
Code-based crypto for small servers

Tanja Lange

Technische Universiteit Eindhoven

SIAM Conference on Applied Algebraic Geometry
13 July 2019



Code-based encryption

I 1971 Goppa: Fast decoders for many matrices H.
I 1978 McEliece: Use Goppa codes for public-key crypto.

I Original parameters designed for 264 security.
I 2008 Bernstein–Lange–Peters: broken in ≈260 cycles.
I Easily scale up for higher security.

I 1986 Niederreiter: Simplified and smaller version of McEliece.

I 1962 Prange: simple attack idea guiding sizes in 1978
McEliece.
The McEliece system (with later key-size optimizations)
uses (c0 + o(1))λ2(lg λ)2-bit keys as λ→∞
to achieve 2λ security against Prange’s attack.
Here c0 ≈ 0.7418860694.

2



Security analysis

Some papers studying algorithms for attackers:
1962 Prange; 1981 Clark–Cain, crediting Omura; 1988 Lee–Brickell; 1988

Leon; 1989 Krouk; 1989 Stern; 1989 Dumer; 1990 Coffey–Goodman;

1990 van Tilburg; 1991 Dumer; 1991 Coffey–Goodman–Farrell; 1993

Chabanne–Courteau; 1993 Chabaud; 1994 van Tilburg; 1994

Canteaut–Chabanne; 1998 Canteaut–Chabaud; 1998 Canteaut–Sendrier;

2008 Bernstein–Lange–Peters; 2009 Bernstein–Lange–Peters–van

Tilborg; 2009 Bernstein (post-quantum); 2009 Finiasz–Sendrier; 2010

Bernstein–Lange–Peters; 2011 May–Meurer–Thomae; 2012

Becker–Joux–May–Meurer; 2013 Hamdaoui–Sendrier; 2015 May–Ozerov;

2016 Canto Torres–Sendrier; 2017 Kachigar–Tillich (post-quantum);

2017 Both–May; 2018 Both–May; 2018 Kirshanova (post-quantum).

3



Consequence of security analysis

I The McEliece system (with later key-size optimizations)
uses (c0 + o(1))λ2(lg λ)2-bit keys as λ→∞
to achieve 2λ security against all these attacks.

Here c0 ≈ 0.7418860694.

I 256 KB public key for 2146 pre-quantum security.

I 512 KB public key for 2187 pre-quantum security.

I 1024 KB public key for 2263 pre-quantum security.

I Post-quantum (Grover): below 2263, above 2131.

4



Consequence of security analysis

I The McEliece system (with later key-size optimizations)
uses (c0 + o(1))λ2(lg λ)2-bit keys as λ→∞
to achieve 2λ security against all these attacks.
Here c0 ≈ 0.7418860694.

I 256 KB public key for 2146 pre-quantum security.

I 512 KB public key for 2187 pre-quantum security.

I 1024 KB public key for 2263 pre-quantum security.

I Post-quantum (Grover): below 2263, above 2131.

4



Consequence of security analysis

I The McEliece system (with later key-size optimizations)
uses (c0 + o(1))λ2(lg λ)2-bit keys as λ→∞
to achieve 2λ security against all these attacks.
Here c0 ≈ 0.7418860694.

I 256 KB public key for 2146 pre-quantum security.

I 512 KB public key for 2187 pre-quantum security.

I 1024 KB public key for 2263 pre-quantum security.

I Post-quantum (Grover): below 2263, above 2131.

4



The Niederreiter cryptosystem I

Developed in 1986 by Harald Niederreiter as a variant of the
McEliece cryptosystem. This is the schoolbook version.

I Use n × n permutation matrix P and n − k × n − k invertible
matrix S .

I Public Key: a scrambled parity-check matrix

K = SHP ∈ IF
(n−k)×n
2 .

I Encryption: The plaintext e is an n-bit vector of weight t.
The ciphertext s is the (n − k)-bit vector

s = Ke.

I Decryption: Find a n-bit vector e with wt(e) = t such that
s = Ke.

I The passive attacker is facing a t-error correcting problem for
the public key, which seems to be random.

5



The Niederreiter cryptosystem II

I Public Key: a scrambled parity-check matrix K = SHP.

I Encryption: The plaintext e is an n-bit vector of weight t.
The ciphertext s is the (n − k)-bit vector

s = Ke.

I Decryption using secret key: Compute

S−1s = S−1Ke = S−1(SHP)e

= H(Pe)

and observe that wt(Pe) = t, because P permutes.
Use efficient syndrome decoder for H to find e′ = Pe and
thus e = P−1e′.

6



Note on codes

I McEliece proposed to use binary Goppa codes.
These are still used today.

I Niederreiter described his scheme using Reed-Solomon codes.
These were broken in 1992 by Sidelnikov and Chestakov.

I More corpses on the way: concatenated codes, Reed-Muller
codes, several Algebraic Geometry (AG) codes, Gabidulin
codes, several LDPC codes, cyclic codes.

I Some other constructions look OK (for now).
NIST competition has several entries on QCMDPC codes.

7



Binary Goppa code

Let q = 2m. A binary Goppa code is often defined by

I a list L = (a1, . . . , an) of n distinct elements in IFq,
called the support.

I a square-free polynomial g(x) ∈ IFq[x ] of degree t such that
g(a) 6= 0 for all a ∈ L. g(x) is called the Goppa polynomial.

I E.g. choose g(x) irreducible over IFq.

The corresponding binary Goppa code Γ(L, g) is

{
c ∈ IFn

2

∣∣∣∣S(c) =
c1

x − a1
+

c2
x − a2

+ · · ·+ cn
x − an

≡ 0 mod g(x)

}
I This code is linear S(b + c) = S(b) + S(c) and has length n.

I Bounds on dimension k ≥ n −mt and minumum distance
t ≥ 2t + 1.

8



Reminder: How to hide nice code?

I Do not reveal matrix H related to nice-to-decode code.

I Pick a random invertible (n − k)× (n − k) matrix S and
random n × n permutation matrix P. Put

K = SHP.

I K is the public key and S and P together with a decoding
algorithm for H form the private key.

I For suitable codes K looks like random matrix.

I For Goppa code use secret polynomial g(x).

I Use secret permutation of the ai , this corresponds to secret
permutation of the n positions; this replaces P.

I Use systematic form K = (K ′|I ) for key;
I This implicitly applies S .
I No need to remember S because decoding does not use H.
I Public key size decreased to (n − k)× k.

I Secret key is polynomial g and support L = (a1, . . . , an).

9



Reminder: How to hide nice code?

I Do not reveal matrix H related to nice-to-decode code.

I Pick a random invertible (n − k)× (n − k) matrix S and
random n × n permutation matrix P. Put

K = SHP.

I K is the public key and S and P together with a decoding
algorithm for H form the private key.

I For suitable codes K looks like random matrix.

I For Goppa code use secret polynomial g(x).

I Use secret permutation of the ai , this corresponds to secret
permutation of the n positions; this replaces P.

I Use systematic form K = (K ′|I ) for key;
I This implicitly applies S .
I No need to remember S because decoding does not use H.
I Public key size decreased to (n − k)× k .

I Secret key is polynomial g and support L = (a1, . . . , an).

9



NIST submission Classic McEliece

I Security asymptotics unchanged by 40 years of cryptanalysis.

I Efficient and straightforward conversion
OW-CPA PKE → IND-CCA2 KEM.

I Open-source (public domain) implementations.
I Constant-time software implementations.
I FPGA implementation of full cryptosystem.

I No patents.

Metric mceliece6960119 mceliece8192128
Public-key size 1047319 bytes 1357824 bytes

Secret-key size 13908 bytes 14080 bytes

Ciphertext size 226 bytes 240 bytes

Key-generation time 1108833108 cycles 1173074192 cycles

Encapsulation time 153940 cycles 188520 cycles

Decapsulation time 318088 cycles 343756 cycles

See https://classic.mceliece.org for more details.
More parameters in round 2.

10

https://classic.mceliece.org


Key issues for McEliece

I Very conservative system, expected to last; has strongest
security track record.

I Ciphertexts are among the shortest.

I Secret keys can be compressed.

I But public keys are really, really big!

I Sending 1MB takes time and bandwidth.

I Google–Cloudlare experiment:

in some cases the public-key + ciphertext size was
too large to be viable in the context of TLS

and even 10KB messages dropped.

I If server accepts 1MB of public key from any client,
an attacker can easily flood memory.
This invites DoS attacks.

11

https://www.imperialviolet.org/2018/04/11/pqconftls.html


Key issues for McEliece

I Very conservative system, expected to last; has strongest
security track record.

I Ciphertexts are among the shortest.

I Secret keys can be compressed.

I But public keys are really, really big!

I Sending 1MB takes time and bandwidth.

I Google–Cloudlare experiment:

in some cases the public-key + ciphertext size was
too large to be viable in the context of TLS

and even 10KB messages dropped.

I If server accepts 1MB of public key from any client,
an attacker can easily flood memory.
This invites DoS attacks.

11

https://www.imperialviolet.org/2018/04/11/pqconftls.html


Key issues for McEliece

I Very conservative system, expected to last; has strongest
security track record.

I Ciphertexts are among the shortest.

I Secret keys can be compressed.

I But public keys are really, really big!

I Sending 1MB takes time and bandwidth.

I Google–Cloudlare experiment:

in some cases the public-key + ciphertext size was
too large to be viable in the context of TLS

and even 10KB messages dropped.

I If server accepts 1MB of public key from any client,
an attacker can easily flood memory.
This invites DoS attacks.

11

https://www.imperialviolet.org/2018/04/11/pqconftls.html


Goodness, what big keys you have!

I Public keys look like this:

K =


1 0 . . . 0 1 . . . 1 0 1
0 1 . . . 0 0 . . . 0 1 1
...

...
. . .

... 1 . . . 1 1 0
0 0 . . . 1 0 . . . 1 1 1


Left part is (n− k)× (n− k) identity matrix (no need to send)
right part is random-looking (n − k)× k matrix.
E.g. n = 6960, k = 5413, so n − k = 1547.

I Encryption xors secretly selected columns, e.g.
0
1
0
0

+


1
0
1
0

+


0
1
1
1

+


1
1
0
1

 =


0
1
0
0



12



Goodness, what big keys you have!

I Public keys look like this:

K =


1 0 . . . 0 1 . . . 1 0 1
0 1 . . . 0 0 . . . 0 1 1
...

...
. . .

... 1 . . . 1 1 0
0 0 . . . 1 0 . . . 1 1 1


Left part is (n− k)× (n− k) identity matrix (no need to send)
right part is random-looking (n − k)× k matrix.
E.g. n = 6960, k = 5413, so n − k = 1547.

I Encryption xors secretly selected columns, e.g.
0
1
0
0

+


1
0
1
0

+


0
1
1
1

+


1
1
0
1

 =


0
1
0
0


12



Can servers avoid storing big keys?

K =


1 0 . . . 0 1 . . . 1 0 1
0 1 . . . 0 0 . . . 0 1 1
...

...
. . .

... 1 . . . 1 1 0
0 0 . . . 1 0 . . . 1 1 1

 = (In−k |K ′)

I Encryption xors secretly selected columns.

I With some storage and trusted environment:
Receive columns of K ′ one at a time, store and update partial
sum.

I On the real Internet, without per-client state:
Don’t reveal intermediate results!
Which columns are picked is the secret message!
Intermediate results show whether a column was used or not.

13



Can servers avoid storing big keys?

K =


1 0 . . . 0 1 . . . 1 0 1
0 1 . . . 0 0 . . . 0 1 1
...

...
. . .

... 1 . . . 1 1 0
0 0 . . . 1 0 . . . 1 1 1

 = (In−k |K ′)

I Encryption xors secretly selected columns.

I With some storage and trusted environment:
Receive columns of K ′ one at a time, store and update partial
sum.

I On the real Internet, without per-client state:

Don’t reveal intermediate results!
Which columns are picked is the secret message!
Intermediate results show whether a column was used or not.

13



Can servers avoid storing big keys?

K =


1 0 . . . 0 1 . . . 1 0 1
0 1 . . . 0 0 . . . 0 1 1
...

...
. . .

... 1 . . . 1 1 0
0 0 . . . 1 0 . . . 1 1 1

 = (In−k |K ′)

I Encryption xors secretly selected columns.

I With some storage and trusted environment:
Receive columns of K ′ one at a time, store and update partial
sum.

I On the real Internet, without per-client state:
Don’t reveal intermediate results!
Which columns are picked is the secret message!
Intermediate results show whether a column was used or not.

13



McTiny (Bernstein/Lange)
Partition key

K ′ =


K1,1 K1,2 K1,3 . . . K1,`

K2,1 K2,2 K2,3 . . . K2,`
...

...
...

. . .
...

Kr ,1 Kr ,2 Kr ,3 . . . Kr ,`


I Each submatrix Ki ,j small enough to fit into network packet

(plus some extra).
I Client feeds the Ki ,j to server & handles storage for the server.
I Server computes Ki ,jej , puts result into cookie.
I Cookies are encrypted by server to itself using some temporary

symmetric key (same key for all server connections).
No per-client memory allocation.

I Cookies also encrypted & authenticated to client.
I Client sends several Ki ,jej cookies, receives their combination.
I More stuff to avoid replay & similar attacks.

I Several round trips, but no per-client state on the server.

14



McTiny (Bernstein/Lange)
Partition key

K ′ =


K1,1 K1,2 K1,3 . . . K1,`

K2,1 K2,2 K2,3 . . . K2,`
...

...
...

. . .
...

Kr ,1 Kr ,2 Kr ,3 . . . Kr ,`


I Each submatrix Ki ,j small enough to fit into network packet

(plus some extra).
I Client feeds the Ki ,j to server & handles storage for the server.
I Server computes Ki ,jej , puts result into cookie.
I Cookies are encrypted by server to itself using some temporary

symmetric key (same key for all server connections).
No per-client memory allocation.

I Cookies also encrypted & authenticated to client.
I Client sends several Ki ,jej cookies, receives their combination.
I More stuff to avoid replay & similar attacks.
I Several round trips, but no per-client state on the server.

14


