Challenges in evaluating costs

of known lattice attacks

Daniel J. Bernstein

Tanja

Lange

Based on attack survey from

2019 Bernstein—Chuengsatiansup—

Lange—van Vredendaal.

Why analysis I1s important:

e Guic

e Guic
e Eva

e Eva

uate cry
uate cry

e attack optimization.
e attack selection.

DTO parameters.

oto designs.

e Advise users on security.

Three typical attack problems

Define R = Z[x]/(x"%! — x — 1);
“small” = all coeffs in {—1,0, 1}
w = 2360; g = 4591.

Attacker wants to find
small weight-w secret a € K.

Problem 1: Public G € R/qg with
aG + e =0. Small secret e € R.

Problem 2: Public G € R/q and
aG + e. Small secret e € R.

Problem 3: Public G, Gy € R/q.
Public aG1 + e1, aGy + e>.
Small secrets e, & € R.

Examples of target cryptosystems

Secret key: small a; small e.

Public key reveals multiplier G
and approximation A = aG + e.

Public key for “"NTRU":
G=—e/a, and A= 0.

Examples of target cryptosystems

Secret key: small a; small e.

Public key reveals multiplier G

and

approximation A = aG + e.

Public key for “"NTRU":

G =
Pub

ranc

—e/a, and A= 0.

ic key for “Ring-LWE":
om G, and A = aG + e.

Examples of target cryptosystems
Secret key: small a; small e.

Public key reveals multiplier G
and approximation A = aG + e.

Public key for “"NTRU":
G=—e/a, and A= 0.

Public key for “Ring-LWE":
random G, and A = aG + e.

Systematization of naming,
recognizing similarity + credits:
‘NTRU" = Quotient NTRU.
"Ring-LWE" = Product NTRU.

Encryption for Quotient NTRU:
Input small b, small d.

Ciphertext: B = 3Gb + d.

Encryption for Quotient NTRU:
Input small b, small d.

Ciphertext: B = 3Gb + d.

Encryption for Product NTRU:
Input encoded message M.
Randomly generate

small b, small d, small c.
Ciphertext: B=Gb+ d

and C = Ab+ M+ c.

Encryption for Quotient NTRU:
Input small b, small d.

Ciphertext: B = 3Gb + d.

Encryption for Product NTRU:
Input encoded message M.
Randomly generate

small b, small d, small c.
Ciphertext: B=Gb+ d

and C = Ab+ M+ c.

Next slides: survey of G, a,e,c, M
details and variants in NISTPQC
submissions. Source: Bernstein,
“Comparing proofs of security

for lattice-based encryption”.

system parameter set | type set of multipliers

frodo 640 | Product | (Z/32768)040%0640

frodo 976 | Product | (Z/65536)%70%976

frodo 1344 | Product | (Z/65536)1344x1344

kyber 512 | Product | ((Z/3329)[x]/(x?%° + 1))>*?
kyber 768 | Product | ((Z/3329)[x]/(x%%® 4 1))3*3
kyber 1024 | Product | ((Z/3329)[x]/(x?%° + 1))4*4
lac 128 | Product | (Z/251)[x]/(x>'? + 1)

lac 192 | Product | (Z/251)[x]/(x%%%* 41

lac 256 | Product | (Z/251)[x]/(x19%* + 1)
newhope 512 | Product | (Z/12289)[x]/(x*1? + 1)
newhope 1024 | Product | (Z/12289)[x]/(x1%%* + 1)
ntru hps2048509 | Quotient | (Z/2048)[x]/(x>% — 1)
ntru hps2048677 | Quotient | (Z/2048)[x]/(x°"" — 1)
ntru hps4096821 | Quotient | (Z/4096)[x]/(x8%! — 1)
ntru hrss701 | Quotient | (Z/8192)[x]/(x"%1 — 1)
ntrulpr 653 | Product | (Z/4621)[x]/(x*®3 — x — 1
ntrulpr 761 | Product | (Z/4591)[x]/(x®! —x —1
ntrulpr 857 | Product | (Z/5167)[x]/(x®>" — x — 1)
round5n1i 1 | Product | (Z/4096)036>036

round5n1i 3 | Product | (Z/32768)870%876

round5n1 5 | Product | (Z/32768)1217x1217
round5nd 1.0d | Product | (Z/8192)[x]/(x°%° -I— .+ 1)
round5nd 3.0d | Product | (Z/4096)[x]/(x%%2 .+ 1)
round5nd 5.0d | Product | (Z/8192)[x]/(x!170 .+ 1)
round5nd 1.5d | Product | (Z/1024)[x] /(x509)
round5nd 3.5d | Product | (Z/4096)|x] /(xT —1)
round5nd 5.5d | Product | (Z/2048)[x]/(x**" — 1)
saber light | Product | ((Z/8192)[x]/(x?°¢ + 1))?*?2
saber main | Product | ((Z/8192)[x]/(x?°¢ + 1))3*3
saber fire | Product | ((Z/8192)[x]/(x?>° + 1))**4
sntrup 653 | Quotient | (Z/4621)[x]/(x%23 — x — 1)
sntrup 761 | Quotient | (Z/4591)[x]/(x"® — x — 1)
sntrup 857 | Quotient | (Z/5167)[x]/(x®>" — x — 1)
threebears baby | Product | (Z/(23120 — 21560 _ 1))2x2
threebears mama | Product | (Z/(23120 — 21560 _ 1))3x3
threebears papa | Product | (Z/(23120 — 21560 _ 1))4x4

short element

Z040%8. £_12 | 12}; Pr1,4,17,... (spec page 23)
Z970%8. £_10,. .., 10}; Pr 1,6,29, ... (spec page 23)
Z1344%8. £ 6 ... 6}; Pr2,40,364,... (spec page 23)

(Z[X]/(X256 + 1)) S o<ica{—05,0.5)
(Z[x]/(x?)) 2 0<i<4{—05,0.5}
(Z[x]/(x*>° + 1))* 3 9<j<a{~0.5,05}

Z[x]/(x°" +1); {~1,0,1}; Pr 1,2, 1; weight 128, 128
Z[x]/(x19%* +1); {~1,0,1}; Pr 1,6, 1; weight 128, 128
Z[x]/(x19%* +1); {—1,0,1}; Pr 1,2, 1; weight 256, 256
Z[x]/ (x> +1); o<ic16{—0.5,0.5}

Z[x]/(x"%* +1); 3 g<;c16{—0.5,0.5}

Z[x]/(x*% —1); {-1,0,1}

Z[x]/(x°"" —1); {~1,0,1}

Z[x]/(x%t —1); {~1,0,1}

Z[x]/(x"™ —1); {-1,0,1}; key correlation > 0
Z[x]/(x%3 — x —1); {1, 0, 1}; weight 252

Z[x]/(x™®! — x —1); {~1,0,1}; weight 250
Z[x]/(x®" — x —1); {~1,0,1}; weight 281

Z036x8. {-1,0,1}; weight 57, 57
Z876x8. 1 0,1}; weight 223,223
Z1217x8. 1 0,1}; weight 231,231
Z[x]/(x°% + ... +1); {-1,0,1}; weight 91,91
Z[x]/(x%%% + ... + 1); {—1,0,1}; weight 106, 106
x]/(x1170 + . 41); {~1,0,1}; weight 111, 111
_) {—1, 0,1}; weight 68, 68; ending 0
x]/ —1); {-1,0,1}; weight 121, 121; ending 0
'/(N _1); { 1,0,1}; weight 194, 194; ending 0
Z[x]/ (x> + 1)) > 0<i<101—0.5,0.5}
Z[x] /(x> + 1)) > o<i<g{—0.5 0.5}
Z[X]/(X256 + 1)) > 0<i<6{—0.5 0.5}

><

N.N”N' N

NN N

Z[x]/(x° 1) {-1,0, 1}; weight 288
Z[x]/(x"1 — x —1); {-1 0 1}; weight 286

Z[X]/(857 1) {-1,0, 1}; weight 322

Z°; ZO<,<3122 "{-2, —1 0,1,2}; Pri1,632,62,321;*
Z>; Zo</<3122 { 1,0, 1}; Pr 13,38,13; *

Z* Y 0<ic3122'9{-1,0,1}; Pr5,22,5; *

key offset (numerator or noise or rounding method)
Z040%8. £ 12 . 12}: Pr1,4,17,... (spec page 23)
2976X8, {-10,...,10}; Pr1,6,29,... (spec page 23)
Z1344x8. { ,6}; Pr 2,40,364, ... (spec page 23)
(Z[x]/ (x> + 1))2: 2 0<i<41-0.5,0.5}

(Z[x]/(x?)) 2 0<i<41—0.5,0.5}

(Z[x]/(x*2° +1))*; 3 o<;-4{—0.5,0.5}

Z[x]/(x°" +1); {~1,0,1}; Pr 1,2, 1; weight 128, 128
Z[x]/(x10%* +-1); {~1,0,1}; Pr 1,6, 1; weight 128,128
Z[x]/(x10%* 4+ 1); {~1,0,1}; Pr 1,2, 1; weight 256, 256
Z[x]/(x°** +1); Zog <161-0.5,0.5}

Z[x]/(x9* +1); 3 y<jc16{—0.5,0.5}

Z[x]/(x*® —1); {-1,0,1}; weight 127,127

Z[x]/(x"" —1); {—1,0,1}; weight 127,127

Z[x]/(x®! —1); {—1,0,1}; weight 255, 255

Z[x]/(x"Ot — 1), {—1,0,1}; key correlation > 0; -(x — 1)

round {—2310, - . ., 2310} to 3Z

round {—2295, ..., 2295} to 3Z

round {—2583, .. . 25831 to 3Z

round Z /4096 to 8Z

round Z/32768 to 16Z

round Z/32768 to 8Z

round Z/8192 to 16Z

round Z /4096 to 8Z

round Z/8192 to 16Z

reduce mod x°% + . +1; round Z/1024 to 8Z
reduce mod x"° 4 ... +1; round Z/4096 to 16Z
reduce mod x?¥° + ... +1; round Z/2048 to 8Z
round Z/8192 to 8Z

round Z/8192 to 8Z

round Z/8192 to 8Z

Z[x]/(x%3 — x —1); {~1,0, 1}; invertible mod 3
Z[x]/(x"®! —x —1); {-1,0,1}; invertible mod 3
Z[x]/(857 _ x —1); {~1,0,1}; invertible mod 3

Z°; ZO<,<312 21074-2,-1,0,1,2}; Pr1,32,62,32,1; *
Z3; ZO</<312 210 { 1,0, 1}; Pr13,38,13; *

yAS ZO</<312 210 { 1,0,1}; Pr5,22,5; *

ciphertext offset (noise or rounding method)

Z8<8. £_12,...,12}; Pr1,4,17,... (spec page 23)
Z8x8. £_10,...,10}; Pr1,6,29, ... (spec page 23)
2575, {6, . 6}; Pr 2, 40,364, ... (spec page 23)

() > 0<i<41—0.5,0.5}
(x%0 +1); ¥ g<ica{—0.5,0.5}
(); 2 0<i<al—0.505}
(x*? +1); {-1,0,1}; Pr1,2,1
(x10%% £ 1); {~1,0,1}; Pr1,6,1
(

x] /(3 +1); 3 g<jc16{—0.5,0.5}

X1/ (1924 +1);"S o~ 16 {—0.5,0.5}

not applicable -

not applicable

not applicable

not applicable

bottom 256 coeffs; z — |(114(z + 2156) + 16384) /32768 |
bottom 256 coeffs; z — [(113(z 4 2175) + 16384)/32768 |
bottom 256 coeffs; z — | (101(z + 2433) + 16384) /32768 |
round Z/4096 to 64Z

round Z/32768 to 512Z

round Z /32768 to 64Z

bottom 128 coeffs; round Z /8192 to 512Z

bottom 192 coeffs; round Z /4096 to 128Z

bottom 256 coeffs; round Z /8192 to 256Z

bottom 318 coeffs; round Z/1024 to 64Z

bottom 410 coeffs; round Z/4096 to 5127

bottom 490 coeffs; round Z /2048 to 64Z

round Z/8192 to 1024Z

round Z/8192 to 512Z

round Z /8192 to 128Z

not applicable

not applicable

not applicable

Z ZO<I<3122 { 2,—1,0,1,2}; Pr 1,32,62,32,1, *
Z ZO<I<312 2 {]., 0, 1}, Pr 13, 38,].3, *
Z ZO<I<312 2 {]., O, 1}, Pr 5, 22, 5, *

set of encoded messages

8 x 8 matrix over {0, 8192, 16384, 24576}
8 x 8 matrix over {0,8192,...,57344}
8 x 8 matrix over {0, 4096, ..., 61440}

> 0<i<25610, 1665}x’
2 0<i<25610, 1665}x’

2_0<i<25610, 1665 }x’ |
256-dim subcode (see spec) of 3 4., 5121{0,126}x"

256-dim subcode (see spec) of > g -1004{0, 126}’
256-dim subcode (see spec) of > 5.; 192410, 126}’
> 0<i<256{0,6145}x' (1 + x220)

Y 0<ic25610, 6145}x (1 + x296 4 x512 4 768)

not applicable

not applicable

not applicable

not applicable

> 0<i<25610, 2310}x’
> 0<i<25610,2295}x'

Y 0<i<5610, 2583}’
8 » 8 matrix over {0, 1024, 2048, 3072}

8 x 8 matrix over {0, 4096, ..., 28672}
8 x 8 matrix over {0, 2048, ...,30720}

> 0<i<12810,4096}x'
2 0<i<19210,2048}x

2_0<i<25610, 40961’ |
128-dim subcode (see spec) of 3 g;-31810,512}x"

192-dim subcode (see spec) of } . _41910,2048}x’
256-dim subcode (see spec) of 3 _q—; 49010, 1024}x’

> 0<i<25610, 4096 }x'
2 0<i<25610, 4096 }x'

2_0<i<25610, 4096}’
not applicable

not applicable

not applicable _
256-dim subcode (see spec) of 3 ;.74 {0, 512}21%
256-dim subcode (see spec) of 3 (.74 {0, 512}21%
256-dim subcode (see spec) of 357410, 512}21%

Attacking these problems

Attack strategy with reputation
of usually being best: “primal”
strategy. Focus of this talk.
Normal layers in analysis:

Analysis of lattices
to attack systems

T

“Approximate-SVP”
analysis
R

“SVP”
analysis
R

Model of computation

10

Models of computation

Multitape Turing machine: e.g.,
sort N ints, each N°(1) bits, in
time N11to(1) space N1To(1),

11

11
Models of computation

Multitape Turing machine: e.g.,
sort N ints, each N°(1) bits, in
time N11to(1) space N1To(1),

Brent—Kung 2D circuit model

allows parallelism—e.g., sort In
time NO-5t0(1) gpace N1tTO(D),

11
Models of computation

Multitape Turing machine: e.g.,
sort N ints, each N°(1) bits, in
time N11to(1) space N1To(1),

Brent—Kung 2D circuit model

allows parallelism—e.g., sort In
time NO-5t0(1) gpace N1tTO(D),

PRAM: multiple inequivalent
definitions, untethered to physical
explanations. Sort in time no(l).

11
Models of computation

Multitape Turing machine: e.g.,
sort N ints, each N°(1) bits, in
time N11to(1) space N1To(1),

Brent—Kung 2D circuit model

allows parallelism—e.g., sort In
time NO-5t0(1) gpace N1tTO(D),

PRAM: multiple inequivalent
definitions, untethered to physical
explanations. Sort in time no(l).

Quantum computing:
similar divergence of models.

| attices

12

Rewrite each problem as finding

short nonzero so

ution to system

of homogeneous R /q equations.

Problem 1: Find
with aG + e =0,

(a, €) € R?
given G € R/q.

| attices

12

Rewrite each problem as finding

short nonzero so

ution to system

of homogeneous R /q equations.

Problem 1: Find
with aG + e =0,

Problem 2: Find

(a, €) € R?
given G € R/q.

(a,t, e) € R

with aG + e = At,
given G,A€ R/q.

12
| attices

Rewrite each problem as finding

short nonzero solution to system
of homogeneous R /q equations.

Problem 1: Find (a,) € R?
with aG + e =0, given G € R/q.

Problem 2: Find (a,t, e) € R3
with aG + e = At,
given G,A€ R/q.

Problem 3: Find

(a, t1, 2, €1,) € R> with
aG1+e1 = A1ty, aGr+ e = Aorto,
given G, A1, Gy, Ay € R/q.

Recognize each solution space

as a full-rank lattice:

Problem 1: Lattice is image of
the map (3,7) — (&, gr — aG)
from R? to R?.

13

13
Recognize each solution space

as a full-rank lattice:

Problem 1: Lattice is image of
the map (3,7) — (&, gr — aG)
from R? to R?.

Problem 2: Lattice is
image of the map (a,t,7) —
(a, t, At + gr — aG).

13
Recognize each solution space

as a full-rank lattice:

Problem 1: Lattice is image of
the map (3,7) — (&, gr — aG)
from R? to R?.

Problem 2: Lattice is
image of the map (a,t,7) —
(a, t, At + gr — aG).

Problem 3: Lattice is image of

the map (3, t;, tr, 11,) —
(a, t1, t2, A1t1 + g1 — 3Gy,
Axty + qry — aGo).

14
Module structure

Each of these lattices is an R-

module, and thus has, generically,
many Independent short vectors.

14

Module structure

Each of these lattices is an R-

module, and thus has, generically,

many Independent short vectors.

e.g. in Problem 2:

| attice
| attice

1dS S

1dS S

nort (a, t, e).

nort (xa, xt, xe).

Lattice has short (x%a, x°t, x%e).

etc.

14
Module structure

Each of these lattices is an R-

module, and thus has, generically,
many Independent short vectors.

e.g. In Problem 2:
Lattice has short (a, t, e).

Lattice has short (xa, xt, xe).
| attice has short (><251,x2t,x2).
etc.

Many more lattice vectors
are fairly short combinations
of independent vectors:

e.g., ((x+1)a, (x+ 1)t,(x+ 1)e).

2001 May-Silverman, for Problem
1: Force a few coefficients of

a to be 0. This reduces lattice
rank, speeding up various attacks,
despite lower success chance.

15

2001 May-Silverman, for Problem
1: Force a few coefficients of

a to be 0. This reduces lattice
rank, speeding up various attacks,
despite lower success chance.

(Always a speedup? Seems to be
a slowdown if g is very large.)

15

2001 May-Silverman, for Problem
1: Force a few coefficients of

a to be 0. This reduces lattice
rank, speeding up various attacks,
despite lower success chance.

(Always a speedup? Seems to be
a slowdown if g is very large.)

Other problems: same speedup.
e.g. Problem 2: Force many
coefficients of (a, t) to be 0.
Bai—Galbraith special case:
Force t = 1, and force

a few coefficients of a to be 0.

(Also slowdown if g is very large?)

15

16

Standard analysis for Problem 1

| attice has rank 2 - 761 = 1522.

Uniform random small weight-w

secret a has

ength /w =~ 17.

16

Standard analysis for Problem 1

| attice has rank 2 - 761 = 1522.

Uniform random small weight-w
secret a has length «/w =~ 17.

Uniform random small secret

e has length usually close to

\/1522/3 ~ 23. (What if it's

SMad

fixed

ler? What if it's larger? Does
weight change security?)

16
Standard analysis for Problem 1

| attice has rank 2 - 761 = 1522.

Uniform random small weight-w
secret a has length «/w =~ 17.

Uniform random small secret

e has length usually close to
\/1522/3 ~ 23. (What if it's
smaller? What if it's larger? Does

fixed weight change security?)

Attack parameter: k = 13.
Force k positions in a to be O:
restrict to sublattice of rank 1509.

Pr[a is in sublattice] ~ 0.2%.

Attacker is just as happy to find
another solution such as (xa, xe).

17

17
Attacker is just as happy to find

another solution such as (xa, xe).

Standard analysis for, e.g.,
Z[x]/(x"®1 —1): Each (X a, x/e)
has chance ~0.2% of being in
sublattice. These 761 chances
are independent. (No, they
aren't; also, total Pr depends on
attacker's choice of positions.)

17
Attacker is just as happy to find

another solution such as (xa, xe).

Standard analysis for, e.g.,
Z[x]/(x"®1 —1): Each (X a, x/e)
has chance ~0.2% of being in
sublattice. These 761 chances
are independent. (No, they
aren't; also, total Pr depends on
attacker's choice of positions.)

lgnore bigger solutions (aa, ae).
(How hard are these to find?)

17
Attacker is just as happy to find

another solution such as (xa, xe).

Standard analysis for, e.g.,
Z[x]/(x"®1 —1): Each (X a, x/e)
has chance ~0.2% of being in
sublattice. These 761 chances
are independent. (No, they
aren't; also, total Pr depends on
attacker's choice of positions.)

lgnore bigger solutions (aa, ae).
(How hard are these to find?)

Pretend this analysis applies to
Z[x]/(x"®! — x —1). (It doesn't.)

Write equation e = gr — aG
as 761 equations on coefficients.

18

Write equation e = gr — aG
as 761 equations on coefficients.

Attack parameter: m = 600.

lgnore 761 — m = 161 equations:
l.e., project e onto 600 positions.

Projected sublattice rank

d = 1509 — 161 = 1348: det ¢°%°.

18

18
Write equation e = gr — aG

as 761 equations on coefficients.
Attack parameter: m = 600.

lgnore 761 — m = 161 equations:
l.e., project e onto 600 positions.

Projected sublattice rank
d = 1509 — 161 = 1348: det ¢°%°.

Attack parameter: A = 1.331876.

Rescaling: Assign weight A to
positions In a. Increases length
of a to A\\/w = 23; increases det

to A748q%%0 (Is this X\ optimal?
Interaction with e size variation?)

| attice-basis reduction

Attack parameter: B = 525.

Use BKZ-6 algorithm to reduce
attice basis. (What about
alternatives to BKZ?)

19

| attice-basis reduction

Attack parameter: B = 525.

Use BKZ-6 algorithm to reduce
attice basis. (What about
alternatives to BKZ?)

Standard analysis of BKZ-6:

“Normally” finds nonzero vector
of length §9(det L)}/9 where

6 = (B(mp)!/F [(2me))!/(21P=1),

19

| attice-basis reduction

Attack parameter: B = 525.

Use BKZ-6 algorithm to reduce
attice basis. (What about
alternatives to BKZ?)

Standard analysis of BKZ-6:

“Normally” finds nonzero vector
of length §9(det L)}/9 where
6 = (B(nB)/F/(2me)) /21,

(This 6 formula is an asymptotic
claim without claimed error
bounds. Does not match
experiments for specific d.)

19

Standard analysis, continued:

“Geometric-series assumption”
holds. (What about deviations
identified in 2018 experiments?)

20

Standard analysis, continued:

“Geometric-series assumption”
holds. (What about deviations
identified in 2018 experiments?)

BKZ-£ finds unique (mod =)

shortest nonzero vector <

length < §2=9(det L)1/9,/d/B.
(What about deviations identified
in 2017 experiments?)

20

Standard analysis, continued:

“Geometric-series assumption”
holds. (What about deviations
identified in 2018 experiments?)

BKZ-g finds unique (mod +)
shortest nonzero vector &

length < §2=9(det L)1/9,/d/B.
(What about deviations identified
in 2017 experiments?)

Hence the attack finds (a, e),
assuming forcing worked. If it
didn't, retry. (Are these tries

independent? Should they use
new parameters? Grover?)

20

How long does BKZ-B take?

Standard answer:

2153.3

20.292,3 _

operations by “sieving’.

21

21
How long does BKZ-B take?

Standard answer: 202926 —

21933 gperations by “sieving”.

(Plugging o(1) = 0 into the
2(0.292+0(1))B 45ymptotic does
not match experiments. What's
the actual performance? And
what exactly is an “operation” ?)

21
How long does BKZ-B take?

Standard answer: 202926 —

21933 gperations by “sieving”.

(Plugging o(1) = 0 into the
2(0.292+0(1))B 45ymptotic does
not match experiments. What's
the actual performance? And
what exactly is an “operation” ?)

0.2926 (fake) cost for “sieving”
Is advertised as being below
0.187B log, p — 1.0198 + 16.1
(questionable extrapolation of
experiments) for “enumeration”.

Note fragility of comparison.

S<43 = E < S for
S =0.396p6, E =
0.187Blog, p — 1.0198 + 16.1.

22

Note fragility of comparison.

S§<43 = E < S for
S =0.3968, E =
0.187Blog, p — 1.0198 + 16.1.

S<225= E < S for
S =0.3698, E =
(0.187B log, B —1.0196+16.1)/2.

22

22
Note fragility of comparison.

S§<43 = E < S for
S =0.3968, E =
0.187Blog, p — 1.0198 + 16.1.

S<225= E < S for
S =0.3698, E =
(0.187B log, B —1.0196+16.1)/2.

S§<86= E < S for
S =0.2658, E =
(0.1258 log, B — 0.5458 + 10)/2.

Note fragility of comparison.

S§<43 = E < S for
S =0.3968, E =
0.187Blog, p — 1.0198 + 16.1.

5<225 = E < S for
S =0.3698, E =

(0.187B log, B — 1.0198+ 16.1) /2.

S§<86= E < S for
S =0.2658, E =
(0.1258 log, B — 0.5458 + 10)/2.

Need to get analyses right!
First step: Include models
that account for memory cost.

22

sntrup761 evaluations from
"NTRU Prime: round 2" Table 2:

lgnoring hybrid attacks:

363
363
153
203

185
185
139
203

enum, free memory cost
enum, real memory cost
sieving, free memory cost
sieving, real memory cost

Including hybrid attacks:

230
207
153
203

169
169
139
130

enum, free memory cost
enum, real memory cost
sieving, free memory cost
sieving, real memory cost

Security levels:

pre-quantum
. ‘post—quantum

Hybrid attacks

Extreme specia
Search all smal

case:
weight-w a.

24

24
Hybrid attacks

Extreme special case:

Search all small weight-w a.

Grover reduces cost to \/_ .

24
Hybrid attacks

Extreme special case:

Search all small weight-w a.
Grover reduces cost to v/ .

Can also get “+/ " using memory
without quantum computation.

Represent a as a; + a». (What
is the optimal ag, ap overlap?)

Look for approximate collision
between Hl(al) and Hg(ag).

24
Hybrid attacks

Extreme special case:

Search all small weight-w a.
Grover reduces cost to v/ .

Can also get “+/ " using memory
without quantum computation.

Represent a as a; + a». (What
is the optimal ag, ap overlap?)
Look for approximate collision
between Hl(al) and Hg(ag).

e.g. Problem 1: aG small
so a1G ~ —a»G. (How fast are

near-neighbor algorithms?)

25
Seems worse than basis reduction

for typical {a}.

25
Seems worse than basis reduction

for typical {a}. But hybrid attack
uses basis reduction and search;
can beat basis reduction alone.

Seems worse than basis reduction
for typical {a}. But hybrid attack
uses basis reduction and search;
can beat basis reduction alone.

Unified lattice description:
{(u, uM + qr)} given matrix M.

25

25
Seems worse than basis reduction

for typical {a}. But hybrid attack
uses basis reduction and search;
can beat basis reduction alone.

Unified lattice description:
{(u, uM + qr)} given matrix M.

Relabel: {(v,w,vK 4+ wL + qr)}.
Attacker chooses subset of
u indices to relabel as v.

25
Seems worse than basis reduction

for typical {a}. But hybrid attack
uses basis reduction and search;
can beat basis reduction alone.

Unified lattice description:
{(u, uM + qr)} given matrix M.

Relabel: {(v,w,vK 4+ wL + qr)}.
Attacker chooses subset of
u indices to relabel as v.

Use BKZ-F to find short B
with {(w, wL 4 qr)} = {zB}.

25
Seems worse than basis reduction

for typical {a}. But hybrid attack
uses basis reduction and search;
can beat basis reduction alone.

Unified lattice description:
{(u, uM + qr)} given matrix M.

Relabel: {(v,w,vK 4+ wL + qr)}.
Attacker chooses subset of
u indices to relabel as v.

Use BKZ-F to find short B
with {(w, wL 4 qr)} = {zB}.

Now {(v,w,vK + wL + qr)}
= {(v,v(0,K) + zB)}.

Search through many of the
most likely choices of v.

26

Search through many of the
most likely choices of v.

For each v: Quickly find z with
zB ~ —v(0, K). Check whether

(v, v(0, K) + zB) is short enough.

26

Search through many of the
most likely choices of v.

For each v: Quickly find z with
zB ~ —v(0, K). Check whether

(v, v(0, K) + zB) is short enough.

Can again do quantum search,
or approximate collision search.

26

Search through many of the
most likely choices of v.

For each v: Quickly find z with
zB ~ —v(0, K). Check whether

(v, v(0, K) + zB) is short enough.

Can again do quantum search,
or approximate collision search.

Can afford exponentially many z,
maybe compensating for lower B.

26

Search through many of the
most likely choices of v.

For each v: Quickly find z with
zB ~ —v(0, K). Check whether

(v, v(0, K) + zB) is short enough.

Can again do quantum search,
or approximate collision search.

Can afford exponentially many z,
maybe compensating for lower B.

Common claim: This saves time
only for sufficiently narrow {a}.
(Is this true, or a calculation error

in existing algorithm analyses?)

26

