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Random numbers are important

I Cryptography needs random numbers to generate long-term
secret keys for encryption and signatures.

I Many schemes expect random (or pseudorandom) numbers,
e.g.

I ephemeral keys for DH key exchange,
I nonces for digital signatures,
I nonces in authenticated encryption.

I Nonce reuse can reveal long-term secret keys (e.g.
PlayStation disaster)

I DSA/ECDSA are so touchy that biased nonces are enough to
break them.

Snowden at SXSW:

[..] we know that these encryption algorithms we are
using today work typically it is the random number
generators that are attacked as opposed to the
encryption algorithms themselves.

http://blog.inside.com/blog/2014/3/10/edward-snowden-sxsw-full-transcription-and-video
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Pseudo-random-number generators

Crypto libraries expand short seed into long stream of random bits.
Random bits are used as secret keys, DSA nonces, . . .

The usual structure, starting from short seed s1:
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XXX’s mission: Predict the “random” output bits.
1. Create protocols that directly output rn for some reason.
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1. Create protocols that directly output rn for some reason.
2. Design f , g with back door from rn to sn+1: i.e., get f (s) from
g(s).

3. Standardize this design of f , g .
4. Convince users to switch to this design: e.g., publish “security
proof”.
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Elliptic curves

If P,Q are random points on a strong elliptic curve
then it’s hard to predict sP given sQ.

But if we know P = kQ then it’s easy: sP = ksQ.

Let’s choose random Q, random k, define P = kQ.
Standardize this P; Q; f (s) = sP; g(s) = sQ.

Wait a minute:
Curve points (x , y) don’t look like random strings.
They satisfy public curve equation: y2 = x3 − 3x + constant.
This won’t pass public review.

Solution: Let’s throw away y and some bits of x .
Define f (s) = x(sP), g(s) = φ(x(sQ)) where φ omits 16 bits.
Not a big computation for us to recover sQ from g(s).
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DUAL EC RNG: history part I

Earliest public source (?) June 2004, draft of ANSI X9.82:

Extract gives all but the top 16 bits ⇒ about 215 points sQ match
given string.
Claim:



DUAL EC RNG: common public history part II
Various public warning signals:

I Gjøsteen (March 2006): output sequence is biased.
“While the practical impact of these results are modest, it is
hard to see how these flaws would be acceptable in a
pseudo-random bit generator based on symmetric
cryptographic primitives. They should not be accepted in a
generator based on number-theoretic assumptions.”

I Brown (March 2006): security “proof”
“This proof makes essential use of Q being random.” If d
with dQ = P is known then dRi = Si+1, concludes that there
might be distinguisher.

I Sidorenko & Schoenmakers (May 2006): output sequence is
even more biased.
Answer: Too late to change, already implemented.

I Shumow & Ferguson (August 2007): Backdoor if d is known.
I NIST SP800-90 gets appendix about choosing points

verifiably at random,
but requires use of standardized P,Q for FIPS-140 validation.



September 2013: NSA Bullrun program

NYT:

the NSA had inserted a back door into a 2006 standard
adopted by NIST [..] called the Dual EC DRBG standard.

. . . but surely nobody uses that!?!

NIST’s DRBG Validation List: more than 70 validations of
Dual EC DRBG;
RSA’s BSAFE has Dual EC DRBG enabled as default,.

NIST re-opens discussions on SP800.90; recommmends against
using Dual EC.
RSA suggests changing default in BSAFE.

21 April 2014 NIST removes Dual EC from the standard.

http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html
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How expensive is using the backdoor?
Rereading the standard:
“ x(A) is the x-coordinate of the point A on the curve, given in
affine coordinates. An implementation may choose to represent
points internally using other coordinate systems; for instance, when
efficiency is a primary concern. In this case, a point shall be
translated back to affine coordinates before x() is applied.”

Given ri = ϕ(x(siQ)), ri+1 = ϕ(x(si+1Q)), and NSA backdoor
d = logP(Q).

1. Expand ri to candidate Qi = siQ, [50% chance; if fail move
on to next candidate]

2. compute candidate Pi+1 = dQi and candidate si+1 = x(Pi+1)
3. check, ϕ(x(si+1Q)) against ri+1. [if fail, goto 1.; else most

likely done!]

Initial timings on i7 M620 Core
missing 16 bits 24 bits 32 bits

1 core 20s 85m 15d4h

64k cores 20s

From the standard:
“For performance reasons,
the value of outlen should be
set to the maximum value as
provided in Table 4.”
Don’t give us fewer bits!
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