
Dual EC and what it taught us about
vulnerabilities of the standardization ecosystem

Tanja Lange

Technische Universiteit Eindhoven
http://projectbullrun.org/dual-ec/

30 September 2014

http://projectbullrun.org/dual-ec/


Random numbers are important

I Cryptography needs random numbers to generate long-term
secret keys for encryption and signatures.

I Many schemes expect random (or pseudorandom) numbers,
e.g.

I ephemeral keys for DH key exchange,
I nonces for digital signatures,
I nonces in authenticated encryption.

I Nonce reuse can reveal long-term secret keys (e.g.
PlayStation disaster)

I DSA/ECDSA are so touchy that biased nonces are enough to
break them.

Snowden at SXSW:

[..] we know that these encryption algorithms we are
using today work typically it is the random number
generators that are attacked as opposed to the
encryption algorithms themselves.

http://blog.inside.com/blog/2014/3/10/edward-snowden-sxsw-full-transcription-and-video


Random numbers are important to the NSA

I Cryptography needs random numbers to generate long-term
secret keys for encryption and signatures.

I Many schemes expect random (or pseudorandom) numbers,
e.g.

I ephemeral keys for DH key exchange,
I nonces for digital signatures,
I nonces in authenticated encryption.

I Nonce reuse can reveal long-term secret keys (e.g.
PlayStation disaster)

I DSA/ECDSA are so touchy that biased nonces are enough to
break them.

Snowden at SXSW:

[..] we know that these encryption algorithms we are
using today work typically it is the random number
generators that are attacked as opposed to the
encryption algorithms themselves.

http://blog.inside.com/blog/2014/3/10/edward-snowden-sxsw-full-transcription-and-video


Pseudo-random-number generators

Crypto libraries expand short seed into long stream of random bits.
Random bits are used as secret keys, DSA nonces, . . .

The usual structure, starting from short seed s1:

s0

r0

g(s0)

s1
f (s0)

r1

g(s1)

s2
f (s1)

s3 s4 · · ·

r2 r3 r4

f (s2) f (s3) f (s4)

g(s1) g(s2) g(s3) g(s4)

XXX’s mission: Predict the “random” output bits.
1. Create protocols that directly output rn for some reason.



Pseudo-random-number generators

Crypto libraries expand short seed into long stream of random bits.
Random bits are used as secret keys, DSA nonces, . . .

The usual structure, starting from short seed s1:

s0

r0

g(s0)

s1
f (s0)

r1

g(s1)

s2
f (s1)

s3 s4 · · ·

r2 r3 r4

f (s2) f (s3) f (s4)

g(s1) g(s2) g(s3) g(s4)

XXX’s mission: Predict the “random” output bits.
1. Create protocols that directly output rn for some reason.
2. Design f , g with back door from rn to sn+1: i.e., get f (s) from g(s).

3. Standardize this design of f , g .
4. Convince users to switch to this design: e.g., publish “security

proof”.



Pseudo-random-number generators

Crypto libraries expand short seed into long stream of random bits.
Random bits are used as secret keys, DSA nonces, . . .

The usual structure, starting from short seed s1:

s0

r0

g(s0)

s1
f (s0)

r1

g(s1)

s2
f (s1)

s3 s4 · · ·

r2 r3 r4

f (s2) f (s3) f (s4)

g(s1) g(s2) g(s3) g(s4)

XXX’s mission: Predict the “random” output bits.
1. Create protocols that directly output rn for some reason.
2. Design f , g with back door from rn to sn+1: i.e., get f (s) from g(s).
3. Standardize this design of f , g .

4. Convince users to switch to this design: e.g., publish “security
proof”.



Pseudo-random-number generators

Crypto libraries expand short seed into long stream of random bits.
Random bits are used as secret keys, DSA nonces, . . .

The usual structure, starting from short seed s1:

s0

r0

g(s0)

s1
f (s0)

r1

g(s1)

s2
f (s1)

s3 s4 · · ·

r2 r3 r4

f (s2) f (s3) f (s4)

g(s1) g(s2) g(s3) g(s4)

XXX’s mission: Predict the “random” output bits.
1. Create protocols that directly output rn for some reason.
2. Design f , g with back door from rn to sn+1: i.e., get f (s) from g(s).
3. Standardize this design of f , g .
4. Convince users to switch to this design: e.g., publish “security

proof”.



DUAL EC RNG: history part I

Earliest public source (?) June 2004, draft of ANSI X9.82:

Extract gives all but the top 16 bits ⇒ about 215 points sQ match
given string.
Claim:



DUAL EC RNG: common public history part II

Various public warning signals:

I Gjøsteen (March 2006): output sequence is biased.

I Brown (March 2006): security “proof”
“This proof makes essential use of Q being random.” If d
with dQ = P is known then dRi = Si+1, concludes that there
might be distinguisher.

I Sidorenko & Schoenmakers (May 2006): output sequence is
even more biased. Answer: Too late to change, already
implemented.

I Included in standards ISO 18031 (2005), NIST SP 800-90
(2006), ANSI X9.82 (2007).

I Shumow & Ferguson (August 2007): Backdoor if d is known.

I NIST SP800-90 gets appendix about choosing points
verifiably at random, but requires use of standardized P,Q for
FIPS-140 validation.



September 2013: NSA Bullrun program

NYT:

the NSA had inserted a back door into a 2006 standard
adopted by NIST [..] called the Dual EC DRBG standard.

. . . but surely nobody uses that!?!

NIST’s DRBG Validation List: more than 70 validations of
Dual EC DRBG;
RSA’s BSAFE has Dual EC DRBG enabled as default,.

NIST re-opens discussions on SP800.90; recommmends against
using Dual EC.
RSA suggests changing default in BSAFE.

21 April 2014 NIST removes Dual EC from the standard.

http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html


September 2013: NSA Bullrun program

NYT:

the NSA had inserted a back door into a 2006 standard
adopted by NIST [..] called the Dual EC DRBG standard.

. . . but surely nobody uses that!?!

NIST’s DRBG Validation List: more than 70 validations of
Dual EC DRBG;
RSA’s BSAFE has Dual EC DRBG enabled as default,.

NIST re-opens discussions on SP800.90; recommmends against
using Dual EC.
RSA suggests changing default in BSAFE.

21 April 2014 NIST removes Dual EC from the standard.

http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html


September 2013: NSA Bullrun program

NYT:

the NSA had inserted a back door into a 2006 standard
adopted by NIST [..] called the Dual EC DRBG standard.

. . . but surely nobody uses that!?!

NIST’s DRBG Validation List: more than 70 validations of
Dual EC DRBG;
RSA’s BSAFE has Dual EC DRBG enabled as default,.

NIST re-opens discussions on SP800.90; recommmends against
using Dual EC.
RSA suggests changing default in BSAFE.

21 April 2014 NIST removes Dual EC from the standard.

http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html


September 2013: NSA Bullrun program

NYT:

the NSA had inserted a back door into a 2006 standard
adopted by NIST [..] called the Dual EC DRBG standard.

. . . but surely nobody uses that!?!

NIST’s DRBG Validation List: more than 70 validations of
Dual EC DRBG;
RSA’s BSAFE has Dual EC DRBG enabled as default,.

NIST re-opens discussions on SP800.90; recommmends against
using Dual EC.
RSA suggests changing default in BSAFE.

21 April 2014 NIST removes Dual EC from the standard.

http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html


September 2013: NSA Bullrun program

NYT:

the NSA had inserted a back door into a 2006 standard
adopted by NIST [..] called the Dual EC DRBG standard.

. . . but surely nobody uses that!?!

NIST’s DRBG Validation List: more than 70 validations of
Dual EC DRBG;
RSA’s BSAFE has Dual EC DRBG enabled as default,.

NIST re-opens discussions on SP800.90; recommmends against
using Dual EC.
RSA suggests changing default in BSAFE.

21 April 2014 NIST removes Dual EC from the standard.

http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html


SSL/TLS/HTTPS – internet security protocols

How are RNGs actually used? Do implementations actually leak
enough of rn?

Client Server

Generate
client random
(≥ 28 bytes)

Generate
session ID,
server random, a,
signature nonce
(≤ 32 + 28 + 32
+ 32 bytes)

client random

Generate b
(46 bytes)

server random, session ID, cert(pk), aP, sig

bP, Finished

Finished

MS = PRF(x(abP), ”master secret”, client random —— server random)



SSL/TLS/HTTPS – internet security protocols

How are RNGs actually used? Do implementations actually leak
enough of rn?

Client Server

Generate
client random
(≥ 28 bytes)

Generate
session ID,
server random, a,
signature nonce
(≤ 32 + 28 + 32
+ 32 bytes)

client random

Generate b
(46 bytes)

server random, session ID, cert(pk), aP, sig

bP, Finished

Finished

MS = PRF(x(abP), ”master secret”, client random —— server random)



Dual EC in TLS

28 bytes 40 bytes

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r2 r3

s4 = x(s3P)

rcRc = (rc , y(rc))

s2x(dRc)
sc

Graphic thanks to Ruben Niederhagen.



Dual EC in TLS

28 bytes 40 bytes

Points Q and P on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r2 r3

s4 = x(s3P)

rcRc = (rc , y(rc))

s2x(dRc)
sc

Graphic thanks to Ruben Niederhagen.



Dual EC in TLS

28 bytes 40 bytes

Points Q and P on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r2 r3

s4 = x(s3P)

rcRc = (rc , y(rc))

s2x(dRc)
sc

Graphic thanks to Ruben Niederhagen.



Dual EC in TLS

28 bytes 40 bytes

Points Q and P on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r2 r3

s4 = x(s3P)

rcRc = (rc , y(rc))

s2x(dRc)
sc

Graphic thanks to Ruben Niederhagen.



Dual EC in TLS

28 bytes 40 bytes

Points Q and P on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r2 r3

s4 = x(s3P)

rcRc = (rc , y(rc))

s2x(dRc)
sc

Graphic thanks to Ruben Niederhagen.



Dual EC in TLS

28 bytes 40 bytes

Points Q and P on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r2 r3

s4 = x(s3P)

rcRc = (rc , y(rc))

s2x(dRc)
sc

Graphic thanks to Ruben Niederhagen.



Dual EC in TLS

28 bytes 40 bytes

Points Q and P on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r2 r3

s4 = x(s3P)

rcRc = (rc , y(rc))

s2x(dRc)
sc

Graphic thanks to Ruben Niederhagen.



Dual EC in TLS

28 bytes 40 bytes

Points Q and P on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r2 r3

s4 = x(s3P)

rcRc = (rc , y(rc))

s2x(dRc)
sc

Graphic thanks to Ruben Niederhagen.



Dual EC in TLS

28 bytes 40 bytes

Points Q and P on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r2 r3

s4 = x(s3P)

rcRc = (rc , y(rc))

s2x(dRc)
sc

Graphic thanks to Ruben Niederhagen.



Dual EC in TLS

28 bytes 40 bytes

Points Q and P on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r2 r3

s4 = x(s3P)

rcRc = (rc , y(rc))

s2x(dRc)
sc

Graphic thanks to Ruben Niederhagen.



Dual EC in TLS

28 bytes 40 bytes

Points Q and P on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r2 r3

s4 = x(s3P)

rcRc = (rc , y(rc))

s2x(dRc)
sc

Graphic thanks to Ruben Niederhagen.



Dual EC in TLS

28 bytes 40 bytes

Points Q and P on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r2 r3

s4 = x(s3P)

rcRc = (rc , y(rc))

s2x(dRc)
sc

Graphic thanks to Ruben Niederhagen.



Dual EC in TLS

28 bytes 40 bytes

Points Q and P on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r2 r3

s4 = x(s3P)

rcRc = (rc , y(rc))

s2x(dRc)
sc

Graphic thanks to Ruben Niederhagen.



Dual EC in TLS

28 bytes 40 bytes

Points Q and P on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r2 r3

s4 = x(s3P)

r1

?

rcRc = (rc , y(rc))

s2x(dRc)
sc

Graphic thanks to Ruben Niederhagen.



Dual EC in TLS

28 bytes 40 bytes

Points Q and P on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r2 r3

s4 = x(s3P)

r1

? ECDLP!

rcRc = (rc , y(rc))

s2x(dRc)
sc

Graphic thanks to Ruben Niederhagen.



Basic attack

28 bytes 40 bytes

Points Q and P = dQ on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r2 r3

s4 = x(s3P)

r1

x(ds1Q)
rcRc = (rc , y(rc))

s2x(dRc)
sc

Graphic thanks to Ruben Niederhagen.



Basic attack

28 bytes 40 bytes

Points Q and P = dQ on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r2 r3

s4 = x(s3P)

r1
x(ds1Q)

rcRc = (rc , y(rc))

s2x(dRc)
sc

Graphic thanks to Ruben Niederhagen.



Basic attack

28 bytes 40 bytes

Points Q and P = dQ on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r2 r3

s4 = x(s3P)

r1
x(ds1Q)

s2 = x(s1P) = x(s1dQ)

rcRc = (rc , y(rc))

s2x(dRc)
sc

Graphic thanks to Ruben Niederhagen.



Basic attack

28 bytes 40 bytes

Points Q and P = dQ on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r2 r3

s4 = x(s3P)

rc

Rc = (rc , y(rc))

s2x(dRc)
sc

Graphic thanks to Ruben Niederhagen.



Basic attack

28 bytes 40 bytes

Points Q and P = dQ on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r2 r3

s4 = x(s3P)

rcRc = (rc , y(rc))

s2x(dRc)
sc

Graphic thanks to Ruben Niederhagen.



Basic attack

28 bytes 40 bytes

Points Q and P = dQ on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r2 r3

s4 = x(s3P)

rcRc = (rc , y(rc))

s2x(dRc)
sc

Graphic thanks to Ruben Niederhagen.



Basic attack

28 bytes 40 bytes

Points Q and P = dQ on an elliptic curve.

s0

32 bytes

s1

s1 = x(s0P)

r1

r1 = x(s1Q)

r1

30 bytes

s2

s2 = x(s1P)

r2

r2 = x(s2Q)

s3

s3 = x(s2P)

r3

r3 = x(s3Q)

r2 r3

s4 = x(s3P)

rcRc = (rc , y(rc))

s2x(dRc)
sc

Graphic thanks to Ruben Niederhagen.



Timings

Attack Bytes per Additional Time (min)
session entropy (bits)

BSAFE-C v1.1 31–60 0.04∗

BSAFE-Java v1.1 28 63.96∗

SChannel I 28 62.97∗

SChannel II 30 182.64∗

OpenSSL-fixed I 32 20 0.02∗

OpenSSL-fixed II 32 35 83.32∗

OpenSSL-fixed III 32 35+ k 2k · 83.32
∗measured on 16 core cluster



How did we get here . . .

Official editors of SP800-90 are Elaine Barker and John Kelsey.

No editors stated for ANSI X9.82 nor for ISO 18031.

Interesting Dec 2013 slide deck by John Kelsey 800 – 90 and Dual
EC DRBG.

I Standardization effort by NIST and NSA, with some
participation from CSE.

I Most of work on standards done by US federal employees
(NIST and NSA, with some help from CSE).

I The standard Dual EC parameters P and Q come ultimately
from designers of Dual EC DRBG at NSA.

http://csrc.nist.gov/groups/SMA/ispab/documents/minutes/2013-12/nist_cryptography_800-90.pdf
http://csrc.nist.gov/groups/SMA/ispab/documents/minutes/2013-12/nist_cryptography_800-90.pdf


NIST FOIA
Two FOIA requests by Andrew Crocker and Nate Cardozo of EFF
and Matthew Stoller and Rep. Alan Grayson. Files hosted by Matt
Green at https://github.com/matthewdgreen/nistfoia.
Interesting documents, e.g.

This is most likely a reaction to the research on biases.

https://github.com/matthewdgreen/nistfoia


From 011 – 9.12 Choosing a DRBG Algorithm.pdf



Hat tip @nymble.



Certicom patents

The Canadian company Certicom (now part of Blackberry) has
patents in multiple countries on

I Dual EC exploitation: the use of Dual EC for key escrow (i.e.,
for a deliberate back door)

I Dual EC escrow avoidance: modifying Dual EC to avoid key
escrow.

The patent filing history also shows that

I Certicom knew the Dual EC back door by 2005;

I NSA was informed of the Dual EC back door by 2005, even if
they did not know it earlier;

I the patent application, including examples of Dual EC
exploitation, was publicly available in July 2006, just a month
after SP800-90 was standardized.

http://projectbullrun.org/dual-ec/patent.html

http://projectbullrun.org/dual-ec/patent.html


References

Many more results and much more background is provided at
http://projectbullrun.org/dual-ec/.

The research on breaking TLS by using the back door in Dual EC
is joint work with Stephen Checkoway, Matthew Fredrikson, Ruben
Niederhagen, Adam Everspaugh, Matthew Green, Tanja Lange,
Thomas Ristenpart, Daniel J. Bernstein, Jake Maskiewicz, Hovav
Shacham reported in ”On the Practical Exploitability of Dual EC
DRBG in TLS Implementations” published at USENIX Security
2014.

http://projectbullrun.org/dual-ec/

