
Elliptic-curve cryptography

Tanja Lange
Technische Univesiteit Eindhoven

The Netherlands

July 23, 2014

1 / 12



Elliptic-curve cryptography: signatures and key exchange

Given: some elliptic curve E , point P on E of known order `.

Key exchange:
Alice picks random a, computes aP, sends it to Bob,
receives bP, computes a(bP),
uses KDF(abP) for authenticated encryption with Bob.

Fairly standard; differences in key-derivation function.

Signatures:
Alice has public key aP, secret key a. Wants to sign message m.
Computes h(m), h a hash function.
Picks random k , computes R = kP, s = k−1(h(m) + ar) mod `,
where r is derived from R, signature is (r , s).

This is close to ECDSA. Standards vary in definition of s,
e.g. in German ECGDSA and Korean EC-KCDSA.

EdDSA also changes what is hashed and how k is chosen.

2 / 12

http://ed25519.cr.yp.to/


Elliptic curves in math

Definition
An elliptic curve is a smooth, projective algebraic curve of genus
one with at least one point.

Definition
Let K be a field and let a1, a2, a3, a4, a6 ∈ K . The equation

E : y2 + (a1x + a3)y = x3 + a2x
2 + a4x + a6

defines an elliptic curve if there is no point (x1, y1) on E (k̄)
satisfying 2y1 + a1x1 + a3 = 0 and a1y1 = 3x21 + 2a2x1 + a4.

This equation form is called a Weierstrass curve.

3 / 12



Elliptic curves in math

Definition
An elliptic curve is a smooth, projective algebraic curve of genus
one with at least one point.

Definition
Let K be a field and let a1, a2, a3, a4, a6 ∈ K . The equation

E : y2 + (a1x + a3)y = x3 + a2x
2 + a4x + a6

defines an elliptic curve if there is no point (x1, y1) on E (k̄)
satisfying 2y1 + a1x1 + a3 = 0 and a1y1 = 3x21 + 2a2x1 + a4.

This equation form is called a Weierstrass curve.

3 / 12



Elliptic curves in Weierstrass form
For crypto want K = Fp, p an odd prime1. This simplifies the
curve equation to y2 = x3 + ax + b; RHS has no double roots.

Most standards use y2 = x3 − 3x + b, this gives some speed up
and is generic.

The group used for crypto is the set

E (Fp) = {(x1, y1) ∈ Fp × Fp|y21 = x31 + ax1 + b} ∪ {∞}.

Computations usually done without inversions.
Represent P1 = (x1, y1) as (X1 : Y1 : Z1),
with x1 = X1/Z1 and y1 = Y1/Z1 for Z1 6= 0.
This also gives a representation to ∞, namely (0 : 1 : 0).

The Z coordinate collects all the divisions; working with fractions
requires cross-multiplications. Doublings (P1 + P1) become faster
than general additions (P1 + P2).

1Some hardware systems benefit from K = F2p .
4 / 12



Elliptic curves in Weierstrass form
For crypto want K = Fp, p an odd prime1. This simplifies the
curve equation to y2 = x3 + ax + b; RHS has no double roots.

Most standards use y2 = x3 − 3x + b, this gives some speed up
and is generic.

The group used for crypto is the set

E (Fp) = {(x1, y1) ∈ Fp × Fp|y21 = x31 + ax1 + b} ∪ {∞}.

Computations usually done without inversions.
Represent P1 = (x1, y1) as (X1 : Y1 : Z1),
with x1 = X1/Z1 and y1 = Y1/Z1 for Z1 6= 0.
This also gives a representation to ∞, namely (0 : 1 : 0).

The Z coordinate collects all the divisions; working with fractions
requires cross-multiplications. Doublings (P1 + P1) become faster
than general additions (P1 + P2).

1Some hardware systems benefit from K = F2p .
4 / 12



Coordinate systems for Weierstrass curves

Old (≤ 1985) systems:

I Affine: P1 = (x1, y1).

I Projective: P1 = (X1 : Y1 : Z1) with x1 = X1/Z1 and
y1 = Y1/Z1 for Z1 6= 0.

I Jacobian: P1 = (X1 : Y1 : Z1) with x1 = X1/Z
2
1 and

y1 = Y1/Z
3
1 for Z1 6= 0.

I x-coordinate only: P1 = (X1 : Z1) with x1 = X1/Z1; does not
distinguish between P1 and −P1 = (x1,−y1). Can compute
x(kP1) from x(P1).

Somewhat newer systems

I Extended Jacobian: P1 = (X1 : Y1 : Z1 : Z 2
1 : Z 3

1 ) with
x1 = X1/Z

2
1 and y1 = Y1/Z

3
1 for Z1 6= 0.

I Modified Jacobian: P1 = (X1 : Y1 : Z1 : aZ 4
1 ) with

x1 = X1/Z
2
1 and y1 = Y1/Z

3
1 for Z1 6= 0.

5 / 12



Addition law on Weierstrass curves

Compute P3 = P1 + P2:

1. if P1 =∞ then P3 = P2;

2. elseif P2 =∞ then P3 = P1;

3. elseif P1 = −P2 then P3 =∞;

4. elseif P1 = P2 then λ = (3x21 + a)/(2y1), x3 = λ2 − 2x1,
y3 = λ(x1 − x3)− y1;

5. else λ = (y1 − y2)/(x1 − x2), x3 = λ2 − x1 − x2,
y3 = λ(x1 − x3)− y1.

Projective coordinates do not magically take care of ∞ or
P1 + (−P1); so most cases remain.

Do not do the case distinction by if/else, this gives a timing attack.

6 / 12



Other curve shapes https://hyperelliptic.org/EFD/

7 / 12

https://hyperelliptic.org/EFD/


Security analysis of curve shapes

Any elliptic curve, e.g. twisted Edwards curve
ax2 + y2 = 1 + dx2y2, is birationally equivalent to a Weierstrass
curve y2 = x3 + a4x + a6 over the same field.

Such a map φ respects addition, so the discrete logarithm problem
has equal strength on both curves: given Q = kP on EE we get
φ(Q) = kφ(P) on EW . No new analysis of DLP hardness needed.

Not every Weierstrass curve is birationally equivalent to a twisted
Edwards, Hessian, Montgomery, . . . curve over the same field.
They are birationally equivalent over a small extension of the field
Fpm , with m ≤ 9. This gives assurance for the security of the
ECDLP.

But there are differences in how ECC is implemented on these.
DJB and I, 2013-05-31 “If you implement the NIST curves,
chances are you’re doing it wrong”.

8 / 12

http://hyperelliptic.org/tanja/vortraege/20130531.pdf
http://hyperelliptic.org/tanja/vortraege/20130531.pdf


Security analysis of curve shapes

Any elliptic curve, e.g. twisted Edwards curve
ax2 + y2 = 1 + dx2y2, is birationally equivalent to a Weierstrass
curve y2 = x3 + a4x + a6 over the same field.

Such a map φ respects addition, so the discrete logarithm problem
has equal strength on both curves: given Q = kP on EE we get
φ(Q) = kφ(P) on EW . No new analysis of DLP hardness needed.

Not every Weierstrass curve is birationally equivalent to a twisted
Edwards, Hessian, Montgomery, . . . curve over the same field.
They are birationally equivalent over a small extension of the field
Fpm , with m ≤ 9. This gives assurance for the security of the
ECDLP.

But there are differences in how ECC is implemented on these.
DJB and I, 2013-05-31 “If you implement the NIST curves,
chances are you’re doing it wrong”.

8 / 12

http://hyperelliptic.org/tanja/vortraege/20130531.pdf
http://hyperelliptic.org/tanja/vortraege/20130531.pdf


Attacks on DLP

Area of extensive research over past > 25 years.
For curves of almost prime order over Fp the strongest attack is
parallel Pollard rho with negation . . .

. . . unless the curve has some very special properties.
These are easy to check for:
http://safecurves.cr.yp.to/verify.html has Sage scripts
to verify that the curve does not

I have too small group order;

I allow additive transfers;

I have small embedding degree;

I have small discriminant.

The scripts also check that all primes are indeed primes etc.

The criterion on the discriminant appears only in the
Brainpool-curves description, but is not a restriction in practice.

9 / 12

http://safecurves.cr.yp.to/verify.html
http://sagemath.org/


Attacks on DLP

Area of extensive research over past > 25 years.
For curves of almost prime order over Fp the strongest attack is
parallel Pollard rho with negation . . .
. . . unless the curve has some very special properties.
These are easy to check for:
http://safecurves.cr.yp.to/verify.html has Sage scripts
to verify that the curve does not

I have too small group order;

I allow additive transfers;

I have small embedding degree;

I have small discriminant.

The scripts also check that all primes are indeed primes etc.

The criterion on the discriminant appears only in the
Brainpool-curves description, but is not a restriction in practice.

9 / 12

http://safecurves.cr.yp.to/verify.html
http://sagemath.org/


ECC security – protocol/side-channel attacks
Implementations need to ensure that received point is valid:

I Point is on the curve.

I Point has the correct group order.

Can skip first check

I if point is reconstructed from compressed form;

I if curve is twist-secure and only x is used.

Can skip second check

I if group order is prime or protocol takes care of it.

Most protocols include handling of cofactors.

Implementations need to ensure that (cache) timing information
does not leak information on the used secrets:

I No data-dependent execution time.

I No data-dependent branches.

I No data-dependent array indices.

10 / 12



Montgomery curves

Peter L. Montgomery, 1987 (submitted 1985)

EM : By2 = x3 + Ax2 + x

Curve shape perfectly suited for x-coordinate-only addition,
used in scalar multiplication.

Keep two points P1 = mP and P2 = mP + P at distance P.
Per bit of scalar add these and double one of them to compute nP.

11 = 1 · 23 + 0 · 22 + 1 · 21 + 1 · 20

(0P, 1P)
1·237→ (1P, 2P)

0·227→ (2P, 3P)
1·217→ (5P, 6P)

1·207→ (11P, 12P)

This gives a very regular execution pattern, leading to side-channel
secured software implementations.

11 / 12

http://www.jstor.org/discover/10.2307/2007888?uid=3739960&uid=2&uid=4&uid=3739256&sid=21104517893463


Twisted Edwards curves

Harold M. Edwards, 2007

ax2 + y2 = 1 + dx2y2

−(x1, y1) = (−x1, y1), very different addition formulas.

If a is a square and d is a non-square in Fp (exactly half of all
elements are squares) then addition is complete.
This means P1 + P2 does not need any case distinction.

Can get a very regular execution pattern by using DBL, DBL, ADD.
11 = 24 − 22 − 20, thus 11P = 2(2(2(2P)− P))− P
(use care in choosing P and −P to add).

In general can get a very regular execution pattern by using signed
fixed windowing. Constant-time methods with more
precomputation exist for fixed basepoint.

Big benefit: can compute Q + 0P and P + P with regular ADD.

12 / 12

http://www.ams.org/journals/bull/2007-44-03/S0273-0979-07-01153-6/home.html

