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Non-interactive key exchange

Alice: secret a, public aG . Bob: secret b, public bG .
Shared secret a(bG ) = (ab)G = (ba)G = b(aG ).

DH: 1976 Diffie–Hellman.
ECDH: 1985 Miller, 1987 Koblitz.
Cost poly(λ) for pre-quantum security level 2λ

(assuming that the best attacks known are optimal).
Fast addition of public keys → post-quantum break.

CRS: 2006 Rostovtsev–Stolbunov, 2006 Couveignes.
Slow. Not obviously not post-quantum.
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CSIDH: An Efficient Post-Quantum Commutative Group
Action

Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny,
Joost Renes 2018

I Closest thing we have in PQC to normal DH key exchange:
Keys can be reused, keys can be blinded; no difference
between initiator & responder.

I Public keys are represented by some A ∈ Fp; p fixed prime.
I Alice computes and distributes her public key A.

Bob computes and distributes his public key B.
I Alice and Bob do computations on each other’s public keys

to obtain shared secret.
I Fancy math: computations start on some elliptic curve

EA : y2 = x3 + Ax2 + x ,
use isogenies to move to a different curve.

I Computations need arithmetic (add, mult, div) modulo p
and elliptic-curve computations.
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Square-and-multiply
Reminder: DH in group with #G = 23. Alice computes g13.
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Pretty pictures by Chloe Martindale and Lorenz Panny.
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Cycles are compatible: [right, then left] = [left, then right], etc.
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Union of cycles: rapid mixing
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CSIDH: Nodes are now elliptic curves and edges are isogenies.
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Graphs of elliptic curves
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Nodes: Supersingular elliptic curves EA : y2 = x3 + Ax2 + x over F419.
Edges: 3-, 5-, and 7-isogenies.

Pretty pictures by Chloe Martindale and Lorenz Panny.
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Non-interactive key exchange

Alice: secret a, public aG . Bob: secret b, public bG .
Shared secret a(bG ) = (ab)G = (ba)G = b(aG ).

DH: 1976 Diffie–Hellman.
ECDH: 1985 Miller, 1987 Koblitz.
Cost poly(λ) for pre-quantum security level 2λ

(assuming that the best attacks known are optimal).
Fast addition of public keys → post-quantum break.

CRS: 2006 Rostovtsev–Stolbunov, 2006 Couveignes.
CSIDH: 2018 Castryck-Lange-Martindale-Panny-Renes.
Cost poly(λ) for pre-quantum security level 2λ.
Cost poly(λ) for post-quantum security level 2λ.
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Encryption systems with small public keys
Key bits where all known attacks take 2λ operations
(naive serial attack metric, ignoring memory cost):

pre-quantum post-quantum

SIDH, SIKE (24 + o(1))λ (36 + o(1))λ
compressed (14 + o(1))λ (21 + o(1))λ
CRS, CSIDH (4 + o(1))λ superlinear
ECDH (2 + o(1))λ exponential

Hard problem in CSIDH:
Given curves E0 and E = ϕ(E0) find isogeny ϕ.
Also: ϕ needs to be quickly computable, ϕ = [P1]a1 · · · [Pd ]ad .

Subexp 2010 Childs–Jao–Soukharev attack (on CRS):
This problem can be seen as a hidden-shift problem.
2003 Kuperberg or 2004 Regev or 2011 Kuperberg solves this in
subexponentially many queries.

Attack works for any commutative group action, thus also CSIDH.

Bernstein, Lange, Martindale, Panny quantum.isogeny.org 10

https://quantum.isogeny.org


Encryption systems with small public keys
Key bits where all known attacks take 2λ operations
(naive serial attack metric, ignoring memory cost):

pre-quantum post-quantum

SIDH, SIKE (24 + o(1))λ (36 + o(1))λ
compressed (14 + o(1))λ (21 + o(1))λ
CRS, CSIDH (4 + o(1))λ superlinear
ECDH (2 + o(1))λ exponential

Hard problem in CSIDH:
Given curves E0 and E = ϕ(E0) find isogeny ϕ.
Also: ϕ needs to be quickly computable, ϕ = [P1]a1 · · · [Pd ]ad .

Subexp 2010 Childs–Jao–Soukharev attack (on CRS):
This problem can be seen as a hidden-shift problem.
2003 Kuperberg or 2004 Regev or 2011 Kuperberg solves this in
subexponentially many queries.

Attack works for any commutative group action, thus also CSIDH.
Bernstein, Lange, Martindale, Panny quantum.isogeny.org 10

https://quantum.isogeny.org


Major questions

What CSIDH key sizes are needed for
post-quantum security level 264? 296? 2128?

Subexp attack: many quantum CSIDH queries.

• How many queries do these attacks perform?
2011 Kuperberg supersedes previous papers.

• How is attack affected by occasional errors
and non-uniform distributions over the group?

• How expensive is each CSIDH query?
See our paper—full 56-page version online, with detailed
analysis and many optimizations.

• What about memory, using parallel AT metric?
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Verifying quantum costs on your laptop

We provide software to compute CSIDH group action using bit
operations.
Automatic tallies of nonlinear ops (AND, OR), linear ops (XOR,
NOT).

Generic conversions:
sequence of bit ops with ≤B nonlinear ops
⇒ sequence of reversible ops with ≤2B Toffoli ops
⇒ sequence of quantum gates with ≤14B T -gates.

Building confidence in correctness of output:
1. Compare output to Sage script for CSIDH.
2. Generating-function analysis of exact error rates.
Compare to experiments with noticeable error rates.
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Case study: one CSIDH-512 query

Consider query with exponents uniform over {−5, . . . , 5}74 for the
same 74 isogenies as in the constructive use.
For error rate of <2−32 (maybe ok) this requires nonlinear bit ops:

≈ 251 by 2018 Jao–LeGrow–Leonardi–Ruiz-Lopez.

1118827416420 ≈ 240 by our Algorithm 7.1.
765325228976 ≈ 0.7 · 240 by our Algorithm 8.1.

⇒ ≈243.3 T -gates using ≈240 qubits.
Can do ≈245.3 T -gates using ≈220 qubits.
Total gates (T+Clifford): ≈246.9.

Variations in 512, {−5, . . . , 5}, 2−32: see paper.
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Case study: full CSIDH-512 attack
CSIDH-512 user has inputs [P1]a1 · · · [Pd ]ad with
(a1, . . . , ad) ∈ {−5, . . . , 5}74
but Kuperberg assumes [P1]a with uniform a ∈ Z/N.

• Approach 1: Compute lattice
L = Ker(a1, . . . , ad 7→ [P1]a1 · · · [Pd ]ad ).
Given a ∈ Zd , find close v ∈ L:
distance exp((logN)1/2+o(1)) using time exp((logN)1/2+o(1)).

• Approach 2: Increase d up to exp((logN)1/2+o(1)).
Search randomly for small relations.
Time exp((logN)1/2+o(1)) to compute group action.

• Approach 3 (ours): Uniform (a1, . . . , ad) in {−c , . . . , c}d .
Choose c somewhat larger than users do.
Not much slowdown in action.
Surely g = [P1]a1 · · · [Pd ]ad is nearly uniformly distributed.
Need more analysis of impact of these redundant
representations upon Kuperberg’s algorithm.
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