
Post-Quantum Cryptography
Code-Based Cryptography

Tanja Lange
with some slides by Tung Chou and Christiane Peters

Technische Universiteit Eindhoven

ASCrypto Summer School:
18 September 2017

Error correction

I Digital media is exposed to memory corruption.
I Many systems check whether data was corrupted in transit:

I ISBN numbers have check digit to detect corruption.
I ECC RAM detects up to two errors and can correct one error.

64 bits are stored as 72 bits: extra 8 bits for checks and
recovery.

I In general, k bits of data get stored in n bits, adding some
redundancy.

I If no error occurred, these n bits satisfy n − k parity check
equations; else can correct errors from the error pattern.

I Good codes can correct many errors without blowing up
storage too much;
offer guarantee to correct t errors (often can correct or at
least detect more).

I To represent these check equations we need a matrix.

2

Hamming code

Parity check matrix (n = 7, k = 4):

H =




1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1




An error-free string of 7 bits b = (b0, b1, b2, b3, b4, b5, b6) satisfies
these three equations:

b0 +b1 +b3 +b4 = 0
b0 +b2 +b3 +b5 = 0

b1 +b2 +b3 +b6 = 0

If one error occurred at least one of these equations will not hold.
Failure pattern uniquely identifies the error location,
e.g., 1, 0, 1 means

b1 flipped.
In math notation, the failure pattern is H · b.

3

Hamming code

Parity check matrix (n = 7, k = 4):

H =




1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1




An error-free string of 7 bits b = (b0, b1, b2, b3, b4, b5, b6) satisfies
these three equations:

b0 +b1 +b3 +b4 = 0
b0 +b2 +b3 +b5 = 0

b1 +b2 +b3 +b6 = 0

If one error occurred at least one of these equations will not hold.
Failure pattern uniquely identifies the error location,
e.g., 1, 0, 1 means b1 flipped.

In math notation, the failure pattern is H · b.

3

Hamming code

Parity check matrix (n = 7, k = 4):

H =




1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1




An error-free string of 7 bits b = (b0, b1, b2, b3, b4, b5, b6) satisfies
these three equations:

b0 +b1 +b3 +b4 = 0
b0 +b2 +b3 +b5 = 0

b1 +b2 +b3 +b6 = 0

If one error occurred at least one of these equations will not hold.
Failure pattern uniquely identifies the error location,
e.g., 1, 0, 1 means b1 flipped.
In math notation, the failure pattern is H · b.

3

Coding theory

I Names: code word c, error vector e, received word b = c + e.

I Very common to transform the matrix so that the right part
has just 1 on the diagonal (no need to store that).

H =




1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1







1 1 0 1
1 0 1 1
0 1 1 1




I Many special constructions discovered in 65 years of coding
theory:

I Large matrix H.
I Fast decoding algorithm to find e given s = H · (c + e),

whenever e does not have too many bits set.

I Given large H, usually very hard to find fast decoding
algorithm.

I Use this difference in complexities for encryption.

4

Code-based encryption

I 1971 Goppa: Fast decoders for many matrices H.
I 1978 McEliece: Use Goppa codes for public-key cryptography.

I Original parameters designed for 264 security.
I 2008 Bernstein–Lange–Peters: broken in ≈260 cycles.
I Easily scale up for higher security.

I 1986 Niederreiter: Simplified and smaller version of McEliece.
I Public key: H with 1’s on the diagonal on RHS.
I Secret key: the fast Goppa decoder.
I Encryption: Randomly generate e with t bits set.

Send H · e.
I Use hash of e to encrypt message with symmetric crypto (with

256 bits key).

5

Security analysis
I Some papers studying algorithms for attackers:

1962 Prange; 1981 Omura; 1988 Lee–Brickell; 1988 Leon;
1989 Krouk; 1989 Stern; 1989 Dumer; 1990 Coffey–Goodman;
1990 van Tilburg; 1991 Dumer; 1991 Coffey–Goodman–Farrell;
1993 Chabanne–Courteau; 1993 Chabaud; 1994 van Tilburg;
1994 Canteaut–Chabanne; 1998 Canteaut–Chabaud;
1998 Canteaut–Sendrier; 2008 Bernstein–Lange–Peters;
2009 Bernstein–Lange–Peters–van Tilborg;
2009 Bernstein (post-quantum); 2009 Finiasz–Sendrier;
2010 Bernstein–Lange–Peters; 2011 May–Meurer–Thomae;
2011 Becker–Coron–Joux; 2012 Becker–Joux–May–Meurer;
2013 Bernstein–Jeffery–Lange–Meurer (post-quantum);
2015 May–Ozerov;

2017 Kachigar–Tillich (post-quantum).

I 256 KB public key for 2146 pre-quantum security.
I 512 KB public key for 2187 pre-quantum security.
I 1024 KB public key for 2263 pre-quantum security.
I Post-quantum (Grover): below 2263, above 2131.

6

Security analysis
I Some papers studying algorithms for attackers:

1962 Prange; 1981 Omura; 1988 Lee–Brickell; 1988 Leon;
1989 Krouk; 1989 Stern; 1989 Dumer; 1990 Coffey–Goodman;
1990 van Tilburg; 1991 Dumer; 1991 Coffey–Goodman–Farrell;
1993 Chabanne–Courteau; 1993 Chabaud; 1994 van Tilburg;
1994 Canteaut–Chabanne; 1998 Canteaut–Chabaud;
1998 Canteaut–Sendrier; 2008 Bernstein–Lange–Peters;
2009 Bernstein–Lange–Peters–van Tilborg;
2009 Bernstein (post-quantum); 2009 Finiasz–Sendrier;
2010 Bernstein–Lange–Peters; 2011 May–Meurer–Thomae;
2011 Becker–Coron–Joux; 2012 Becker–Joux–May–Meurer;
2013 Bernstein–Jeffery–Lange–Meurer (post-quantum);
2015 May–Ozerov;

2017 Kachigar–Tillich (post-quantum).

I 256 KB public key for 2146 pre-quantum security.
I 512 KB public key for 2187 pre-quantum security.
I 1024 KB public key for 2263 pre-quantum security.

I Post-quantum (Grover): below 2263, above 2131.

6

Security analysis
I Some papers studying algorithms for attackers:

1962 Prange; 1981 Omura; 1988 Lee–Brickell; 1988 Leon;
1989 Krouk; 1989 Stern; 1989 Dumer; 1990 Coffey–Goodman;
1990 van Tilburg; 1991 Dumer; 1991 Coffey–Goodman–Farrell;
1993 Chabanne–Courteau; 1993 Chabaud; 1994 van Tilburg;
1994 Canteaut–Chabanne; 1998 Canteaut–Chabaud;
1998 Canteaut–Sendrier; 2008 Bernstein–Lange–Peters;
2009 Bernstein–Lange–Peters–van Tilborg;
2009 Bernstein (post-quantum); 2009 Finiasz–Sendrier;
2010 Bernstein–Lange–Peters; 2011 May–Meurer–Thomae;
2011 Becker–Coron–Joux; 2012 Becker–Joux–May–Meurer;
2013 Bernstein–Jeffery–Lange–Meurer (post-quantum);
2015 May–Ozerov;

2017 Kachigar–Tillich (post-quantum).

I 256 KB public key for 2146 pre-quantum security.
I 512 KB public key for 2187 pre-quantum security.
I 1024 KB public key for 2263 pre-quantum security.
I Post-quantum (Grover): below 2263, above 2131.

6

Linear Codes
A binary linear code C of length n and dimension k is a
k-dimensional subspace of IFn

2.
C is usually specified as

I the row space of a generating matrix G ∈ IFk×n
2

C = {mG |m ∈ IFk
2}

I the kernel space of a parity-check matrix H ∈ IF
(n−k)×n
2

C = {c|Hcᵀ = 0, c ∈ IFn
2}

Leaving out the ᵀ from now on.

Example:

G =




1 0 1 0 1
1 1 0 0 0
1 1 1 1 0




c = (111)G = (10011) is a codeword.
7

Systematic form, Hamming weight and distance

I A systematic generator matrix is a generator matrix of the
form (Ik |Q) where Ik is the k × k identity matrix and Q is a
k × (n − k) matrix (redundant part).

I Easy to get parity-check matrix from systematic generator
matrix, use H = (−Qᵀ|In−k).

I The Hamming weight of a word is the number of nonzero
coordinates.

wt(1, 0, 0, 1, 1) = 3

I The Hamming distance between two words in IFn
2 is the

number of coordinates in which they differ.

d((1, 1, 0, 1, 1), (1, 0, 0, 1, 1)) =

1

The Hamming distance between x and y equals the Hamming
weight of x + y:

d((1, 1, 0, 1, 1), (1, 0, 0, 1, 1)) = wt(0, 1, 0, 0, 0).

8

Systematic form, Hamming weight and distance

I A systematic generator matrix is a generator matrix of the
form (Ik |Q) where Ik is the k × k identity matrix and Q is a
k × (n − k) matrix (redundant part).

I Easy to get parity-check matrix from systematic generator
matrix, use H = (−Qᵀ|In−k).

I The Hamming weight of a word is the number of nonzero
coordinates.

wt(1, 0, 0, 1, 1) = 3

I The Hamming distance between two words in IFn
2 is the

number of coordinates in which they differ.

d((1, 1, 0, 1, 1), (1, 0, 0, 1, 1)) = 1

The Hamming distance between x and y equals the Hamming
weight of x + y:

d((1, 1, 0, 1, 1), (1, 0, 0, 1, 1)) = wt(0, 1, 0, 0, 0).

8

Systematic form, Hamming weight and distance

I A systematic generator matrix is a generator matrix of the
form (Ik |Q) where Ik is the k × k identity matrix and Q is a
k × (n − k) matrix (redundant part).

I Easy to get parity-check matrix from systematic generator
matrix, use H = (−Qᵀ|In−k).

I The Hamming weight of a word is the number of nonzero
coordinates.

wt(1, 0, 0, 1, 1) = 3

I The Hamming distance between two words in IFn
2 is the

number of coordinates in which they differ.

d((1, 1, 0, 1, 1), (1, 0, 0, 1, 1)) = 1

The Hamming distance between x and y equals the Hamming
weight of x + y:

d((1, 1, 0, 1, 1), (1, 0, 0, 1, 1)) = wt(0, 1, 0, 0, 0).

8

Decoding problem
I The minimum distance of a linear code C is the smallest

Hamming weight of a nonzero codeword in C .

d = min
0 6=c∈C

{wt(c)} = min
b6=c∈C

{d(b, c)}

I In code with minimum distance d = 2t + 1, any vector
x = c + e with wt(e) ≤ t is uniquely decodable to c; there is
no closer code word.

Decoding problem: find the closest codeword c ∈ C to a given
x ∈ IFn

2, assuming that there is a unique closest codeword. Let
x = c + e. Note that finding e is an equivalent problem.

I If c is t errors away from x, i.e., the Hamming weight of e is
t, this is called a t-error correcting problem.

I There are lots of code families with fast decoding algorithms,
e.g., Reed–Solomon codes, Goppa codes/alternant codes, etc.

I However, the general decoding problem is hard:
Information-set decoding (see later) takes exponential time.

9

Decoding problem
I The minimum distance of a linear code C is the smallest

Hamming weight of a nonzero codeword in C .

d = min
0 6=c∈C

{wt(c)} = min
b6=c∈C

{d(b, c)}

I In code with minimum distance d = 2t + 1, any vector
x = c + e with wt(e) ≤ t is uniquely decodable to c; there is
no closer code word.

Decoding problem: find the closest codeword c ∈ C to a given
x ∈ IFn

2, assuming that there is a unique closest codeword. Let
x = c + e. Note that finding e is an equivalent problem.

I If c is t errors away from x, i.e., the Hamming weight of e is
t, this is called a t-error correcting problem.

I There are lots of code families with fast decoding algorithms,
e.g., Reed–Solomon codes, Goppa codes/alternant codes, etc.

I However, the general decoding problem is hard:
Information-set decoding (see later) takes exponential time.

9

The Niederreiter cryptosystem I

Developed in 1986 by Harald Niederreiter as a variant of the
McEliece cryptosystem. This is the schoolbook version.

I Use n × n permutation matrix P and n − k × n − k invertible
matrix S .

I Public Key: a scrambled parity-check matrix

K = SHP ∈ IF
(n−k)×n
2 .

I Encryption: The plaintext e is an n-bit vector of weight t.
The ciphertext s is the (n − k)-bit vector

s = Ke.

I Decryption: Find a n-bit vector e with wt(e) = t such that
s = Ke.

I The passive attacker is facing a t-error correcting problem for
the public key, which seems to be random.

10

The Niederreiter cryptosystem II

I Public Key: a scrambled parity-check matrix K = SHP.

I Encryption: The plaintext e is an n-bit vector of weight t.
The ciphertext s is the (n − k)-bit vector

s = Ke.

I Decryption using secret key: Compute

S−1s = S−1Ke = S−1(SHP)e

= H(Pe)

and observe that wt(Pe) = 1, because P permutes.
Use efficient decoder for H to find e′ = Pe and thus
e = P−1e′.

11

Pitfalls of text-book version

I Berson’s attack:
If there is no integrity check on the message and decryption
works for weight ≤ t of e:

Send si = s + Ki , where Ki is the i-th column of K ; observe
decryption failure or not.
If si does not show failure, bit i was set in e.

I More involved but doable if decryption requires exactly t
errors.

I Very easy attack in CCA setting:
just ask for decryption of s1, flip first bit.

I Fix by using CCA2 transformation (e.g. Fujisaki-Okamoto
transorm) or (easier) KEM/DEM version:
pick random e of weight t, use hash(e) as secret key to
encrypt and authenticate.

12

Pitfalls of text-book version

I Berson’s attack:
If there is no integrity check on the message and decryption
works for weight ≤ t of e:
Send si = s + Ki , where Ki is the i-th column of K ; observe
decryption failure or not.

If si does not show failure, bit i was set in e.

I More involved but doable if decryption requires exactly t
errors.

I Very easy attack in CCA setting:
just ask for decryption of s1, flip first bit.

I Fix by using CCA2 transformation (e.g. Fujisaki-Okamoto
transorm) or (easier) KEM/DEM version:
pick random e of weight t, use hash(e) as secret key to
encrypt and authenticate.

12

Pitfalls of text-book version

I Berson’s attack:
If there is no integrity check on the message and decryption
works for weight ≤ t of e:
Send si = s + Ki , where Ki is the i-th column of K ; observe
decryption failure or not.
If si does not show failure, bit i was set in e.

I More involved but doable if decryption requires exactly t
errors.

I Very easy attack in CCA setting:
just ask for decryption of s1, flip first bit.

I Fix by using CCA2 transformation (e.g. Fujisaki-Okamoto
transorm) or (easier) KEM/DEM version:
pick random e of weight t, use hash(e) as secret key to
encrypt and authenticate.

12

Pitfalls of text-book version

I Berson’s attack:
If there is no integrity check on the message and decryption
works for weight ≤ t of e:
Send si = s + Ki , where Ki is the i-th column of K ; observe
decryption failure or not.
If si does not show failure, bit i was set in e.

I More involved but doable if decryption requires exactly t
errors.

I Very easy attack in CCA setting:
just ask for decryption of s1, flip first bit.

I Fix by using CCA2 transformation (e.g. Fujisaki-Okamoto
transorm) or (easier) KEM/DEM version:
pick random e of weight t, use hash(e) as secret key to
encrypt and authenticate.

12

Binary Goppa code

Let q = 2m. A binary Goppa code is often defined by

I a list L = (a1, . . . , an) of n distinct elements in IFq,
called the support.

I a square-free polynomial g(x) ∈ IFq[x] of degree t such that
g(a) 6= 0 for all a ∈ L. g(x) is called the Goppa polynomial.

I E.g. choose g(x) irreducible over IFq.

The corresponding binary Goppa code Γ(L, g) is

{
c ∈ IFn

2

∣∣∣∣S(c) =
c1

x − a1
+

c2
x − a2

+ · · ·+ cn
x − an

≡ 0 mod g(x)

}

I This code is linear S(b + c) = S(b) + S(c) and has length n.

I What can we say about the dimension and minimum distance?

13

Dimension of Γ(L, g)
I g(ai) 6= 0 implies gcd(x − ai , g(x)) = 1, thus get polynomials

(x − ai)
−1 ≡ fi (x) ≡

t−1∑

j=0

fi ,jx
j mod g(x)

via XGCD. All this is over IFq = IF2m .
I In this form, S(c) ≡ 0 mod g(x) means

n∑

i=1

ci




t−1∑

j=0

fi ,jx
j


 =

t−1∑

j=0

(
n∑

i=1

ci fi ,j

)
x j = 0,

meaning that for each 0 ≤ j ≤ t − 1:
n∑

i=1

ci fi ,j = 0.

I These are t conditions over IFq, so tm conditions over IF2.
Giving an tm × n parity check matrix over IF2.

I Some rows might be linearly dependent, so k ≥ n − tm.
14

Nice parity check matrix

Assume g(x) =
∑t

i=0 gix
i monic, i.e., gt = 1.

H =




1 0 0 . . . 0
gt−1 1 0 . . . 0
gt−2 gt−1 1 . . . 0
...

...
...

. . .
...

g1 g2 g3 . . . 1



·




1 1 1 · · · 1
a1 a2 a3 · · · an
a21 a22 a23 · · · a2n
...

...
...

. . .
...

at−11 at−12 at−13 · · · at−1n




·




1
g(a1)

0 0 . . . 0

0 1
g(a2)

0 . . . 0

0 0 1
g(a3)

. . . 0
...

...
...

. . .
...

0 0 0 . . . 1
g(an)




15

Minimum distance of Γ(L, g). Put s(x) = S(c)

s(x) =
n∑

i=1

ci/(x − ai)

=




n∑

i=1

ci
∏

j 6=i

(x − aj)


 /

n∏

i=1

(x − ai) ≡ 0 mod g(x).

I g(ai) 6= 0 implies gcd(x − ai , g(x)) = 1,
so g(x) divides

∑n
i=1 ci

∏
j 6=i (x − aj).

I Let c 6= 0 have small weight wt(c) = w ≤ t = deg(g).
For all i with ci = 0, x − ai appears in every summand.
Cancel out those x − ai with ci = 0.

I The denominator is now
∏

i ,ci 6=0(x − ai), of degree w .
I The numerator now has degree w − 1 and deg(g) > w − 1

implies that the numerator is = 0 (without reduction mod g),
which is a contradiction to c 6= 0, so wt(c) = w ≥ t + 1.

16

Minimum distance of Γ(L, g). Put s(x) = S(c)

s(x) =
n∑

i=1

ci/(x − ai)

=




n∑

i=1

ci
∏

j 6=i

(x − aj)


 /

n∏

i=1

(x − ai) ≡ 0 mod g(x).

I g(ai) 6= 0 implies gcd(x − ai , g(x)) = 1,
so g(x) divides

∑n
i=1 ci

∏
j 6=i (x − aj).

I Let c 6= 0 have small weight wt(c) = w ≤ t = deg(g).
For all i with ci = 0, x − ai appears in every summand.

Cancel out those x − ai with ci = 0.
I The denominator is now

∏
i ,ci 6=0(x − ai), of degree w .

I The numerator now has degree w − 1 and deg(g) > w − 1
implies that the numerator is = 0 (without reduction mod g),
which is a contradiction to c 6= 0, so wt(c) = w ≥ t + 1.

16

Minimum distance of Γ(L, g). Put s(x) = S(c)

s(x) =
n∑

i=1

ci/(x − ai)

=




n∑

i=1

ci
∏

j 6=i

(x − aj)


 /

n∏

i=1

(x − ai) ≡ 0 mod g(x).

I g(ai) 6= 0 implies gcd(x − ai , g(x)) = 1,
so g(x) divides

∑n
i=1 ci

∏
j 6=i (x − aj).

I Let c 6= 0 have small weight wt(c) = w ≤ t = deg(g).
For all i with ci = 0, x − ai appears in every summand.
Cancel out those x − ai with ci = 0.

I The denominator is now
∏

i ,ci 6=0(x − ai), of degree w .
I The numerator now has degree w − 1 and deg(g) > w − 1

implies that the numerator is = 0 (without reduction mod g),
which is a contradiction to c 6= 0, so wt(c) = w ≥ t + 1.

16

Better minimum distance for Γ(L, g)
I Let c 6= 0 have small weight wt(c) = w .
I Put f (x) =

∏n
i=1(x − ai)

ci with ci ∈ {0, 1}.
I Then the derivative f ′(x) =

∑n
i=1 ci

∏
j 6=i (x − ai)

ci .
I Thus s(x) = f ′(x)/f (x) ≡ 0 mod g(x).
I As before this implies g(x) divides the numerator f ′(x).
I Note that over IF2m :

(f2i+1x
2i+1)′ = f2i+1x

2i , (f2ix
2i)′ = 0 · f2ix2i−1 = 0,

thus f ′(x) contains only terms of even degree and
deg(f ′) ≤ w − 1. Assume w odd, thus deg(f ′) = w − 1.

I Note that over IF2m : (x + 1)2 = x2 + 1

and in general

f ′(x) =

(w−1)/2∑

i=0

f2i+1x
2i =




(w−1)/2∑

i=0

√
f2i+1x

i




2

= F 2(x).

I Since g(x) is square-free, g(x) divides F (x), thus w ≥ 2t + 1.

17

Better minimum distance for Γ(L, g)
I Let c 6= 0 have small weight wt(c) = w .
I Put f (x) =

∏n
i=1(x − ai)

ci with ci ∈ {0, 1}.
I Then the derivative f ′(x) =

∑n
i=1 ci

∏
j 6=i (x − ai)

ci .
I Thus s(x) = f ′(x)/f (x) ≡ 0 mod g(x).
I As before this implies g(x) divides the numerator f ′(x).
I Note that over IF2m :

(f2i+1x
2i+1)′ = f2i+1x

2i , (f2ix
2i)′ = 0 · f2ix2i−1 = 0,

thus f ′(x) contains only terms of even degree and
deg(f ′) ≤ w − 1. Assume w odd, thus deg(f ′) = w − 1.

I Note that over IF2m : (x + 1)2 = x2 + 1 and in general

f ′(x) =

(w−1)/2∑

i=0

f2i+1x
2i =




(w−1)/2∑

i=0

√
f2i+1x

i




2

= F 2(x).

I Since g(x) is square-free, g(x) divides F (x), thus w ≥ 2t + 1.

17

Decoding of in Γ(L, g)
I Decoding works with polynomial arithmetic.
I Fix e. Let σ(x) =

∏
i ,ei 6=0(x − ai). Same as f (x) before.

I σ(x) is called error locator polynomial. Given σ(x) can factor
it to retrieve error positions, σ(ai) = 0⇔ error in i .

I Split into odd and even terms: σ(x) = A2(x) + xB2(x).
I Note as before s(x) = σ′(x)/σ(x) and σ′(x) = B2(x).
I Thus

B2(x) ≡ σ(x)s(x) ≡ (A2(x) + xB2(x))s(x) mod g(x)

B2(x)(x + 1/s(x)) ≡ A2(x) mod g(x)

I Put v(x) ≡
√
x + 1/s(x) mod g(x), then

A(x) ≡ B(x)v(x) mod g(x).
I Can compute v(x) from s(x).
I Use XGCD on v and g , stop part-way when

A(x) = B(x)v(x) + h(x)g(x),

with deg(A) ≤ bt/2c, deg(B) ≤ b(t − 1)/2c.
18

How to hide nice code?

I Do not reveal matrix H related to nice-to-decode code.

I Pick a random invertible (n − k)× (n − k) matrix S and
random n × n permutation matrix P . Put

K = SHP.

I K is the public key and S and P together with a decoding
algorithm for H form the private key.

I For suitable codes K looks like random matrix.

I How to decode syndrome s = Ke?

I Computes S−1s = S−1(SHP)e = H(Pe).

I P permutes, thus Pe has same weight as e.

I Decode to recover Pe, then multiply by P−1.

19

How to hide nice code?

I Do not reveal matrix H related to nice-to-decode code.

I Pick a random invertible (n − k)× (n − k) matrix S and
random n × n permutation matrix P . Put

K = SHP.

I K is the public key and S and P together with a decoding
algorithm for H form the private key.

I For suitable codes K looks like random matrix.

I How to decode syndrome s = Ke?

I Computes S−1s = S−1(SHP)e = H(Pe).

I P permutes, thus Pe has same weight as e.

I Decode to recover Pe, then multiply by P−1.

19

How to hide nice code?

I For Goppa code use secret polynomial g(x).

I Use secret permutation of the ai , this corresponds to secret
permutation of the n positions; this replaces P.

I Use systematic form K = (K ′|I) for key;
I This implicitly applies S .
I No need to remember S because decoding does not use H.
I Key size decreased to (n − k)× k .

20

McBits (Bernstein, Chou, Schwabe, CHES 2013)

I Encryption is super fast anyways (just a vector-matrix
multiplication).

I Main step in decryption is decoding of Goppa code. The
McBits software achieves this in constant time.

I Decoding speed at 2128 pre-quantum security:
(n; t) = (4096; 41) uses 60493 Ivy Bridge cycles.

I Decoding speed at 2263 pre-quantum security:
(n; t) = (6960; 119) uses 306102 Ivy Bridge cycles.

I Grover speedup is less than halving the security level, so the
latter parameters offer at least 2128 post-quantum security.

I More at https://binary.cr.yp.to/mcbits.html.

21

https://binary.cr.yp.to/mcbits.html

Generic attack: Information-set decoding
1988 Lee, Brickell. Reminder s = Ke.

K ′ =

1

0

1

0

X

•

•

•

1. Permute K and bring to systematic form K ′ = (X |In−k).
(If this fails, repeat with other permutation).

2. For small p, pick p of the k columns on the left, compute
their sum Xp. (p is the vector of weight p).

3. If wt(s + Xp) = t − p then put e′ = p||(s + Xp).
Output unpermuted version of e′.

4. Else return to 2 or return to 1 to rerandomize. 22

Leon’s attack 1

1

ZX

︸ ︷︷ ︸
(n−k)×(n−k) identity matrix

I Setup similar to
Lee-Brickell’s attack.

I Random combinations of
p vectors will be dense,
so have wt(Xp) ∼ k/2.

I Idea: Introduce early abort by checking
only ` positions (selected by set Z , green lines in the picture).
This forms `× k matrix XZ , length-` vector sZ .

I Inner loop becomes:

1. Pick p with wt(p) = p.
2. Compute XZp.
3. If sZ + XZp 6= 0 goto 1.
4. Else compute Xp.

4.1 If wt(s+ Xp) = t − p then put e′ = p||(s+ Xp).
Output unpermuted version of e′.

4.2 Else return to 1 or rerandomize K .

I Note that sZ + XZp = 0 means that there are no ones in the
positions specified by Z . Small loss in success, big speedup.

23

Stern’s attack
1

1

X Y Z

A

B

I Setup similar to Leon’s and
Lee-Brickell’s attacks.

I Use the early abort trick,
so specify set Z .

I Improve chances of finding
p with XZp = 0:

I Split left part of K ′ into two disjoint subsets X and Y .
I Let A = {a ∈ IF

k/2
2 |wt(a) = p}, B = {b ∈ IF

k/2
2 |wt(b) = p}.

I Search for words having exactly p ones in X and p ones in Y
and exactly w − 2p ones in the remaining columns.

I Do the latter part as a collision search:
Compute sZ + XZa for all (many) a ∈ A, sort.
Then compute YZb for b ∈ B and look for collisions.

I Iterate until word with wt(s + Xa + Y b) = 2p is found for
some X ,Y ,Z .

I Select p, `, and the subset of A to minimize overall work.

24

Running time in practice

2008 Bernstein, Lange, Peters.

I Wrote attack software against original McEliece parameters,
decoding 50 errors in a [1024, 524] code.

I Lots of optimizations, e.g. cheap updates between sZ + XZa
and next value for a; optimized frequency of K randomization.

I Attack on a single computer with a 2.4GHz Intel Core 2 Quad
Q6600 CPU would need, on average, 1400 days
(258 CPU cycles) to complete the attack.

I About 200 computers involved, with about 300 cores.

I Most of the cores put in far fewer than 90 days of work; some
of which were considerably slower than a Core 2.

I Computation used about 8000 core-days.

I Error vector found by Walton cluster at SFI/HEA Irish Centre
of High-End Computing (ICHEC).

25

Information-set decoding

Methods differ in where the “errors” are allowed to be.

k n − k

Lee-Brickell
p t − p

k ℓ n − k − ℓ
Leon

p 0 t − p

Stern
p p 0 t − 2p

Running time is exponential for Goppa parameters n, k , d .

26

Information-set decoding
Methods differ in where the errors are allowed to be.

k n − k

Lee-Brickell
p t − p

k ℓ n − k − ℓ
Leon

p 0 t − p

Stern
p p 0 t − 2p

Ball-collision decoding/Dumer/Finiasz-Sendrier
p p q q t − 2p − 2q

k1 k2 ℓ1 ℓ2 n − k − ℓ

2011 May-Meurer-Thomae and 2012 Becker-Joux-May-Meurer
refine multi-level collision search. Running time still exponential for
Goppa parameters n, k , d ; exponent is minimally smaller compared
to Stern.

27

Improvements

I Increase n: The most obvious way to defend McEliece’s
cryptosystem is to increase the code length n.

I Allow values of n between powers of 2: Get considerably
better optimization of (e.g.) the McEliece public-key size.

I Use list decoding to increase t: Unique decoding is ensured by
CCA2-secure variants.

I Decrease key size by using fields other than IF2 (wild
McEliece).

I Decrease key size & be faster by using other codes. Needs
security analysis: some codes have too much structure.

28

More exciting codes
I Niederreiter actually proposed to use generalized

Reed-Solomon codes, this was broken in 1992 by Sidelnikov
and Shestakov.

I In general we distinguish between generic attacks (such as
information-set decoding) and structural attacks (that use the
structure of the code).

I Gröbner basis computation is a generally powerful tool for
structural attacks.

I Cyclic codes need to store only top row of matrix, rest follows
by shifts. Quasi-cyclic: multiple cyclic blocks.

I QC Goppa: too exciting, too much structure.
I Interesting candidate: Quasi-cyclic Moderate-Density

Parity-Check (QC-MDPC) codes, due to Misoczki, Tillich,
Sendrier, and Barreto (2012).
Very efficient but practical problem if the key is reused
(Asiacrypt 2016).

I Hermitian codes, general algebraic geometry codes.
I Please help us update https://pqcrypto.org/code.html. 29

https://pqcrypto.org/code.html

