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Random numbers are important

I Cryptography needs random numbers to generate long-term
secret keys for encryption and signatures.

I Many schemes expect random (or pseudorandom) numbers,
e.g.

I ephemeral keys for DH key exchange,
I nonces for digital signatures,
I nonces in authenticated encryption.

I Nonce reuse can reveal long-term secret keys (e.g.
PlayStation disaster)

I DSA/ECDSA are so touchy that biased nonces are enough to
break them.

Snowden at SXSW:

[..] we know that these encryption algorithms we are
using today work typically it is the random number
generators that are attacked as opposed to the
encryption algorithms themselves.
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Pseudo-random-number generators

Crypto libraries expand short seed into long stream of random bits.
Random bits are used as secret keys, DSA nonces, . . .

The usual structure, starting from short seed s1:

s0

r0

g(s0)

s1
f (s0)

r1

g(s1)

s2
f (s1)

s3 s4 · · ·

r2 r3 r4

f (s2) f (s3) f (s4)

g(s1) g(s2) g(s3) g(s4)

XXX’s mission: Predict the “random” output bits.
1. Create protocols that directly output rn for some reason.
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Full TODO list

I Design: Construct a PRNG that secretly contains a back door.

I Evaluation: Publish statements that the PRNG is secure.

I Standardization: Edit standards to include the PRNG.

I Standardization maintenance: Monitor changes to the PRNG
standard, and counteract changes that make the PRNG more
difficult to exploit.

I Auxiliary standardization: If necessary modify other standards
to make the PRNG easier to exploit.

I Selection, implementation, and deployment: Provide
incentives to cryptographic libraries to implement this PRNG.

I Attack optimization: Reduce the cost of computation required
to exploit the back door, through algorithmic improvements
and through influencing the way the PRNG is used in practice.
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DUAL EC RNG: history part I

Earliest public source (?) June 2004, draft of ANSI X9.82:

Extract gives all but the top 16 bits ⇒ about 215 points sQ match
given string.
Claim:
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DUAL EC RNG: common public history part II

Various public warning signals:

I Gjøsteen (March 2006): output sequence is biased.

I Brown (March 2006): security “proof”
“This proof makes essential use of Q being random.” If d
with dQ = P is known then dRi = Si+1. Brown concludes
that there might be distinguisher.

I Sidorenko & Schoenmakers (May 2006): output sequence is
even more biased. Answer: Too late to change, already
implemented.

I Included in standards ISO 18031 (2005), NIST SP 800-90
(2006), ANSI X9.82 (2007).

I Shumow & Ferguson (August 2007): Backdoor if d is known.

I NIST SP800-90 gets appendix about choosing points
verifiably at random, but requires use of standardized P,Q for
FIPS-140 validation.
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September 2013: NSA Bullrun program

NYT:

the NSA had inserted a back door into a 2006 standard
adopted by NIST [..] called the Dual EC DRBG standard.

. . . but surely nobody uses that!?!

NIST’s DRBG Validation List: more than 70 validations of
Dual EC DRBG;
RSA’s BSAFE has Dual EC DRBG enabled as default,.

NIST re-opens discussions on SP800.90; recommends against using
Dual EC.
RSA suggests changing default in BSAFE.

21 April 2014 NIST removes Dual EC from the standard.
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SSL/TLS/HTTPS – internet security protocols

How are RNGs actually used? Do implementations actually leak
enough of rn?

Client Server

Generate
client random
(≥ 28 bytes)

Generate
session ID,
server random, a,
signature nonce
(≤ 32 + 28 + 32
+ 32 bytes)

client random

Generate b
(46 bytes)

server random, session ID, cert(pk), aP, sig

bP, Finished

Finished

MS = PRF(x(abP), ”master secret”, client random —— server random)
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Dual EC in TLS

28 bytes 40 bytes

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r2 r3

s4 = x(s3P)

rcRc = (rc , y(rc))

s2x(dRc)
sc

Graphic thanks to Ruben Niederhagen.
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Basic attack
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Dual EC in TLS
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NIST SP800-90 in June 2006
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NIST SP800-90 in March 2007
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Attack – Example: BSAFE-Java
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Some more fun with RSA’s BSAFE-Java
No additional input,

explicit watermark in handshake ⇒ easy
recognition.

Alas, BSAFE does not give fresh randomness in session ID, so
attack costs roughly 232.

Network Working Group E. Rescorla

Internet-Draft RTFM, Inc.

Intended status: Informational M. Salter

Expires: September 3, 2009 National Security Agency

March 02, 2009

Extended Random Values for TLS

draft-rescorla-tls-extended-random-02.txt

[..] The rationale for this as stated by DoD is that

the public randomness for each side should be at

least twice as long as the security level for

cryptographic parity, which makes the 224 bits of

randomness provided by the current TLS random values

insufficient.
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Timings

Attack Bytes per Additional Time (min)
session entropy (bits)

BSAFE-C v1.1 31–60 0.04∗

BSAFE-Java v1.1 28 63.96∗

SChannel I 28 62.97∗

SChannel II 30 182.64∗

OpenSSL-fixed I 32 20 0.02∗

OpenSSL-fixed II 32 35 83.32∗

OpenSSL-fixed III 32 35+ k 2k · 83.32
∗measured on 16 core cluster
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How did we get here . . .
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Full TODO list

I Design: Construct a PRNG that secretly contains a back door.

I Evaluation: Publish statements that the PRNG is secure.

I Standardization: Edit standards to include the PRNG.

I Standardization maintenance: Monitor changes to the PRNG
standard, and counteract changes that make the PRNG more
difficult to exploit.

I Auxiliary standardization: If necessary modify other standards
to make the PRNG easier to exploit.

I Selection, implementation, and deployment: Provide
incentives to cryptographic libraries to implement this PRNG.

I Attack optimization: Reduce the cost of computation required
to exploit the back door, through algorithmic improvements
and through influencing the way the PRNG is used in practice.
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How did we get here . . .

Official editors of SP800-90 are Elaine Barker and John Kelsey.

No editors stated for ANSI X9.82 nor for ISO 18031.

Miles Smid’s 2004 slides say
“ANSI X9.82 Concepts submitted as input to ISO/IEC CD 18031.
(See Debby Wallner)”.

Interesting Dec 2013 slide deck by John Kelsey 800 – 90 and Dual
EC DRBG.

I Standardization effort by NIST and NSA, with some
participation from CSE.

I Most of work on standards done by US federal employees
(NIST and NSA, with some help from CSE).

I The standard Dual EC parameters P and Q come ultimately
from designers of Dual EC DRBG at NSA.
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http://csrc.nist.gov/groups/ST/toolkit/documents/rng/DevelopmentHistory.pdf
http://csrc.nist.gov/groups/SMA/ispab/documents/minutes/2013-12/nist_cryptography_800-90.pdf
http://csrc.nist.gov/groups/SMA/ispab/documents/minutes/2013-12/nist_cryptography_800-90.pdf


Kelsey 20 Dec 2013
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Why?

17 Dec 2015:
Important Juniper Security Announcement
Soon identified to include changes to their Dual EC parameters.

Full postmortem shows

I Juniper used Dual EC as RNG for Screen OS.

I Juniper used their own points.

I Around 2012 somebody changed these points to other points.

21 / 39

https://forums.juniper.net/t5/Security-Incident-Response/Important-Announcement-about-ScreenOS/ba-p/285554
https://blog.cryptographyengineering.com/2015/12/22/on-juniper-backdoor/
https://cacm.acm.org/magazines/2018/11/232227-where-did-i-leave-my-keys/fulltext
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NIST FOIA
Two FOIA requests by Andrew Crocker and Nate Cardozo of EFF
and Matthew Stoller and Rep. Alan Grayson. Files hosted by Matt
Green at https://github.com/matthewdgreen/nistfoia.
Interesting documents, e.g.

This is most likely a reaction to the research on biases.
22 / 39

https://github.com/matthewdgreen/nistfoia


From 011 – 9.12 Choosing a DRBG Algorithm.pdf
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Fake Math!
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ISO standard

I NIST history is relatively well documented, partially because
of FOIA and partially because of NIST efforts to clean up.

I But ISO standard 18031 came first (2005). NYT article says

Classified N.S.A. memos appear to confirm that the fatal
weakness, discovered by two Microsoft cryptographers in
2007, was engineered by the agency. The N.S.A. wrote
the standard and aggressively pushed it on the
international group, privately calling the effort “a
challenge in finesse.”
“Eventually, N.S.A. became the sole editor,” the memo
says.
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http://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html?_r=0


ATTACHMENT 10 TO SC27 N3685

US National Body comments on ISO/IEC 2nd CD 18031 Date: 20030822 Document: N3578

1 2 (3) 4 5 (6)

NB1 Clause No./

Subclause No./

Annex

(e.g. 3.1)

Paragraph/

Figure/Table/

Note

(e.g. Table 1)

Type

of

com-

ment2

Comment (justification for change) by the NB Proposed change by the NB

1 MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

NOTE Columns 1, 2, 4, 5 are compulsory.

page 1 of 1
ISO electronic balloting commenting template/version 2001-10

US Whole
document

te The U.S. National Body has reviewed ISO/IEC 2
nd

 CD
18031, N3578.  We feel that this document is lacking
sufficient depth in many areas and simply is not
developed enough to be an ISO standard which
encompasses both Non-deterministic and Deterministic
Random Bit Generation.  We do feel that ANSI X9.82
Random Bit Generation standardization work is much
further developed and should be used as the basis for
this ISO standard.

To make ISO/IEC 18031 consistent with X9.82 would
require extensive commenting and revisions.  To better
progress this standard, the U.S. has instead developed a
contribution for ISO that is consistent with ANSI X9.82,
but written in ISO format.  Furthermore, we believe this
contribution will also be complementary to ISO/IEC
19790.

We provide this contribution as an attachment, and
propose that ISO further develop this contribution as their
standard.

Additionally, the U.S. recognizes that ANSI X9.82 is not
an approved standard and still requires further work.  As
ANSI X9.82 develops, the U.S. will contribute these
changes to ISO.







Hat tip @nymble.
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Snippets from the patent application
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Certicom patents

The Canadian company Certicom (now part of Blackberry) has
patents in multiple countries on

I Dual EC exploitation: the use of Dual EC for key escrow (i.e.,
for a deliberate back door)

I Dual EC escrow avoidance: modifying Dual EC to avoid key
escrow.

The patent filing history also shows that

I Certicom knew the Dual EC back door by 2005;

I NSA was informed of the Dual EC back door by 2005, even if
they did not know it earlier;

I the patent application, including examples of Dual EC
exploitation, was publicly available in July 2006, just a month
after SP800-90 was standardized.

https://projectbullrun.org/dual-ec/patent.html
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More on the ecosystem

I Apr 2018 Simon and Speck do not get included in ISO
lightweight standard, breaking with ISO tradition of being
very permissive.
This was a large effort, but enough cryptographers got
involved and many countries were reasonable.
But: ISO is pay to play and hard to get in for some countries.

I Nov 2018 OCB2 (standardized in ISO/IEC 19772:2009)
broken in 3 different ways. See Bertram’s talk.

I OCB1 and OCB3 (RFC 7253) are not affected.

I 28 Aug 2018 IETF publishes TLS 1.3 in RFC 8446.

I Lots of bad ideas got rejected in the making of TLS 1.3.

I IETF / CFRG is open & welcoming, remote participation is
possible. Consensus: RFC 7258 – Pervasive Monitoring Is An
Attack.
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https://www.rfc-editor.org/rfc/rfc8446.txt
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URL

https://www.circleid.com/posts/20180225_humming_an_open_internet_demise_in_london/


URL

https://www.ncsc.gov.uk/blog-post/tls-13-better-individuals-harder-enterprises


More on the ecosystem
I Apr 2018 Simon and Speck do not get included in ISO

lightweight standard, breaking with ISO tradition of being
very permissive.
This was a large effort, but enough cryptographers got
involved and many countries were reasonable. But: ISO is pay
to play and hard to get in for some countries.

I Nov 2018 OCB2 (standardized in ISO/IEC 19772:2009)
broken in 3 different ways. See Bertram’s talk.

I OCB1 and OCB3 (RFC 7253) are not affected.
I Aug 2018 IETF publishes TLS 1.3 in RFC 8446.
I Lots of bad ideas got rejected in the making of TLS 1.3.
I IETF / CFRG is open & welcoming, remote participation is

possible. Consensus: RFC 7258 – Pervasive Monitoring Is An
Attack.

I Nov 2018 ETSI publishes surveillance-friendly variant.
I ETSI is fully pay to play. Interest groups make their own

“standards”, no oversight, no outside review.
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I Nov 2018 OCB2 (standardized in ISO/IEC 19772:2009)
broken in 3 different ways. See Bertram’s talk.

I OCB1 and OCB3 (RFC 7253) are not affected.
I Aug 2018 IETF publishes TLS 1.3 in RFC 8446.
I Lots of bad ideas got rejected in the making of TLS 1.3.
I IETF / CFRG is open & welcoming, remote participation is

possible. Consensus: RFC 7258 – Pervasive Monitoring Is An
Attack.

I Nov 2018 ETSI publishes surveillance-friendly variant.
I ETSI is fully pay to play. Interest groups make their own

“standards”, no oversight, no outside review.
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