
1

McTiny:

McEliece for tiny network servers

Daniel J. Bernstein,

uic.edu, rub.de

Tanja Lange, tue.nl

Fundamental literature:

1962 Prange (attack)

+ many more attack papers.

1968 Berlekamp (decoder).

1970–1971 Goppa (codes).

1978 McEliece (cryptosystem).

1986 Niederreiter (compression)

+ many more optimizations.



2

Encoding and decoding

1978 McEliece public key:

matrix G over F2.

Normally m 7→ mG is injective.



2

Encoding and decoding

1978 McEliece public key:

matrix G over F2.

Normally m 7→ mG is injective.

Ciphertext: vector C = mG + e.

Uses secret codeword mG,

weight-w error vector e.



2

Encoding and decoding

1978 McEliece public key:

matrix G over F2.

Normally m 7→ mG is injective.

Ciphertext: vector C = mG + e.

Uses secret codeword mG,

weight-w error vector e.

1978 parameters for 264 security

goal: 524× 1024 matrix, w = 50.



2

Encoding and decoding

1978 McEliece public key:

matrix G over F2.

Normally m 7→ mG is injective.

Ciphertext: vector C = mG + e.

Uses secret codeword mG,

weight-w error vector e.

1978 parameters for 264 security

goal: 524× 1024 matrix, w = 50.

Public key is secretly generated

with binary Goppa code structure

that allows efficient decoding:

C 7→ mG; e.



3

Binary Goppa codes

Parameters: q ∈ {8; 16; 32; : : :};
w ∈ {2; 3; : : : ; b(q − 1)= lg qc};
n ∈ {w lg q + 1; : : : ; q − 1; q}.



3

Binary Goppa codes

Parameters: q ∈ {8; 16; 32; : : :};
w ∈ {2; 3; : : : ; b(q − 1)= lg qc};
n ∈ {w lg q + 1; : : : ; q − 1; q}.

Secrets: distinct ¸1; : : : ; ¸n ∈ Fq;

monic irreducible degree-w

polynomial g ∈ Fq[x ].



3

Binary Goppa codes

Parameters: q ∈ {8; 16; 32; : : :};
w ∈ {2; 3; : : : ; b(q − 1)= lg qc};
n ∈ {w lg q + 1; : : : ; q − 1; q}.

Secrets: distinct ¸1; : : : ; ¸n ∈ Fq;

monic irreducible degree-w

polynomial g ∈ Fq[x ].

Goppa code: kernel of

the map v 7→
P
i vi=(x − ¸i )

from Fn2 to Fq[x ]=g .

Normally dimension n − w lg q.



3

Binary Goppa codes

Parameters: q ∈ {8; 16; 32; : : :};
w ∈ {2; 3; : : : ; b(q − 1)= lg qc};
n ∈ {w lg q + 1; : : : ; q − 1; q}.

Secrets: distinct ¸1; : : : ; ¸n ∈ Fq;

monic irreducible degree-w

polynomial g ∈ Fq[x ].

Goppa code: kernel of

the map v 7→
P
i vi=(x − ¸i )

from Fn2 to Fq[x ]=g .

Normally dimension n − w lg q.

McEliece uses random G ∈ Fk×n2

whose image is this code.



4

One-wayness (“OW-Passive”)

Fundamental security question:

Can attacker efficiently find

random m; e given random public

key G and ciphertext mG+e?



4

One-wayness (“OW-Passive”)

Fundamental security question:

Can attacker efficiently find

random m; e given random public

key G and ciphertext mG+e?

1962 Prange: simple attack idea

guiding sizes in 1978 McEliece.



4

One-wayness (“OW-Passive”)

Fundamental security question:

Can attacker efficiently find

random m; e given random public

key G and ciphertext mG+e?

1962 Prange: simple attack idea

guiding sizes in 1978 McEliece.

The McEliece system

(with later key-size optimizations)

uses (c0 + o(1))–2(lg –)2-bit keys

as –→∞ to achieve 2– security

against Prange’s attack.

Here c0 ≈ 0:7418860694.



5

≥26 subsequent publications

analyzing one-wayness of system:

1981 Clark–Cain,

crediting Omura.

1988 Lee–Brickell.

1988 Leon.

1989 Krouk.

1989 Stern.

1989 Dumer.

1990 Coffey–Goodman.

1990 van Tilburg.

1991 Dumer.

1991 Coffey–Goodman–Farrell.

1993 Chabanne–Courteau.

1993 Chabaud.



6

1994 van Tilburg.

1994 Canteaut–Chabanne.

1998 Canteaut–Chabaud.

1998 Canteaut–Sendrier.

2008 Bernstein–Lange–Peters.

2009 Bernstein–Lange–Peters–

van Tilborg.

2009 Finiasz–Sendrier.

2011 Bernstein–Lange–Peters.

2011 May–Meurer–Thomae.

2012 Becker–Joux–May–Meurer.

2013 Hamdaoui–Sendrier.

2015 May–Ozerov.

2016 Canto Torres–Sendrier.

2017 Both–May.



7

The McEliece system

uses (c0 + o(1))–2(lg –)2-bit keys

as –→∞ to achieve 2– security

against all attacks known today.

Same c0 ≈ 0:7418860694.



7

The McEliece system

uses (c0 + o(1))–2(lg –)2-bit keys

as –→∞ to achieve 2– security

against all attacks known today.

Same c0 ≈ 0:7418860694.

Replacing – with 2–

stops all known quantum attacks:

2008 Bernstein, 2017 Kachigar–

Tillich, 2018 Kirshanova.



7

The McEliece system

uses (c0 + o(1))–2(lg –)2-bit keys

as –→∞ to achieve 2– security

against all attacks known today.

Same c0 ≈ 0:7418860694.

Replacing – with 2–

stops all known quantum attacks:

2008 Bernstein, 2017 Kachigar–

Tillich, 2018 Kirshanova.

Modern example,

mceliece6960119 parameter set

(2008 Bernstein–Lange–Peters):

q = 8192, n = 6960, w = 119.



8

NIST competition

2016: U.S. National Institute of

Standards and Technology starts

“post-quantum” competition.

2017: 69 complete submissions.

2019: NIST selects

26 submissions for round 2.



8

NIST competition

2016: U.S. National Institute of

Standards and Technology starts

“post-quantum” competition.

2017: 69 complete submissions.

2019: NIST selects

26 submissions for round 2.

“Classic McEliece”: submission

from team of 12 people.

Round-2 options:

8192128, 6960119, 6688128,

460896, 348864.



9

Is Classic McEliece same as

1978 McEliece? Not exactly.

1978 McEliece prompted a

huge amount of followup work.

Some work improves efficiency

while clearly preserving security:

e.g., Niederreiter compression;

e.g., many decoding speedups.

Classic McEliece uses all this.

Classic McEliece also aims for

more than OW-Passive security.



10

Niederreiter key compression

Generator matrix for code Γ

of length n and dimension k :

G′ ∈ Fk×n2 with Γ = Fk2 · G′.

McEliece public key: G = SG′ for

random invertible S ∈ Fk×k2 .



10

Niederreiter key compression

Generator matrix for code Γ

of length n and dimension k :

G′ ∈ Fk×n2 with Γ = Fk2 · G′.

McEliece public key: G = SG′ for

random invertible S ∈ Fk×k2 .

Niederreiter instead reduces G′

to the unique generator matrix in

systematic form: G = (Ik |R).



10

Niederreiter key compression

Generator matrix for code Γ

of length n and dimension k :

G′ ∈ Fk×n2 with Γ = Fk2 · G′.

McEliece public key: G = SG′ for

random invertible S ∈ Fk×k2 .

Niederreiter instead reduces G′

to the unique generator matrix in

systematic form: G = (Ik |R).

Pr ≈29% that systematic form

exists. Security loss: <2 bits.



11

Niederreiter ciphertext compression

Use Niederreiter key G = (Ik |R).

McEliece ciphertext: mG+e ∈ Fn2.



11

Niederreiter ciphertext compression

Use Niederreiter key G = (Ik |R).

McEliece ciphertext: mG+e ∈ Fn2.

Niederreiter ciphertext, shorter:

He> ∈ F
(n−k)×1
2

where H = (R>|In−k ).



11

Niederreiter ciphertext compression

Use Niederreiter key G = (Ik |R).

McEliece ciphertext: mG+e ∈ Fn2.

Niederreiter ciphertext, shorter:

He> ∈ F
(n−k)×1
2

where H = (R>|In−k ).

Given H and Niederreiter’s He>,

can attacker efficiently find e?



11

Niederreiter ciphertext compression

Use Niederreiter key G = (Ik |R).

McEliece ciphertext: mG+e ∈ Fn2.

Niederreiter ciphertext, shorter:

He> ∈ F
(n−k)×1
2

where H = (R>|In−k ).

Given H and Niederreiter’s He>,

can attacker efficiently find e?

If so, attacker can efficiently

find m; e given G and mG + e:



11

Niederreiter ciphertext compression

Use Niederreiter key G = (Ik |R).

McEliece ciphertext: mG+e ∈ Fn2.

Niederreiter ciphertext, shorter:

He> ∈ F
(n−k)×1
2

where H = (R>|In−k ).

Given H and Niederreiter’s He>,

can attacker efficiently find e?

If so, attacker can efficiently

find m; e given G and mG + e:

compute H(mG + e)> = He>;

find e; compute m from mG.



12

Other choices of codes

Niederreiter suggested Reed–

Solomon codes. Broken in 1992

by Sidelnikov and Shestakov.

More corpses: e.g., concatenated

codes, Reed–Muller codes, several

AG codes, Gabidulin codes,

several LDPC codes.



12

Other choices of codes

Niederreiter suggested Reed–

Solomon codes. Broken in 1992

by Sidelnikov and Shestakov.

More corpses: e.g., concatenated

codes, Reed–Muller codes, several

AG codes, Gabidulin codes,

several LDPC codes.

No proof that changing codes

preserves security level.

Classic McEliece: binary Goppa.



13

IND-CCA2 security

OW-Passive security is too weak.

Messages are not random.

Attackers choose ciphertexts

and observe reactions.



13

IND-CCA2 security

OW-Passive security is too weak.

Messages are not random.

Attackers choose ciphertexts

and observe reactions.

Classic McEliece does more work

for “IND-CCA2 security”.

Combines coding theory with

AES-GCM “authenticated cipher”

and SHA-3 “hash function”.

All messages are safe.

Reusing keys is safe.



14

Time

Cycles on Intel Haswell CPU core:

params op cycles

348864 enc 45888

460896 enc 82684

6688128 enc 153372

6960119 enc 154972

8192128 enc 183892

348864 dec 136840

460896 dec 273872

6688128 dec 320428

6960119 dec 302460

8192128 dec 324008



15

“Wait, you’re leaving out the

most important cost! It’s crazy

to have such slow keygen!”

params op cycles

348864 keygen 140870324

348864f keygen 82232360

460896 keygen 441517292

460896f keygen 282869316

6688128 keygen 1180468912

6688128f keygen 625470504

6960119 keygen 1109340668

6960119f keygen 564570384

8192128 keygen 933422948

8192128f keygen 678860388



16

1. What evidence do we have

that this keygen time is

a problem for applications?



16

1. What evidence do we have

that this keygen time is

a problem for applications?

2. Classic McEliece is designed

for IND-CCA2 security, so

a key can be generated once and

used a huge number of times.



16

1. What evidence do we have

that this keygen time is

a problem for applications?

2. Classic McEliece is designed

for IND-CCA2 security, so

a key can be generated once and

used a huge number of times.

3. McEliece’s binary operations

are very well suited for hardware.

See 2018 Wang–Szefer–

Niederhagen. Isn’t this what’s

most important for the future?



17

Bytes communicated

params object bytes

348864 ciphertext 128

460896 ciphertext 188

6688128 ciphertext 240

6960119 ciphertext 226

8192128 ciphertext 240

348864 key 261120

460896 key 524160

6688128 key 1044992

6960119 key 1047319

8192128 key 1357824

“It’s crazy to have big keys!”



18

What evidence do we have

that these key sizes are

a problem for applications?



18

What evidence do we have

that these key sizes are

a problem for applications?

Compare to, e.g., web-page size.

httparchive.org statistics:

50% of web pages are >1.8MB.

25% of web pages are >3.5MB.

10% of web pages are >6.5MB.

The sizes keep growing.

Typically browser receives one web

page from multiple servers, but

reuses servers for more pages.

Is key size a big part of this?



19

2015 McGrew “Living with

postquantum cryptography”:

Use standard networking

techniques (multicasts, caching,

etc.) to reduce cost of

communicating public keys.

Each ciphertext has to travel all

the way between the client and

the server, but public keys

can often be retrieved through

much faster local network.

Again IND-CCA2 is critical.



20

Denial of service

Standard low-cost attack

strategy: make a huge number

of connections to a server, filling

up all memory available on server

for keeping track of connections.

SYN flood, HTTP flood, etc.

Server is forced to stop serving

some connections, including

connections from honest clients.



20

Denial of service

Standard low-cost attack

strategy: make a huge number

of connections to a server, filling

up all memory available on server

for keeping track of connections.

SYN flood, HTTP flood, etc.

Server is forced to stop serving

some connections, including

connections from honest clients.

But some Internet protocols

are not vulnerable to this attack.



21

A tiny network server

handles and immediately forgets

each incoming network packet,

without allocating any memory.



21

A tiny network server

handles and immediately forgets

each incoming network packet,

without allocating any memory.

Can use tiny network servers

to publish information.

Unauthenticated example from

last century: “anonymous NFS”.



21

A tiny network server

handles and immediately forgets

each incoming network packet,

without allocating any memory.

Can use tiny network servers

to publish information.

Unauthenticated example from

last century: “anonymous NFS”.

1997 Aura–Nikander, 2005 Shieh–

Myers–Sirer modify any protocol

to use a tiny network server

if an “input continuation”

fits into a network packet.



22

“Here’s a natural scenario that

McEliece can’t possibly handle:



22

“Here’s a natural scenario that

McEliece can’t possibly handle:

• To stop memory floods,

I want a tiny network server.



22

“Here’s a natural scenario that

McEliece can’t possibly handle:

• To stop memory floods,

I want a tiny network server.

• For forward secrecy,

I want the server to encrypt a

session key to an ephemeral

public key sent by the client.



22

“Here’s a natural scenario that

McEliece can’t possibly handle:

• To stop memory floods,

I want a tiny network server.

• For forward secrecy,

I want the server to encrypt a

session key to an ephemeral

public key sent by the client.

• This forces the public key

to fit into a network packet.

Is that 1500 bytes? Or 1280?

Either way, your key is too big.



22

“Here’s a natural scenario that

McEliece can’t possibly handle:

• To stop memory floods,

I want a tiny network server.

• For forward secrecy,

I want the server to encrypt a

session key to an ephemeral

public key sent by the client.

• This forces the public key

to fit into a network packet.

Is that 1500 bytes? Or 1280?

Either way, your key is too big.

It’s crazy if post-quantum

standards can’t handle this!”



23

Bernstein–Lange “McTiny”

handles this scenario.



23

Bernstein–Lange “McTiny”

handles this scenario.

1. The easy part: Client

encrypts session key to server’s

long-term McEliece public key.

This establishes an encrypted

authenticated session.



23

Bernstein–Lange “McTiny”

handles this scenario.

1. The easy part: Client

encrypts session key to server’s

long-term McEliece public key.

This establishes an encrypted

authenticated session.

Attacker who records this session

and later steals server’s secret key

can then decrypt everything.

Remaining problem:

within this session, encrypt to an

ephemeral key for forward secrecy.



24

2. Client decomposes ephemeral

public key K = R> into blocks:0BB@
K1;1 K1;2 K1;3 : : : K1;‘
K2;1 K2;2 K2;3 : : : K2;‘

...
...

...
. . .

...
Kr;1 Kr;2 Kr;3 : : : Kr;‘

1CCA :

Each block is small enough

to fit into a network packet.



24

2. Client decomposes ephemeral

public key K = R> into blocks:0BB@
K1;1 K1;2 K1;3 : : : K1;‘
K2;1 K2;2 K2;3 : : : K2;‘

...
...

...
. . .

...
Kr;1 Kr;2 Kr;3 : : : Kr;‘

1CCA :

Each block is small enough

to fit into a network packet.

3. Client sends Ki ;j to server.

Server sends back Ki ;je
>
j

encrypted to a server cookie key.

Server cookie key is not per-client.

Key is erased after a few minutes.



25

4. Client sends one packet

containing several Ki ;je
>
j .

Server sends back combination.



25

4. Client sends one packet

containing several Ki ;je
>
j .

Server sends back combination.

5. Repeat to combine everything,

including In−k part of H.



25

4. Client sends one packet

containing several Ki ;je
>
j .

Server sends back combination.

5. Repeat to combine everything,

including In−k part of H.

6. Server sends final He>

directly to client,

encrypted by session key

but not by cookie key.

7. Client decrypts.



25

4. Client sends one packet

containing several Ki ;je
>
j .

Server sends back combination.

5. Repeat to combine everything,

including In−k part of H.

6. Server sends final He>

directly to client,

encrypted by session key

but not by cookie key.

7. Client decrypts.

Forward secrecy: Once cookie key

and secret key for H are erased,

client and server cannot decrypt.



26

Classic McEliece recap

Security asymptotics unchanged

by 40 years of cryptanalysis.

Ciphertexts among the shortest.

IND-CCA2 security.

Open-source implementations:

fast constant-time software,

also FPGA implementation.

No patents.

Big keys, but still compatible

with tiny network servers.

https://classic.mceliece.org


