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Challenges in evaluating costs

of known lattice attacks

Daniel J. Bernstein

Tanja Lange

Based on attack survey from

2019 Bernstein–Chuengsatiansup–

Lange–van Vredendaal.

Why analysis is important:

• Guide attack optimization.

• Guide attack selection.

• Evaluate crypto parameters.

• Evaluate crypto designs.

• Advise users on security.
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Three typical attack problems

Define R = Z[x ]=(x761 − x − 1);

“small” = all coeffs in {−1; 0; 1};
w = 286; q = 4591.

Attacker wants to find

small weight-w secret a ∈ R.

Problem 1: Public G ∈ R=q with

aG + e = 0. Small secret e ∈ R.

Problem 2: Public G ∈ R=q and

aG + e. Small secret e ∈ R.

Problem 3: Public G1; G2 ∈ R=q.

Public aG1 + e1; aG2 + e2.

Small secrets e1; e2 ∈ R.
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Examples of target cryptosystems

Secret key: small a; small e.

Public key reveals multiplier G

and approximation A = aG + e.

Public key for “NTRU”:

G = −e=a, and A = 0.
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Examples of target cryptosystems

Secret key: small a; small e.

Public key reveals multiplier G

and approximation A = aG + e.

Public key for “NTRU”:

G = −e=a, and A = 0.

Public key for “Ring-LWE”:

random G, and A = aG + e.

Systematization of naming,

recognizing similarity + credits:

“NTRU” ⇒ Quotient NTRU.

“Ring-LWE” ⇒ Product NTRU.
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Encryption for Quotient NTRU:

Input small b, small d .

Ciphertext: B = 3Gb + d .
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Encryption for Quotient NTRU:

Input small b, small d .

Ciphertext: B = 3Gb + d .

Encryption for Product NTRU:

Input encoded message M.

Randomly generate

small b, small d , small c .

Ciphertext: B = Gb + d

and C = Ab +M + c .
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Encryption for Quotient NTRU:

Input small b, small d .

Ciphertext: B = 3Gb + d .

Encryption for Product NTRU:

Input encoded message M.

Randomly generate

small b, small d , small c .

Ciphertext: B = Gb + d

and C = Ab +M + c .

Next slides: survey of G; a; e; c;M

details and variants in NISTPQC

submissions. Source: Bernstein,

“Comparing proofs of security

for lattice-based encryption”.
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system parameter set type set of multipliers
frodo 640 Product (Z=32768)640×640

frodo 976 Product (Z=65536)976×976

frodo 1344 Product (Z=65536)1344×1344

kyber 512 Product ((Z=3329)[x ]=(x256 + 1))2×2

kyber 768 Product ((Z=3329)[x ]=(x256 + 1))3×3

kyber 1024 Product ((Z=3329)[x ]=(x256 + 1))4×4

lac 128 Product (Z=251)[x ]=(x512 + 1)
lac 192 Product (Z=251)[x ]=(x1024 + 1)
lac 256 Product (Z=251)[x ]=(x1024 + 1)
newhope 512 Product (Z=12289)[x ]=(x512 + 1)
newhope 1024 Product (Z=12289)[x ]=(x1024 + 1)
ntru hps2048509 Quotient (Z=2048)[x ]=(x509 − 1)
ntru hps2048677 Quotient (Z=2048)[x ]=(x677 − 1)
ntru hps4096821 Quotient (Z=4096)[x ]=(x821 − 1)
ntru hrss701 Quotient (Z=8192)[x ]=(x701 − 1)
ntrulpr 653 Product (Z=4621)[x ]=(x653 − x − 1)
ntrulpr 761 Product (Z=4591)[x ]=(x761 − x − 1)
ntrulpr 857 Product (Z=5167)[x ]=(x857 − x − 1)
round5n1 1 Product (Z=4096)636×636

round5n1 3 Product (Z=32768)876×876

round5n1 5 Product (Z=32768)1217×1217

round5nd 1.0d Product (Z=8192)[x ]=(x586 + : : :+ 1)
round5nd 3.0d Product (Z=4096)[x ]=(x852 + : : :+ 1)
round5nd 5.0d Product (Z=8192)[x ]=(x1170 + : : :+ 1)
round5nd 1.5d Product (Z=1024)[x ]=(x509 − 1)
round5nd 3.5d Product (Z=4096)[x ]=(x757 − 1)
round5nd 5.5d Product (Z=2048)[x ]=(x947 − 1)
saber light Product ((Z=8192)[x ]=(x256 + 1))2×2

saber main Product ((Z=8192)[x ]=(x256 + 1))3×3

saber fire Product ((Z=8192)[x ]=(x256 + 1))4×4

sntrup 653 Quotient (Z=4621)[x ]=(x653 − x − 1)
sntrup 761 Quotient (Z=4591)[x ]=(x761 − x − 1)
sntrup 857 Quotient (Z=5167)[x ]=(x857 − x − 1)
threebears baby Product (Z=(23120 − 21560 − 1))2×2

threebears mama Product (Z=(23120 − 21560 − 1))3×3

threebears papa Product (Z=(23120 − 21560 − 1))4×4
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short element
Z640×8 ; {−12; : : : ; 12}; Pr 1; 4; 17; : : : (spec page 23)
Z976×8 ; {−10; : : : ; 10}; Pr 1; 6; 29; : : : (spec page 23)
Z1344×8 ; {−6; : : : ; 6}; Pr 2; 40; 364; : : : (spec page 23)
(Z[x ]=(x256 + 1))2 ;

P
0≤i<4{−0:5; 0:5}

(Z[x ]=(x256 + 1))3 ;
P

0≤i<4{−0:5; 0:5}
(Z[x ]=(x256 + 1))4 ;

P
0≤i<4{−0:5; 0:5}

Z[x ]=(x512 + 1); {−1; 0; 1}; Pr 1; 2; 1; weight 128; 128
Z[x ]=(x1024 + 1); {−1; 0; 1}; Pr 1; 6; 1; weight 128; 128
Z[x ]=(x1024 + 1); {−1; 0; 1}; Pr 1; 2; 1; weight 256; 256
Z[x ]=(x512 + 1);

P
0≤i<16{−0:5; 0:5}

Z[x ]=(x1024 + 1);
P

0≤i<16{−0:5; 0:5}
Z[x ]=(x509 − 1); {−1; 0; 1}
Z[x ]=(x677 − 1); {−1; 0; 1}
Z[x ]=(x821 − 1); {−1; 0; 1}
Z[x ]=(x701 − 1); {−1; 0; 1}; key correlation ≥ 0
Z[x ]=(x653 − x − 1); {−1; 0; 1}; weight 252
Z[x ]=(x761 − x − 1); {−1; 0; 1}; weight 250
Z[x ]=(x857 − x − 1); {−1; 0; 1}; weight 281
Z636×8 ; {−1; 0; 1}; weight 57; 57
Z876×8 ; {−1; 0; 1}; weight 223; 223
Z1217×8 ; {−1; 0; 1}; weight 231; 231
Z[x ]=(x586 + : : :+ 1); {−1; 0; 1}; weight 91; 91
Z[x ]=(x852 + : : :+ 1); {−1; 0; 1}; weight 106; 106
Z[x ]=(x1170 + : : :+ 1); {−1; 0; 1}; weight 111; 111
Z[x ]=(x509 − 1); {−1; 0; 1}; weight 68; 68; ending 0
Z[x ]=(x757 − 1); {−1; 0; 1}; weight 121; 121; ending 0
Z[x ]=(x947 − 1); {−1; 0; 1}; weight 194; 194; ending 0
(Z[x ]=(x256 + 1))2 ;

P
0≤i<10{−0:5; 0:5}

(Z[x ]=(x256 + 1))3 ;
P

0≤i<8{−0:5; 0:5}
(Z[x ]=(x256 + 1))4 ;

P
0≤i<6{−0:5; 0:5}

Z[x ]=(x653 − x − 1); {−1; 0; 1}; weight 288
Z[x ]=(x761 − x − 1); {−1; 0; 1}; weight 286
Z[x ]=(x857 − x − 1); {−1; 0; 1}; weight 322
Z2 ;

P
0≤i<312 210i {−2;−1; 0; 1; 2}; Pr 1; 32; 62; 32; 1; *

Z3 ;
P

0≤i<312 210i {−1; 0; 1}; Pr 13; 38; 13; *
Z4 ;

P
0≤i<312 210i {−1; 0; 1}; Pr 5; 22; 5; *
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key offset (numerator or noise or rounding method)
Z640×8 ; {−12; : : : ; 12}; Pr 1; 4; 17; : : : (spec page 23)
Z976×8 ; {−10; : : : ; 10}; Pr 1; 6; 29; : : : (spec page 23)
Z1344×8 ; {−6; : : : ; 6}; Pr 2; 40; 364; : : : (spec page 23)
(Z[x ]=(x256 + 1))2 ;

P
0≤i<4{−0:5; 0:5}

(Z[x ]=(x256 + 1))3 ;
P

0≤i<4{−0:5; 0:5}
(Z[x ]=(x256 + 1))4 ;

P
0≤i<4{−0:5; 0:5}

Z[x ]=(x512 + 1); {−1; 0; 1}; Pr 1; 2; 1; weight 128; 128
Z[x ]=(x1024 + 1); {−1; 0; 1}; Pr 1; 6; 1; weight 128; 128
Z[x ]=(x1024 + 1); {−1; 0; 1}; Pr 1; 2; 1; weight 256; 256
Z[x ]=(x512 + 1);

P
0≤i<16{−0:5; 0:5}

Z[x ]=(x1024 + 1);
P

0≤i<16{−0:5; 0:5}
Z[x ]=(x509 − 1); {−1; 0; 1}; weight 127; 127
Z[x ]=(x677 − 1); {−1; 0; 1}; weight 127; 127
Z[x ]=(x821 − 1); {−1; 0; 1}; weight 255; 255
Z[x ]=(x701 − 1); {−1; 0; 1}; key correlation ≥ 0; ·(x − 1)
round {−2310; : : : ; 2310} to 3Z
round {−2295; : : : ; 2295} to 3Z
round {−2583; : : : ; 2583} to 3Z
round Z=4096 to 8Z
round Z=32768 to 16Z
round Z=32768 to 8Z
round Z=8192 to 16Z
round Z=4096 to 8Z
round Z=8192 to 16Z
reduce mod x508 + : : :+ 1; round Z=1024 to 8Z
reduce mod x756 + : : :+ 1; round Z=4096 to 16Z
reduce mod x946 + : : :+ 1; round Z=2048 to 8Z
round Z=8192 to 8Z
round Z=8192 to 8Z
round Z=8192 to 8Z
Z[x ]=(x653 − x − 1); {−1; 0; 1}; invertible mod 3
Z[x ]=(x761 − x − 1); {−1; 0; 1}; invertible mod 3
Z[x ]=(x857 − x − 1); {−1; 0; 1}; invertible mod 3
Z2 ;

P
0≤i<312 210i {−2;−1; 0; 1; 2}; Pr 1; 32; 62; 32; 1; *

Z3 ;
P

0≤i<312 210i {−1; 0; 1}; Pr 13; 38; 13; *
Z4 ;

P
0≤i<312 210i {−1; 0; 1}; Pr 5; 22; 5; *
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ciphertext offset (noise or rounding method)
Z8×8 ; {−12; : : : ; 12}; Pr 1; 4; 17; : : : (spec page 23)
Z8×8 ; {−10; : : : ; 10}; Pr 1; 6; 29; : : : (spec page 23)
Z8×8 ; {−6; : : : ; 6}; Pr 2; 40; 364; : : : (spec page 23)
Z[x ]=(x256 + 1);

P
0≤i<4{−0:5; 0:5}

Z[x ]=(x256 + 1);
P

0≤i<4{−0:5; 0:5}
Z[x ]=(x256 + 1);

P
0≤i<4{−0:5; 0:5}

Z[x ]=(x512 + 1); {−1; 0; 1}; Pr 1; 2; 1
Z[x ]=(x1024 + 1); {−1; 0; 1}; Pr 1; 6; 1
Z[x ]=(x1024 + 1); {−1; 0; 1}; Pr 1; 2; 1
Z[x ]=(x512 + 1);

P
0≤i<16{−0:5; 0:5}

Z[x ]=(x1024 + 1);
P

0≤i<16{−0:5; 0:5}
not applicable
not applicable
not applicable
not applicable
bottom 256 coeffs; z 7→ b(114(z + 2156) + 16384)=32768c
bottom 256 coeffs; z 7→ b(113(z + 2175) + 16384)=32768c
bottom 256 coeffs; z 7→ b(101(z + 2433) + 16384)=32768c
round Z=4096 to 64Z
round Z=32768 to 512Z
round Z=32768 to 64Z
bottom 128 coeffs; round Z=8192 to 512Z
bottom 192 coeffs; round Z=4096 to 128Z
bottom 256 coeffs; round Z=8192 to 256Z
bottom 318 coeffs; round Z=1024 to 64Z
bottom 410 coeffs; round Z=4096 to 512Z
bottom 490 coeffs; round Z=2048 to 64Z
round Z=8192 to 1024Z
round Z=8192 to 512Z
round Z=8192 to 128Z
not applicable
not applicable
not applicable
Z;

P
0≤i<312 210i {−2;−1; 0; 1; 2}; Pr 1; 32; 62; 32; 1; *

Z;
P

0≤i<312 210i {−1; 0; 1}; Pr 13; 38; 13; *
Z;

P
0≤i<312 210i {−1; 0; 1}; Pr 5; 22; 5; *
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set of encoded messages
8× 8 matrix over {0; 8192; 16384; 24576}
8× 8 matrix over {0; 8192; : : : ; 57344}
8× 8 matrix over {0; 4096; : : : ; 61440}P

0≤i<256{0; 1665}x iP
0≤i<256{0; 1665}x iP
0≤i<256{0; 1665}x i

256-dim subcode (see spec) of
P

0≤i<512{0; 126}x i
256-dim subcode (see spec) of

P
0≤i<1024{0; 126}x i

256-dim subcode (see spec) of
P

0≤i<1024{0; 126}x iP
0≤i<256{0; 6145}x i (1 + x256)P
0≤i<256{0; 6145}x i (1 + x256 + x512 + x768)

not applicable
not applicable
not applicable
not applicableP

0≤i<256{0; 2310}x iP
0≤i<256{0; 2295}x iP
0≤i<256{0; 2583}x i

8× 8 matrix over {0; 1024; 2048; 3072}
8× 8 matrix over {0; 4096; : : : ; 28672}
8× 8 matrix over {0; 2048; : : : ; 30720}P

0≤i<128{0; 4096}x iP
0≤i<192{0; 2048}x iP
0≤i<256{0; 4096}x i

128-dim subcode (see spec) of
P

0≤i<318{0; 512}x i
192-dim subcode (see spec) of

P
0≤i<410{0; 2048}x i

256-dim subcode (see spec) of
P

0≤i<490{0; 1024}x iP
0≤i<256{0; 4096}x iP
0≤i<256{0; 4096}x iP
0≤i<256{0; 4096}x i

not applicable
not applicable
not applicable
256-dim subcode (see spec) of

P
0≤i<274{0; 512}210i

256-dim subcode (see spec) of
P

0≤i<274{0; 512}210i

256-dim subcode (see spec) of
P

0≤i<274{0; 512}210i
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Attacking these problems

Attack strategy with reputation

of usually being best: “primal”

strategy. Focus of this talk.

Normal layers in analysis:

Analysis of lattices
to attack systems

“Approximate-SVP”
analysis

OO

“SVP”
analysis

OO

Model of computation

OO

<<

77
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Models of computation

Multitape Turing machine: e.g.,

sort N ints, each No(1) bits, in

time N1+o(1), space N1+o(1).
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Models of computation

Multitape Turing machine: e.g.,

sort N ints, each No(1) bits, in

time N1+o(1), space N1+o(1).

Brent–Kung 2D circuit model

allows parallelism—e.g., sort in

time N0:5+o(1), space N1+o(1).

PRAM: multiple inequivalent

definitions, untethered to physical

explanations. Sort in time No(1).

Quantum computing:

similar divergence of models.
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Lattices

Rewrite each problem as finding

short nonzero solution to system

of homogeneous R=q equations.

Problem 1: Find (a; e) ∈ R2

with aG + e = 0, given G ∈ R=q.
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with aG + e = 0, given G ∈ R=q.
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with aG + e = At,

given G;A ∈ R=q.
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Lattices

Rewrite each problem as finding

short nonzero solution to system

of homogeneous R=q equations.

Problem 1: Find (a; e) ∈ R2

with aG + e = 0, given G ∈ R=q.

Problem 2: Find (a; t; e) ∈ R3

with aG + e = At,

given G;A ∈ R=q.

Problem 3: Find

(a; t1; t2; e1; e2) ∈ R5 with

aG1 +e1 = A1t1, aG2 +e2 = A2t2,

given G1; A1; G2; A2 ∈ R=q.
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Recognize each solution space

as a full-rank lattice:

Problem 1: Lattice is image of

the map (a; r) 7→ (a; qr − aG)

from R2 to R2.
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as a full-rank lattice:

Problem 1: Lattice is image of

the map (a; r) 7→ (a; qr − aG)

from R2 to R2.

Problem 2: Lattice is

image of the map (a; t; r) 7→
(a; t; At + qr − aG).
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Recognize each solution space

as a full-rank lattice:

Problem 1: Lattice is image of

the map (a; r) 7→ (a; qr − aG)

from R2 to R2.

Problem 2: Lattice is

image of the map (a; t; r) 7→
(a; t; At + qr − aG).

Problem 3: Lattice is image of

the map (a; t1; t2; r1; r2) 7→
(a; t1; t2; A1t1 + qr1 − aG1;

A2t2 + qr2 − aG2).
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Module structure

Each of these lattices is an R-

module, and thus has, generically,

many independent short vectors.
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e.g. in Problem 2:
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Lattice has short (x2a; x2t; x2e).

etc.
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Module structure

Each of these lattices is an R-

module, and thus has, generically,

many independent short vectors.

e.g. in Problem 2:

Lattice has short (a; t; e).

Lattice has short (xa; xt; xe).

Lattice has short (x2a; x2t; x2e).

etc.

Many more lattice vectors

are fairly short combinations

of independent vectors:

e.g., ((x + 1)a; (x + 1)t; (x + 1)e).
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2001 May–Silverman, for Problem

1: Force a few coefficients of

a to be 0. This reduces lattice

rank, speeding up various attacks,

despite lower success chance.
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2001 May–Silverman, for Problem

1: Force a few coefficients of

a to be 0. This reduces lattice

rank, speeding up various attacks,

despite lower success chance.

(Always a speedup? Seems to be

a slowdown if q is very large.)

Other problems: same speedup.

e.g. Problem 2: Force many

coefficients of (a; t) to be 0.

Bai–Galbraith special case:

Force t = 1, and force

a few coefficients of a to be 0.

(Also slowdown if q is very large?)
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Standard analysis for Problem 1

Lattice has rank 2 · 761 = 1522.

Uniform random small weight-w

secret a has length
√
w ≈ 17.
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Lattice has rank 2 · 761 = 1522.

Uniform random small weight-w
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√
w ≈ 17.

Uniform random small secret

e has length usually close top
1522=3 ≈ 23. (What if it’s

smaller? What if it’s larger? Does

fixed weight change security?)
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Standard analysis for Problem 1

Lattice has rank 2 · 761 = 1522.

Uniform random small weight-w

secret a has length
√
w ≈ 17.

Uniform random small secret

e has length usually close top
1522=3 ≈ 23. (What if it’s

smaller? What if it’s larger? Does

fixed weight change security?)

Attack parameter: k = 13.

Force k positions in a to be 0:

restrict to sublattice of rank 1509.

Pr[a is in sublattice] ≈ 0:2%.
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Attacker is just as happy to find

another solution such as (xa; xe).
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Attacker is just as happy to find

another solution such as (xa; xe).

Standard analysis for, e.g.,

Z[x ]=(x761 − 1): Each (x ja; x je)

has chance ≈0:2% of being in

sublattice. These 761 chances

are independent. (No, they

aren’t; also, total Pr depends on

attacker’s choice of positions.)
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Attacker is just as happy to find

another solution such as (xa; xe).

Standard analysis for, e.g.,

Z[x ]=(x761 − 1): Each (x ja; x je)

has chance ≈0:2% of being in

sublattice. These 761 chances

are independent. (No, they

aren’t; also, total Pr depends on

attacker’s choice of positions.)

Ignore bigger solutions (¸a; ¸e).

(How hard are these to find?)

Pretend this analysis applies to

Z[x ]=(x761 − x − 1). (It doesn’t.)
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Write equation e = qr − aG
as 761 equations on coefficients.
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Write equation e = qr − aG
as 761 equations on coefficients.

Attack parameter: m = 600.

Ignore 761 − m = 161 equations:

i.e., project e onto 600 positions.

Projected sublattice rank

d = 1509− 161 = 1348; det q600.
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Write equation e = qr − aG
as 761 equations on coefficients.

Attack parameter: m = 600.

Ignore 761 − m = 161 equations:

i.e., project e onto 600 positions.

Projected sublattice rank

d = 1509− 161 = 1348; det q600.

Attack parameter: – = 1:331876.

Rescaling: Assign weight – to

positions in a. Increases length

of a to –
√
w ≈ 23; increases det

to –748q600. (Is this – optimal?

Interaction with e size variation?)
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Lattice-basis reduction

Attack parameter: ˛ = 525.

Use BKZ-˛ algorithm to reduce

lattice basis. (What about

alternatives to BKZ?)
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“Normally” finds nonzero vector

of length ‹d (detL)1=d where

‹ = (˛(ı˛)1=˛=(2ıe))1=(2(˛−1)).
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Lattice-basis reduction

Attack parameter: ˛ = 525.

Use BKZ-˛ algorithm to reduce

lattice basis. (What about

alternatives to BKZ?)

Standard analysis of BKZ-˛:

“Normally” finds nonzero vector

of length ‹d (detL)1=d where

‹ = (˛(ı˛)1=˛=(2ıe))1=(2(˛−1)).

(This ‹ formula is an asymptotic

claim without claimed error

bounds. Does not match

experiments for specific d .)
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Standard analysis, continued:

“Geometric-series assumption”

holds. (What about deviations

identified in 2018 experiments?)
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Standard analysis, continued:

“Geometric-series assumption”

holds. (What about deviations

identified in 2018 experiments?)

BKZ-˛ finds unique (mod ±)

shortest nonzero vector ⇔
length ≤ ‹2˛−d (detL)1=d
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d=˛.

(What about deviations identified

in 2017 experiments?)
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Standard analysis, continued:

“Geometric-series assumption”

holds. (What about deviations

identified in 2018 experiments?)

BKZ-˛ finds unique (mod ±)

shortest nonzero vector ⇔
length ≤ ‹2˛−d (detL)1=d

p
d=˛.

(What about deviations identified

in 2017 experiments?)

Hence the attack finds (a; e),

assuming forcing worked. If it

didn’t, retry. (Are these tries

independent? Should they use

new parameters? Grover?)
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How long does BKZ-˛ take?

Standard answer: 20:292˛ =
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How long does BKZ-˛ take?

Standard answer: 20:292˛ =

2153:3 operations by “sieving”.

(Plugging o(1) = 0 into the

2(0:292+o(1))˛ asymptotic does

not match experiments. What’s

the actual performance? And

what exactly is an “operation”?)

0:292˛ (fake) cost for “sieving”

is advertised as being below

0:187˛ log2 ˛ − 1:019˛ + 16:1

(questionable extrapolation of

experiments) for “enumeration”.
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Note fragility of comparison.

S ≤ 43⇒ E < S for

S = 0:396˛, E =

0:187˛ log2 ˛ − 1:019˛ + 16:1.

S ≤ 225⇒ E < S for

S = 0:369˛, E =

(0:187˛ log2 ˛− 1:019˛+ 16:1)=2.

S ≤ 86⇒ E < S for

S = 0:265˛, E =

(0:125˛ log2 ˛ − 0:545˛ + 10)=2.

Need to get analyses right!

First step: include models

that account for memory cost.
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sntrup761 evaluations from

“NTRU Prime: round 2” Table 2:

Ignoring hybrid attacks:
368 185 enum, free memory cost
368 185 enum, real memory cost
153 139 sieving, free memory cost
208 208 sieving, real memory cost

Including hybrid attacks:
230 169 enum, free memory cost
277 169 enum, real memory cost
153 139 sieving, free memory cost
208 180 sieving, real memory cost

Security levels:
. . . pre-quantum

. . . post-quantum
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Hybrid attacks

Extreme special case:

Search all small weight-w a.

Grover reduces cost to
√

.

Can also get “
√

” using memory

without quantum computation.

Represent a as a1 + a2. (What

is the optimal a1; a2 overlap?)

Look for approximate collision

between H1(a1) and H2(a2).

e.g. Problem 1: aG small

so a1G ≈ −a2G. (How fast are

near-neighbor algorithms?)
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Seems worse than basis reduction

for typical {a}. But hybrid attack

uses basis reduction and search;

can beat basis reduction alone.

Unified lattice description:

{(u; uM + qr)} given matrix M.

Relabel: {(v; w; vK + wL+ qr)}.
Attacker chooses subset of

u indices to relabel as v .

Use BKZ-˛ to find short B

with {(w;wL+ qr)} = {zB}.

Now {(v; w; vK + wL+ qr)}
= {(v; v(0; K) + zB)}.



26

Search through many of the

most likely choices of v .



26

Search through many of the

most likely choices of v .

For each v : Quickly find z with

zB ≈ −v(0; K). Check whether

(v; v(0; K) + zB) is short enough.



26

Search through many of the

most likely choices of v .

For each v : Quickly find z with

zB ≈ −v(0; K). Check whether

(v; v(0; K) + zB) is short enough.

Can again do quantum search,

or approximate collision search.



26

Search through many of the

most likely choices of v .

For each v : Quickly find z with

zB ≈ −v(0; K). Check whether

(v; v(0; K) + zB) is short enough.

Can again do quantum search,

or approximate collision search.

Can afford exponentially many z ,

maybe compensating for lower ˛.



26

Search through many of the

most likely choices of v .

For each v : Quickly find z with

zB ≈ −v(0; K). Check whether

(v; v(0; K) + zB) is short enough.

Can again do quantum search,

or approximate collision search.

Can afford exponentially many z ,

maybe compensating for lower ˛.

Common claim: This saves time

only for sufficiently narrow {a}.
(Is this true, or a calculation error

in existing algorithm analyses?)


