
On the Practical Exploitability of Dual EC DRBG
in TLS Implementations

Stephen Checkoway, Matthew Fredrikson, Ruben Niederhagen,
Adam Everspaugh, Matthew Green, Tanja Lange, Thomas

Ristenpart,
Daniel J. Bernstein, Jake Maskiewicz, Hovav Shacham

August 2, 2014



Random numbers are important

I Cryptography needs random numbers to generate long-term
secret keys for encryption and signatures.

I Many schemes expect random (or pseudorandom) numbers,
e.g.

I ephemeral keys for DH key exchange,
I nonces for digital signatures,
I nonces in authenticated encryption.

I Nonce reuse can reveal long-term secret keys (e.g.
PlayStation disaster)

I DSA/ECDSA are so touchy that biased nonces are enough to
break them.

Snowden at SXSW:

[..] we know that these encryption algorithms we are
using today work typically it is the random number
generators that are attacked as opposed to the
encryption algorithms themselves.

http://blog.inside.com/blog/2014/3/10/edward-snowden-sxsw-full-transcription-and-video


Random numbers are important to the NSA

I Cryptography needs random numbers to generate long-term
secret keys for encryption and signatures.

I Many schemes expect random (or pseudorandom) numbers,
e.g.

I ephemeral keys for DH key exchange,
I nonces for digital signatures,
I nonces in authenticated encryption.

I Nonce reuse can reveal long-term secret keys (e.g.
PlayStation disaster)

I DSA/ECDSA are so touchy that biased nonces are enough to
break them.

Snowden at SXSW:

[..] we know that these encryption algorithms we are
using today work typically it is the random number
generators that are attacked as opposed to the
encryption algorithms themselves.

http://blog.inside.com/blog/2014/3/10/edward-snowden-sxsw-full-transcription-and-video


Pseudo-random-number generators

Crypto libraries expand short seed into long stream of random bits.
Random bits are used as secret keys, DSA nonces, . . .

The usual structure, starting from short seed s1:

s0

r0

g(s0)

s1
f (s0)

r1

g(s1)

s2
f (s1)

s3 s4 · · ·

r2 r3 r4

f (s2) f (s3) f (s4)

g(s1) g(s2) g(s3) g(s4)

XXX’s mission: Predict the “random” output bits.
1. Create protocols that directly output rn for some reason.



Pseudo-random-number generators
Crypto libraries expand short seed into long stream of random bits.
Random bits are used as secret keys, DSA nonces, . . .

The usual structure, starting from short seed s1:

s0

r0

g(s0)

s1
f (s0)

r1

g(s1)

s2
f (s1)

s3 s4 · · ·

r2 r3 r4

f (s2) f (s3) f (s4)

g(s1) g(s2) g(s3) g(s4)

XXX’s mission: Predict the “random” output bits.
1. Create protocols that directly output rn for some reason.
2. Design f , g with back door from rn to sn+1: i.e., get f (s) from
g(s).

3. Standardize this design of f , g .
4. Convince users to switch to this design: e.g., publish “security
proof”.



Pseudo-random-number generators
Crypto libraries expand short seed into long stream of random bits.
Random bits are used as secret keys, DSA nonces, . . .

The usual structure, starting from short seed s1:

s0

r0

g(s0)

s1
f (s0)

r1

g(s1)

s2
f (s1)

s3 s4 · · ·

r2 r3 r4

f (s2) f (s3) f (s4)

g(s1) g(s2) g(s3) g(s4)

XXX’s mission: Predict the “random” output bits.
1. Create protocols that directly output rn for some reason.
2. Design f , g with back door from rn to sn+1: i.e., get f (s) from
g(s).
3. Standardize this design of f , g .

4. Convince users to switch to this design: e.g., publish “security
proof”.



Pseudo-random-number generators
Crypto libraries expand short seed into long stream of random bits.
Random bits are used as secret keys, DSA nonces, . . .

The usual structure, starting from short seed s1:

s0

r0

g(s0)

s1
f (s0)

r1

g(s1)

s2
f (s1)

s3 s4 · · ·

r2 r3 r4

f (s2) f (s3) f (s4)

g(s1) g(s2) g(s3) g(s4)

XXX’s mission: Predict the “random” output bits.
1. Create protocols that directly output rn for some reason.
2. Design f , g with back door from rn to sn+1: i.e., get f (s) from
g(s).
3. Standardize this design of f , g .
4. Convince users to switch to this design: e.g., publish “security
proof”.



Elliptic curves

If P,Q are random points on a strong elliptic curve
then it’s hard to predict sP given sQ.

But if we know P = kQ then it’s easy: sP = ksQ.

Let’s choose random Q, random k, define P = kQ.
Standardize this P; Q; f (s) = sP; g(s) = sQ.

Wait a minute:
Curve points (x , y) don’t look like random strings.
They satisfy public curve equation: y2 = x3 − 3x + constant.
This won’t pass public review.

Solution: Let’s throw away y and some bits of x .
Define f (s) = x(sP), g(s) = φ(x(sQ)) where φ omits 16 bits.
Not a big computation for us to recover sQ from g(s).



Elliptic curves

If P,Q are random points on a strong elliptic curve
then it’s hard to predict sP given sQ.

But if we know P = kQ then it’s easy: sP = ksQ.

Let’s choose random Q, random k, define P = kQ.
Standardize this P; Q; f (s) = sP; g(s) = sQ.

Wait a minute:
Curve points (x , y) don’t look like random strings.
They satisfy public curve equation: y2 = x3 − 3x + constant.
This won’t pass public review.

Solution: Let’s throw away y and some bits of x .
Define f (s) = x(sP), g(s) = φ(x(sQ)) where φ omits 16 bits.
Not a big computation for us to recover sQ from g(s).



Elliptic curves

If P,Q are random points on a strong elliptic curve
then it’s hard to predict sP given sQ.

But if we know P = kQ then it’s easy: sP = ksQ.

Let’s choose random Q, random k, define P = kQ.
Standardize this P; Q; f (s) = sP; g(s) = sQ.

Wait a minute:
Curve points (x , y) don’t look like random strings.
They satisfy public curve equation: y2 = x3 − 3x + constant.
This won’t pass public review.

Solution: Let’s throw away y and some bits of x .
Define f (s) = x(sP), g(s) = φ(x(sQ)) where φ omits 16 bits.
Not a big computation for us to recover sQ from g(s).



DUAL EC RNG: history part I

Earliest public source (?) June 2004, draft of ANSI X9.82:

Extract gives all but the top 16 bits ⇒ about 215 points sQ match
given string.
Claim:



DUAL EC RNG: common public history part II
Various public warning signals:

I Gjøsteen (March 2006): output sequence is biased.
“While the practical impact of these results are modest, it is
hard to see how these flaws would be acceptable in a
pseudo-random bit generator based on symmetric
cryptographic primitives. They should not be accepted in a
generator based on number-theoretic assumptions.”

I Brown (March 2006): security “proof”
“This proof makes essential use of Q being random.” If d
with dQ = P is known then dRi = Si+1, concludes that there
might be distinguisher.

I Sidorenko & Schoenmakers (May 2006): output sequence is
even more biased.
Answer: Too late to change, already implemented.

I Shumow & Ferguson (August 2007): Backdoor if d is known.
I NIST SP800-90 gets appendix about choosing points

verifiably at random,
but requires use of standardized P,Q for FIPS-140 validation.



September 2013: NSA Bullrun program

NYT:

the NSA had inserted a back door into a 2006 standard
adopted by NIST [..] called the Dual EC DRBG standard.

. . . but surely nobody uses that!?!

NIST’s DRBG Validation List: more than 70 validations of
Dual EC DRBG;
RSA’s BSAFE has Dual EC DRBG enabled as default,.

NIST re-opens discussions on SP800.90; recommmends against
using Dual EC.
RSA suggests changing default in BSAFE.

21 April 2014 NIST removes Dual EC from the standard.

http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html


September 2013: NSA Bullrun program

NYT:

the NSA had inserted a back door into a 2006 standard
adopted by NIST [..] called the Dual EC DRBG standard.

. . . but surely nobody uses that!?!

NIST’s DRBG Validation List: more than 70 validations of
Dual EC DRBG;
RSA’s BSAFE has Dual EC DRBG enabled as default,.

NIST re-opens discussions on SP800.90; recommmends against
using Dual EC.
RSA suggests changing default in BSAFE.

21 April 2014 NIST removes Dual EC from the standard.

http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html


September 2013: NSA Bullrun program

NYT:

the NSA had inserted a back door into a 2006 standard
adopted by NIST [..] called the Dual EC DRBG standard.

. . . but surely nobody uses that!?!

NIST’s DRBG Validation List: more than 70 validations of
Dual EC DRBG;
RSA’s BSAFE has Dual EC DRBG enabled as default,.

NIST re-opens discussions on SP800.90; recommmends against
using Dual EC.
RSA suggests changing default in BSAFE.

21 April 2014 NIST removes Dual EC from the standard.

http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html


September 2013: NSA Bullrun program

NYT:

the NSA had inserted a back door into a 2006 standard
adopted by NIST [..] called the Dual EC DRBG standard.

. . . but surely nobody uses that!?!

NIST’s DRBG Validation List: more than 70 validations of
Dual EC DRBG;
RSA’s BSAFE has Dual EC DRBG enabled as default,.

NIST re-opens discussions on SP800.90; recommmends against
using Dual EC.
RSA suggests changing default in BSAFE.

21 April 2014 NIST removes Dual EC from the standard.

http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html


September 2013: NSA Bullrun program

NYT:

the NSA had inserted a back door into a 2006 standard
adopted by NIST [..] called the Dual EC DRBG standard.

. . . but surely nobody uses that!?!

NIST’s DRBG Validation List: more than 70 validations of
Dual EC DRBG;
RSA’s BSAFE has Dual EC DRBG enabled as default,.

NIST re-opens discussions on SP800.90; recommmends against
using Dual EC.
RSA suggests changing default in BSAFE.

21 April 2014 NIST removes Dual EC from the standard.

http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html


How expensive is using the backdoor?
Rereading the standard:
“ x(A) is the x-coordinate of the point A on the curve, given in
affine coordinates. An implementation may choose to represent
points internally using other coordinate systems; for instance, when
efficiency is a primary concern. In this case, a point shall be
translated back to affine coordinates before x() is applied.”

Given ri = ϕ(x(siQ)), ri+1 = ϕ(x(si+1Q)), and NSA backdoor
d = logP(Q).

1. Expand ri to candidate Qi = siQ, [50% chance; if fail move
on to next candidate]

2. compute candidate Pi+1 = dQi and candidate si+1 = x(Pi+1)
3. check, ϕ(x(si+1Q)) against ri+1. [if fail, goto 1.; else most

likely done!]

Initial timings on i7 M620 Core
missing 16 bits 24 bits 32 bits

1 core 20s 85m 15d4h

64k cores 20s

From the standard:
“For performance reasons,
the value of outlen should be
set to the maximum value as
provided in Table 4.”
Don’t give us fewer bits!



How expensive is using the backdoor?
Rereading the standard:
“ x(A) is the x-coordinate of the point A on the curve, given in
affine coordinates. An implementation may choose to represent
points internally using other coordinate systems; for instance, when
efficiency is a primary concern. In this case, a point shall be
translated back to affine coordinates before x() is applied.”

Given ri = ϕ(x(siQ)), ri+1 = ϕ(x(si+1Q)), and NSA backdoor
d = logP(Q).

1. Expand ri to candidate Qi = siQ, [50% chance; if fail move
on to next candidate]

2. compute candidate Pi+1 = dQi and candidate si+1 = x(Pi+1)
3. check, ϕ(x(si+1Q)) against ri+1. [if fail, goto 1.; else most

likely done!]

Initial timings on i7 M620 Core
missing 16 bits 24 bits 32 bits

1 core 20s 85m 15d4h

64k cores 20s

From the standard:
“For performance reasons,
the value of outlen should be
set to the maximum value as
provided in Table 4.”
Don’t give us fewer bits!



How expensive is using the backdoor?
Rereading the standard:
“ x(A) is the x-coordinate of the point A on the curve, given in
affine coordinates. An implementation may choose to represent
points internally using other coordinate systems; for instance, when
efficiency is a primary concern. In this case, a point shall be
translated back to affine coordinates before x() is applied.”

Given ri = ϕ(x(siQ)), ri+1 = ϕ(x(si+1Q)), and NSA backdoor
d = logP(Q).

1. Expand ri to candidate Qi = siQ, [50% chance; if fail move
on to next candidate]

2. compute candidate Pi+1 = dQi and candidate si+1 = x(Pi+1)
3. check, ϕ(x(si+1Q)) against ri+1. [if fail, goto 1.; else most

likely done!]

Initial timings on i7 M620 Core
missing 16 bits 24 bits 32 bits

1 core 20s 85m 15d4h

64k cores 20s

From the standard:
“For performance reasons,
the value of outlen should be
set to the maximum value as
provided in Table 4.”
Don’t give us fewer bits!



How expensive is using the backdoor?
Rereading the standard:
“ x(A) is the x-coordinate of the point A on the curve, given in
affine coordinates. An implementation may choose to represent
points internally using other coordinate systems; for instance, when
efficiency is a primary concern. In this case, a point shall be
translated back to affine coordinates before x() is applied.”

Given ri = ϕ(x(siQ)), ri+1 = ϕ(x(si+1Q)), and NSA backdoor
d = logP(Q).

1. Expand ri to candidate Qi = siQ, [50% chance; if fail move
on to next candidate]

2. compute candidate Pi+1 = dQi and candidate si+1 = x(Pi+1)
3. check, ϕ(x(si+1Q)) against ri+1. [if fail, goto 1.; else most

likely done!]

Initial timings on i7 M620 Core
missing 16 bits 24 bits 32 bits

1 core 20s 85m 15d4h

64k cores 20s

From the standard:
“For performance reasons,
the value of outlen should be
set to the maximum value as
provided in Table 4.”
Don’t give us fewer bits!



How expensive is using the backdoor?
Rereading the standard:
“ x(A) is the x-coordinate of the point A on the curve, given in
affine coordinates. An implementation may choose to represent
points internally using other coordinate systems; for instance, when
efficiency is a primary concern. In this case, a point shall be
translated back to affine coordinates before x() is applied.”

Given ri = ϕ(x(siQ)), ri+1 = ϕ(x(si+1Q)), and NSA backdoor
d = logP(Q).

1. Expand ri to candidate Qi = siQ, [50% chance; if fail move
on to next candidate]

2. compute candidate Pi+1 = dQi and candidate si+1 = x(Pi+1)
3. check, ϕ(x(si+1Q)) against ri+1. [if fail, goto 1.; else most

likely done!]

Initial timings on i7 M620 Core
missing 16 bits 24 bits 32 bits

1 core 20s 85m 15d4h

64k cores 20s

From the standard:
“For performance reasons,
the value of outlen should be
set to the maximum value as
provided in Table 4.”
Don’t give us fewer bits!


