with later key-size optimizations)
uses (c0 + o(1))λ2(lg λ)2-bit keys as λ→∞
to achieve 2λ security against Prange’s attack.
Here c0 ≈ 0.7418860694.

4



Security analysis

Some papers studying algorithms for attackers:
1962 Prange; 1981 Clark–Cain, crediting Omura; 1988 Lee–Brickell; 1988 Leon; 1989

Krouk; 1989 Stern; 1989 Dumer; 1990 Coffey–Goodman; 1990 van Tilburg; 1991

Dumer; 1991 Coffey–Goodman–Farrell; 1993 Chabanne–Courteau; 1993 Chabaud;

1994 van Tilburg; 1994 Canteaut–Chabanne; 1998 Canteaut–Chabaud; 1998

Canteaut–Sendrier; 2008 Bernstein–Lange–Peters; 2009 Bernstein–Lange–Peters–van

Tilborg; 2009 Bernstein (post-quantum); 2009 Finiasz–Sendrier; 2010

Bernstein–Lange–Peters; 2011 May–Meurer–Thomae; 2012 Becker–Joux–May–Meurer;

2013 Hamdaoui–Sendrier; 2015 May–Ozerov; 2016 Canto Torres–Sendrier; 2017

Kachigar–Tillich (post-quantum); 2017 Both–May; 2018 Both–May; 2018 Kirshanova

(post-quantum).

5



Consequence of security analysis

I The McEliece system (with later key-size optimizations)
uses (c0 + o(1))λ2(lg λ)2-bit keys as λ→∞
to achieve 2λ security against all these attacks.

Here c0 ≈ 0.7418860694.

I 256 KB public key for 2146 pre-quantum security.

I 512 KB public key for 2187 pre-quantum security.

I 1024 KB public key for 2263 pre-quantum security.

I Post-quantum (Grover): below 2263, above 2131.

6



Consequence of security analysis

I The McEliece system (with later key-size optimizations)
uses (c0 + o(1))λ2(lg λ)2-bit keys as λ→∞
to achieve 2λ security against all these attacks.
Here c0 ≈ 0.7418860694.

I 256 KB public key for 2146 pre-quantum security.

I 512 KB public key for 2187 pre-quantum security.

I 1024 KB public key for 2263 pre-quantum security.

I Post-quantum (Grover): below 2263, above 2131.

6



Consequence of security analysis

I The McEliece system (with later key-size optimizations)
uses (c0 + o(1))λ2(lg λ)2-bit keys as λ→∞
to achieve 2λ security against all these attacks.
Here c0 ≈ 0.7418860694.

I 256 KB public key for 2146 pre-quantum security.

I 512 KB public key for 2187 pre-quantum security.

I 1024 KB public key for 2263 pre-quantum security.

I Post-quantum (Grover): below 2263, above 2131.

6



Decoding problem

Decoding problem: find the closest code word c ∈ C to a given x ∈ IFn
2,

assuming that there is a unique closest code word. Let x = c + e.
Note that finding e is an equivalent problem.

I If c is t errors away from x, i.e., the Hamming weight of e is t.
This is called a t-error correcting problem.

I There are lots of code families with fast decoding algorithms, e.g.,
Reed–Solomon codes, Goppa codes/alternant codes, etc.

I However, the general decoding problem is hard
(1978 Berlekamp–McEliece–Van Tilborg).

I Information-set decoding (see later) takes exponential time.

7



Different views on decoding

I The syndrome of x ∈ IFn
2 is s = Hx.

Note Hx = H(c + e) = Hc + He = He depends only on e.

I The syndrome decoding problem is to compute e ∈ IFn
2, given s ∈ IFn−k

2 ,
so that He = s and e has minimal weight.

I Syndrome decoding and (regular) decoding are equivalent:

To decode x with syndrome decoder, compute e from Hx, then c = x + e.
To expand syndrome, assume H = (Qᵀ|In−k).
Then x = (00 . . . 0)||s satisfies s = Hx.

I Note that this x is not a solution to the syndrome decoding problem,
unless it has very low weight.

8



Different views on decoding

I The syndrome of x ∈ IFn
2 is s = Hx.

Note Hx = H(c + e) = Hc + He = He depends only on e.

I The syndrome decoding problem is to compute e ∈ IFn
2, given s ∈ IFn−k

2 ,
so that He = s and e has minimal weight.

I Syndrome decoding and (regular) decoding are equivalent:
To decode x with syndrome decoder, compute e from Hx, then c = x + e.
To expand syndrome, assume H = (Qᵀ|In−k).

Then x = (00 . . . 0)||s satisfies s = Hx.

I Note that this x is not a solution to the syndrome decoding problem,
unless it has very low weight.

8



Different views on decoding

I The syndrome of x ∈ IFn
2 is s = Hx.

Note Hx = H(c + e) = Hc + He = He depends only on e.

I The syndrome decoding problem is to compute e ∈ IFn
2, given s ∈ IFn−k

2 ,
so that He = s and e has minimal weight.

I Syndrome decoding and (regular) decoding are equivalent:
To decode x with syndrome decoder, compute e from Hx, then c = x + e.
To expand syndrome, assume H = (Qᵀ|In−k).
Then x = (00 . . . 0)||s satisfies s = Hx.

I Note that this x is not a solution to the syndrome decoding problem,
unless it has very low weight.

8



The Niederreiter cryptosystem I

Developed in 1986 by Niederreiter as a variant of the 1978 McEliece
cryptosystem. This is the schoolbook version.

I Use n × n permutation matrix P and n − k × n − k invertible matrix S .

I Public Key: a scrambled parity-check matrix K = SHP ∈ IF
(n−k)×n
2 .

I Encryption: The plaintext e is an n-bit vector of weight t.
The ciphertext s is the (n − k)-bit vector

s = Ke.

I Decryption: Find a n-bit vector e with wt(e) = t such that s = Ke.

I The passive attacker is facing a t-error correcting problem for the public key,
which seems to be random.

9



The Niederreiter cryptosystem II

I Public Key: a scrambled parity-check matrix K = SHP .

I Encryption: The plaintext e is an n-bit vector of weight t. The ciphertext s
is the (n − k)-bit vector

s = Ke.

I Decryption using secret key: Compute

S−1s = S−1Ke = S−1(SHP)e

= H(Pe)

and observe that wt(Pe) = t, because P permutes.
Use efficient syndrome decoder for H to find e′ = Pe and thus e = P−1e′.

10



Note on codes

I McEliece proposed to use binary Goppa codes.
These are still used today.

I Niederreiter described his scheme using Reed-Solomon codes.
These were broken in 1992 by Sidelnikov and Chestakov.

I More corpses on the way: concatenated codes, Reed-Muller codes, several
Algebraic Geometry (AG) codes, Gabidulin codes, several LDPC codes,
cyclic codes.

I Some other constructions look OK (for now).
NIST competition has several entries on QCMDPC codes.

I Rank-metric codes in NIST competition got some scratches
(2020 Bardet, Briaud, Bros, Gaborit, Neiger, Ruatta, Tillich).

11



Security notions and codes

I McEliece/Niederreiter are One-Way Encryption (OWE) schemes.

I The schemes as presented are not CCA–II secure. Fix by using CCA–II
transformation (e.g. Fujisaki-Okamoto transform) and turn into KEM by
picking random e of weight t, use hash(e) as secret key to encrypt and
authenticate (for McEliece or Niederreiter).

I Breaking OWE implies distinguishing key from random or
breaking one-wayness for random key.

I We distinguish between generic attacks (such as information-set decoding)
and structural attacks (that use the structure of the code).

I Gröbner basis computation is a generally powerful tool for structural attacks.

12



Generic attack: Brute force
Given K and s = Ke, find e with wt(e) = t.

K =

Pick any group of t columns of K , add them and compare with s.

Cost:

(
n
t

)
sums of t columns.

Can do better so that each try costs only 1 column addition
(after some initial additions).
Cost: O

(
n
t

)
additions of 1 column.

13



Generic attack: Brute force
Given K and s = Ke, find e with wt(e) = t.

K =

Pick any group of t columns of K , add them and compare with s.

Cost:
(
n
t

)
sums of t columns.

Can do better so that each try costs only 1 column addition
(after some initial additions).
Cost: O

(
n
t

)
additions of 1 column.

13



Generic attack: Information-set decoding, 1962 Prange

K ′ =

1

0

1

0

X

•

• • •

•

1. Permute K and bring to systematic form K ′ = (X |In−k).
(If this fails, repeat with other permutation).

2. Then K ′ = UKP for some permutation matrix P
and U the matrix that produces systematic form.

3. This updates s to Us.
4. If wt(Us) = t then e′ = (00 . . . 0)||Us. Output unpermuted version of e′.

Else return to 1 to rerandomize.
14



Generic attack: Information-set decoding, 1962 Prange

K ′ =

1

0

1

0

X

•

• • •

•

Cost: O(
(
n
t

)
/
(
n−k
t

)
)

matrix operations.

2010 Bernstein:
Grover speedup to

O(
√(

n
t

)
/
(
n−k
t

)
)

1. Permute K and bring to systematic form K ′ = (X |In−k).
(If this fails, repeat with other permutation).

2. Then K ′ = UKP for some permutation matrix P
and U the matrix that produces systematic form.

3. This updates s to Us.
4. If wt(Us) = t then e′ = (00 . . . 0)||Us. Output unpermuted version of e′.

Else return to 1 to rerandomize.
14



Lee–Brickell attack

K ′ =

1

0

1

0

X

•

•

•

1. Permute K and bring to systematic form K ′ = (X |In−k).
(If this fails, repeat with other permutation). s is updated.

2. For small p, pick p of the k columns on the left, compute their sum Xp.
(p is the vector of weight p).

3. If wt(s + Xp) = t − p then put e′ = p||(s + Xp).
Output unpermuted version of e′.
Else return to 2 or return to 1 to rerandomize.

15



Lee–Brickell attack

K ′ =

1

0

1

0

X

•

•

•

Cost:
O(
(
n
t

)
/(
(
k
p

)(
n−k
t−p
)
)) matrix operations

+
(
k
p

)
column additions.

1. Permute K and bring to systematic form K ′ = (X |In−k).
(If this fails, repeat with other permutation). s is updated.

2. For small p, pick p of the k columns on the left, compute their sum Xp.
(p is the vector of weight p).

3. If wt(s + Xp) = t − p then put e′ = p||(s + Xp).
Output unpermuted version of e′.
Else return to 2 or return to 1 to rerandomize.

15



Leon’s attack
1

1

ZX

︸ ︷︷ ︸
(n−k)×(n−k) identity matrix

I Random combinations of
p vectors will be dense,
so have wt(s + Xp) ∼ k/2.

I Idea: Introduce early abort by checking
only ` positions (selected by set Z , green lines in picture).
This forms `× k matrix XZ , length-` vector sZ .

I Inner loop becomes:

1. Pick p with wt(p) = p.
2. Compute XZp.
3. If sZ + XZp 6= 0 goto 1. Else compute Xp.
4. If wt(s + Xp) = t − p output unpermuted version of e′ = p||(s + Xp).

Else return to 1 or rerandomize K .
I Note that sZ + XZp = 0 means that there are no ones in the positions

specified by Z . Small loss in success, big speedup.
16



Stern’s attack 1

1

X Y Z
A

B

I Setup similar to Leon’s and
Lee-Brickell’s attacks.

I Use the early abort trick,
so specify set Z .

I Improve chances of finding
p with s + XZp = 0:

I Split left part of K ′ into two disjoint subsets X and Y .
I Let A = {a ∈ IF

k/2
2 |wt(a) = p}, B = {b ∈ IF

k/2
2 |wt(b) = p}.

I Search for words having exactly p ones in X and p ones in Y and exactly
w − 2p ones in the remaining columns.

I Do the latter part as a collision search:
Compute sZ + XZa for all (many) a ∈ A, sort.
Then compute YZb for b ∈ B and look for collisions; expand.

I Iterate until word with wt(s + Xa + Y b) = 2p is found for some X ,Y ,Z .
I Select p, `, and the subset of A to minimize overall work. 17



Binary Goppa code
Let q = 2m. A binary Goppa code is often defined by

I a list L = (a1, . . . , an) of n distinct elements in IFq,
called the support.

I a square-free polynomial g(x) ∈ IFq[x ] of degree t such that g(a) 6= 0 for all
a ∈ L. g(x) is called the Goppa polynomial.

I E.g. choose g(x) irreducible over IFq.

The corresponding binary Goppa code Γ(L, g) is

{
c ∈ IFn

2

∣∣∣∣S(c) =
c1

x − a1
+

c2
x − a2

+ · · ·+ cn
x − an

≡ 0 mod g(x)

}

I This code is linear S(b + c) = S(b) + S(c) and has length n.

I Bounds on dimension k ≥ n −mt and minimum distance d ≥ 2t + 1.

18



How to hide nice code?

I Do not reveal matrix H related to nice-to-decode code.

I Pick a random invertible (n − k)× (n − k) matrix S and random n × n
permutation matrix P . Put

K = SHP .

I K is the public key and S and P together with a decoding algorithm for H
form the private key.

I For suitable codes K looks like random matrix.

I How to decode syndrome s = Ke?

I Computes S−1s = S−1(SHP)e = H(Pe).

I P permutes, thus Pe has same weight as e.

I Decode to recover Pe, then multiply by P−1.

19



How to hide nice code?

I Do not reveal matrix H related to nice-to-decode code.

I Pick a random invertible (n − k)× (n − k) matrix S and random n × n
permutation matrix P . Put

K = SHP .

I K is the public key and S and P together with a decoding algorithm for H
form the private key.

I For suitable codes K looks like random matrix.

I How to decode syndrome s = Ke?

I Computes S−1s = S−1(SHP)e = H(Pe).

I P permutes, thus Pe has same weight as e.

I Decode to recover Pe, then multiply by P−1.

19



How to hide nice code?

I For Goppa code use secret polynomial g(x).

I Use secret permutation of the ai , this corresponds to secret permutation of
the n positions; this replaces P .

I Use systematic form K = (K ′|I ) for key;
I This implicitly applies S .
I No need to remember S because decoding does not use H.
I Public key size decreased to (n − k)× k.

I Secret key is polynomial g and support L = (a1, . . . , an).

I 2000 Sendrier (support splitting) computes code equivalence
in polynomial time, but there are many codes.

20



How to hide nice code?

I For Goppa code use secret polynomial g(x).

I Use secret permutation of the ai , this corresponds to secret permutation of
the n positions; this replaces P .

I Use systematic form K = (K ′|I ) for key;
I This implicitly applies S .
I No need to remember S because decoding does not use H.
I Public key size decreased to (n − k)× k.

I Secret key is polynomial g and support L = (a1, . . . , an).

I 2000 Sendrier (support splitting) computes code equivalence
in polynomial time, but there are many codes.

20



NIST submission Classic McEliece
I Security asymptotics unchanged by 40 years of cryptanalysis.
I Efficient and straightforward conversion

OW-CPA PKE → IND-CCA2 KEM.
I Open-source (public domain) implementations.

I Constant-time software implementations.
I FPGA implementation of full cryptosystem.

I No patents.

Metric mceliece6960119 mceliece8192128
Public-key size 1047319 bytes 1357824 bytes
Secret-key size 13908 bytes 14080 bytes
Ciphertext size 226 bytes 240 bytes
Key-generation time 813812960 cycles 898881136 cycles
Encapsulation time 156624 cycles 172576 cycles
Decapsulation time 298472 cycles 316888 cycles

See https://classic.mceliece.org for more details and parameters.
21

https://classic.mceliece.org

