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Random numbers are important

I Cryptography needs random numbers to generate long-term
secret keys for encryption and signatures.

I Many schemes expect random (or pseudorandom) numbers,
e.g.

I ephemeral keys for DH key exchange,
I nonces for digital signatures,
I nonces in authenticated encryption.

I Nonce reuse can reveal long-term secret keys (e.g.
PlayStation disaster)

I DSA/ECDSA are so touchy that biased nonces are enough to
break them.

Snowden at SXSW:

[..] we know that these encryption algorithms we are
using today work typically it is the random number
generators that are attacked as opposed to the
encryption algorithms themselves.

http://blog.inside.com/blog/2014/3/10/edward-snowden-sxsw-full-transcription-and-video
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Pseudo-random-number generators

Crypto libraries expand short seed into long stream of random bits.
Random bits are used as secret keys, DSA nonces, . . .

The usual structure, starting from short seed s1:

s0

r0

g(s0)

s1
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r1

g(s1)

s2
f (s1)

s3 s4 · · ·

r2 r3 r4

f (s2) f (s3) f (s4)

g(s1) g(s2) g(s3) g(s4)

XXX’s mission: Predict the “random” output bits.
1. Create protocols that directly output rn for some reason.
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4. Convince users to switch to this design: e.g., publish “security
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DUAL EC RNG: history part I

Earliest public source (?) June 2004, draft of ANSI X9.82:

Extract gives all but the top 16 bits ⇒ about 215 points sQ match
given string.
Claim:



DUAL EC RNG: common public history part II

Various public warning signals:

I Gjøsteen (March 2006): output sequence is biased.

I Brown (March 2006): security “proof”
“This proof makes essential use of Q being random.” If d
with dQ = P is known then dRi = Si+1, concludes that there
might be distinguisher.

I Sidorenko & Schoenmakers (May 2006): output sequence is
even more biased. Answer: Too late to change, already
implemented.

I Included in standards ISO 18031 (2005), NIST SP 800-90
(2006), ANSI X9.82 (2007).

I Shumow & Ferguson (August 2007): Backdoor if d is known.

I NIST SP800-90 gets appendix about choosing points
verifiably at random, but requires use of standardized P,Q for
FIPS-140 validation.



September 2013: NSA Bullrun program

NYT:

the NSA had inserted a back door into a 2006 standard
adopted by NIST [..] called the Dual EC DRBG standard.

. . . but surely nobody uses that!?!

NIST’s DRBG Validation List: more than 70 validations of
Dual EC DRBG;
RSA’s BSAFE has Dual EC DRBG enabled as default,.

NIST re-opens discussions on SP800.90; recommmends against
using Dual EC.
RSA suggests changing default in BSAFE.

21 April 2014 NIST removes Dual EC from the standard.

http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html
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SSL/TLS/HTTPS – internet security protocols

How are RNGs actually used? Do implementations actually leak
enough of rn?

Client Server

Generate
client random
(≥ 28 bytes)

Generate
session ID,
server random, a,
signature nonce
(≤ 32 + 28 + 32
+ 32 bytes)

client random

Generate b
(46 bytes)

server random, session ID, cert(pk), aP, sig

bP, Finished

Finished

MS = PRF(x(abP), ”master secret”, client random —— server random)
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Dual EC in TLS
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Graphic thanks to Ruben Niederhagen.
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Basic attack
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Timings

Attack Bytes per Additional Time (min)
session entropy (bits)

BSAFE-C v1.1 31–60 0.04∗

BSAFE-Java v1.1 28 63.96∗

SChannel I 28 62.97∗

SChannel II 30 182.64∗

OpenSSL-fixed I 32 20 0.02∗

OpenSSL-fixed II 32 35 83.32∗

OpenSSL-fixed III 32 35+ k 2k · 83.32
∗measured on 16 core cluster



How did we get here . . .

Official editors of SP800-90 are Elaine Barker and John Kelsey.

No editors stated for ANSI X9.82 nor for ISO 18031.

Interesting Dec 2013 slide deck by John Kelsey 800 – 90 and Dual
EC DRBG.

I Standardization effort by NIST and NSA, with some
participation from CSE.

I Most of work on standards done by US federal employees
(NIST and NSA, with some help from CSE).

I The standard Dual EC parameters P and Q come ultimately
from designers of Dual EC DRBG at NSA.

http://csrc.nist.gov/groups/SMA/ispab/documents/minutes/2013-12/nist_cryptography_800-90.pdf
http://csrc.nist.gov/groups/SMA/ispab/documents/minutes/2013-12/nist_cryptography_800-90.pdf


NIST FOIA
Two FOIA requests by Andrew Crocker and Nate Cardozo of EFF
and Matthew Stoller and Rep. Alan Grayson. Files hosted by Matt
Green at https://github.com/matthewdgreen/nistfoia.
Interesting documents, e.g.

This is most likely a reaction to the research on biases.

https://github.com/matthewdgreen/nistfoia


From 011 – 9.12 Choosing a DRBG Algorithm.pdf



Hat tip @nymble.



Certicom patents

The Canadian company Certicom (now part of Blackberry) has
patents in multiple countries on

I Dual EC exploitation: the use of Dual EC for key escrow (i.e.,
for a deliberate back door)

I Dual EC escrow avoidance: modifying Dual EC to avoid key
escrow.

The patent filing history also shows that

I Certicom knew the Dual EC back door by 2005;

I NSA was informed of the Dual EC back door by 2005, even if
they did not know it earlier;

I the patent application, including examples of Dual EC
exploitation, was publicly available in July 2006, just a month
after SP800-90 was standardized.

http://projectbullrun.org/dual-ec/patent.html

http://projectbullrun.org/dual-ec/patent.html
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