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Capstone Project

I NSA program, public since 1993.

I Standards for government, also planned for
commercial and private use.

I Advertised as making strong cryptography available, no risk to
security of country and citizens.

I New designs (and acronyms):
I Escrowed Encryption Standard (EES)
I Law Enforcement Access Field (LEAF)

I Key escrow highly controversial: can be used to spy on
citizens and adds weakness to system.

I Most prominent example: Clipper chip.

I Matt Blaze showed how to circumvent escrow part; project
stopped.

[Photo by Travis Goodspeed]
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Random numbers are important

I Cryptography needs random numbers to generate long-term
secret keys for encryption and signatures.

I Many schemes expect random (or pseudorandom) numbers,
e.g.

I ephemeral keys for DH key exchange,
I nonces for digital signatures,
I nonces in authenticated encryption.

I Nonce reuse can reveal long-term secret keys (e.g.
PlayStation disaster)

I DSA/ECDSA are so touchy that biased nonces are enough to
break them.

Snowden at SXSW:

[..] we know that these encryption algorithms we are
using today work typically it is the random number
generators that are attacked as opposed to the
encryption algorithms themselves.

http://blog.inside.com/blog/2014/3/10/edward-snowden-sxsw-full-transcription-and-video
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SSL/TLS/HTTPS – internet security protocols

Use of randomness in internet protocols.

Client Server

Generate
client random
(≥ 28 bytes)

Generate
session ID,
server random, a,
signature nonce
(≤ 32 + 28 + 32
+ 32 bytes)

client random

Generate b
(46 bytes)

server random, session ID, cert(pk), aP, sig

bP, Finished

Finished

MS = PRF(x(abP), ”master secret”, client random —— server random)
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Pseudo-random-number generators

Crypto libraries expand short seed into long stream of random bits.
Random bits are used as secret keys, DSA nonces, . . .

The usual structure, starting from short seed s1:

s0
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g(s0)
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r1

g(s1)

s2
f (s1)

s3 s4 · · ·

r2 r3 r4

f (s2) f (s3) f (s4)

g(s1) g(s2) g(s3) g(s4)

XXX’s mission: Predict the “random” output bits.
1. Create protocols that directly output rn for some reason.
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2. Design f , g with back door from rn to sn+1: i.e., get f (s) from g(s).

3. Standardize this design of f , g .
4. Convince users to switch to this design: e.g., publish “security

proof”.
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September 2013: NSA Bullrun program

NYT:

the NSA had inserted a back door into a 2006 standard
adopted by NIST [..] called the Dual EC DRBG standard.

Dual EC had been flagged before for being extremely inefficient
and possibly backdoored . . . so surely nobody uses that!?!

NIST’s DRBG Validation List: more than 70 validations of
Dual EC DRBG;
RSA’s BSAFE has Dual EC DRBG enabled as default,.

NIST re-opens discussions on SP800.90; recommends against using
Dual EC.
RSA suggests changing default in BSAFE.

21 April 2014 NIST removes Dual EC from the standard.

http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html
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Dual EC in TLS
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Graphic thanks to Ruben Niederhagen.



Dual EC in TLS

28 bytes 40 bytes

Points Q and P on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r2 r3

s4 = x(s3P)

rcRc = (rc , y(rc))

s2x(dRc)
sc

Graphic thanks to Ruben Niederhagen.



Dual EC in TLS

28 bytes 40 bytes

Points Q and P on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r2 r3

s4 = x(s3P)

rcRc = (rc , y(rc))

s2x(dRc)
sc

Graphic thanks to Ruben Niederhagen.



Dual EC in TLS

28 bytes 40 bytes

Points Q and P on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r2 r3

s4 = x(s3P)

rcRc = (rc , y(rc))

s2x(dRc)
sc

Graphic thanks to Ruben Niederhagen.



Dual EC in TLS

28 bytes 40 bytes

Points Q and P on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r2 r3

s4 = x(s3P)

rcRc = (rc , y(rc))

s2x(dRc)
sc

Graphic thanks to Ruben Niederhagen.



Dual EC in TLS

28 bytes 40 bytes

Points Q and P on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r2 r3

s4 = x(s3P)

rcRc = (rc , y(rc))

s2x(dRc)
sc

Graphic thanks to Ruben Niederhagen.



Dual EC in TLS

28 bytes 40 bytes

Points Q and P on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r2 r3

s4 = x(s3P)

rcRc = (rc , y(rc))

s2x(dRc)
sc

Graphic thanks to Ruben Niederhagen.



Dual EC in TLS

28 bytes 40 bytes

Points Q and P on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r2 r3

s4 = x(s3P)

rcRc = (rc , y(rc))

s2x(dRc)
sc

Graphic thanks to Ruben Niederhagen.



Dual EC in TLS

28 bytes 40 bytes

Points Q and P on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r2 r3

s4 = x(s3P)

rcRc = (rc , y(rc))

s2x(dRc)
sc

Graphic thanks to Ruben Niederhagen.



Dual EC in TLS

28 bytes 40 bytes

Points Q and P on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r2 r3

s4 = x(s3P)

rcRc = (rc , y(rc))

s2x(dRc)
sc

Graphic thanks to Ruben Niederhagen.



Dual EC in TLS

28 bytes 40 bytes

Points Q and P on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r2 r3

s4 = x(s3P)

rcRc = (rc , y(rc))

s2x(dRc)
sc

Graphic thanks to Ruben Niederhagen.



Dual EC in TLS

28 bytes 40 bytes

Points Q and P on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r2 r3

s4 = x(s3P)

rcRc = (rc , y(rc))

s2x(dRc)
sc

Graphic thanks to Ruben Niederhagen.



Dual EC in TLS

28 bytes 40 bytes

Points Q and P on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r2 r3

s4 = x(s3P)

rcRc = (rc , y(rc))

s2x(dRc)
sc

Graphic thanks to Ruben Niederhagen.



Dual EC in TLS

28 bytes 40 bytes

Points Q and P on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r2 r3

s4 = x(s3P)

r1

?

rcRc = (rc , y(rc))

s2x(dRc)
sc

Graphic thanks to Ruben Niederhagen.



Dual EC in TLS

28 bytes 40 bytes

Points Q and P on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r2 r3

s4 = x(s3P)

r1

? ECDLP!

rcRc = (rc , y(rc))

s2x(dRc)
sc

Graphic thanks to Ruben Niederhagen.



Basic attack
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Timings

Attack Bytes per Additional Time (min)
session entropy (bits)

BSAFE-C v1.1 31–60 0.04∗

BSAFE-Java v1.1 28 63.96∗

SChannel I 28 62.97∗

SChannel II 30 182.64∗

OpenSSL-fixed I 32 20 0.02∗

OpenSSL-fixed II 32 35 83.32∗

OpenSSL-fixed III 32 35+ k 2k · 83.32
∗measured on 16 core cluster



Some more fun with RSA’s BSAFE-Java
No additional input,

explicit watermark in handshake ⇒ easy
recognition.

Alas, BSAFE does not give fresh randomness in session ID, so
attack costs roughly 232.

Network Working Group E. Rescorla

Internet-Draft RTFM, Inc.

Intended status: Informational M. Salter

Expires: September 3, 2009 National Security Agency

March 02, 2009

Extended Random Values for TLS

draft-rescorla-tls-extended-random-02.txt

[..] The rationale for this as stated by DoD is that

the public randomness for each side should be at

least twice as long as the security level for

cryptographic parity, which makes the 224 bits of

randomness provided by the current TLS random values

insufficient.
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How did we get here . . .

Official editors of SP800-90 are Elaine Barker and John Kelsey.

No editors stated for ANSI X9.82 nor for ISO 18031.

Interesting Dec 2013 slide deck by John Kelsey 800 – 90 and Dual
EC DRBG.

I Standardization effort by NIST and NSA, with some
participation from CSE.

I Most of work on standards done by US federal employees
(NIST and NSA, with some help from CSE).

I The standard Dual EC parameters P and Q come ultimately
from designers of Dual EC DRBG at NSA.

http://csrc.nist.gov/groups/SMA/ispab/documents/minutes/2013-12/nist_cryptography_800-90.pdf
http://csrc.nist.gov/groups/SMA/ispab/documents/minutes/2013-12/nist_cryptography_800-90.pdf


NIST FOIA
Two FOIA requests by Andrew Crocker and Nate Cardozo of EFF
and Matthew Stoller and Rep. Alan Grayson. Files hosted by Matt
Green at https://github.com/matthewdgreen/nistfoia.
Interesting documents, e.g.

This is most likely a reaction to the research on biases.

https://github.com/matthewdgreen/nistfoia


From 011 – 9.12 Choosing a DRBG Algorithm.pdf



Hat tip @nymble.



Certicom patents

The Canadian company Certicom (now part of Blackberry) has
patents in multiple countries on

I Dual EC exploitation: the use of Dual EC for key escrow (i.e.,
for a deliberate back door)

I Dual EC escrow avoidance: modifying Dual EC to avoid key
escrow.

The patent filing history also shows that

I Certicom knew the Dual EC back door by 2005;

I NSA was informed of the Dual EC back door by 2005, even if
they did not know it earlier;

I the patent application, including examples of Dual EC
exploitation, was publicly available in July 2006, just a month
after SP800-90 was standardized.

http://projectbullrun.org/dual-ec/patent.html

http://projectbullrun.org/dual-ec/patent.html
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