
Curves with endomorphisms

and DLPs in intervals

Tanja Lange

Technische Universiteit Eindhoven

with some slides by

Daniel J. Bernstein

More elliptic curves

Can use any field k.

Can use any nonsingular curve

y2 + a1xy + a3y =

x3 + a2x
2 + a4x+ a6.

“Nonsingular”: no (x; y) 2 k̄� k̄
simultaneously satisfies

y2 + a1xy + a3y = x3 + a2x
2 +

a4x + a6 and 2y + a1x + a3 = 0

and a1y = 3x2 + 2a2x+ a4.

Easy to check nonsingularity.

Almost all curves are nonsingular

when k is large.

An example over R

Consider all pairs

of real numbers x; y

such that y2 � 5xy = x3 � 7.

The “points on the elliptic curve

y2 � 5xy = x3 � 7 over R”

are those pairs and

one additional point, 1.

i.e. The set of points is

f(x; y) 2 R� R :

y2 � 5xy = x3 � 7g [f1g.

(R is the set of real numbers.)

Graph of this set of points:

� oo (6; 35:83 : : :)

y

x

OO

//

II

Don’t forget 1.

Visualize 1 as top of y axis.

Here �P = Q, �Q = P , �R =

R:

�P

�
Q

�R

y

x

OO

//

II

Distinct curve points P;Q;R

on a line

have P +Q = �R;

P +Q+ R = 1.

Distinct curve points P;R

on a line tangent at P

have P + P = �R;

P + P + R = 1.

A non-vertical line

with only one curve point P

(a flex of the curve)

has P + P = �P ;

P + P + P = 1.

Here P +Q = �R:

�
P�Q

�
R

��R
jjjjjjjjjjjjjjjjjjj

y

x

OO

//

II

Here P + P = �R:

�
P

�R

��R

����������������������������������

y

x

OO

//

II

Curve addition formulas

Easily find formulas for +

by finding formulas for lines

and for curve-line intersections.

x 6= x0: (x; y) + (x0; y0) = (x00; y00)

where � = (y0 � y)=(x0 � x),

x00 = �2 � 5�� x� x0,
y00 = 5x00 � (y + �(x00 � x)).

2y 6= 5x: (x; y)+(x; y) = (x00; y00)

where � = (5y + 3x2)=(2y � 5x),

x00 = �2 � 5�� 2x,

y00 = 5x00 � (y + �(x00 � x)).

(x; y) + (x; 5x� y) = 1.

An elliptic curve over F16

Consider the non-prime field

(Z=2)[t]=(t4 � t� 1) = f
0t3 + 0t2 + 0t1 + 0t0,

0t3 + 0t2 + 0t1 + 1t0,

0t3 + 0t2 + 1t1 + 0t0,

0t3 + 0t2 + 1t1 + 1t0,

0t3 + 1t2 + 0t1 + 0t0,
...

1t3 + 1t2 + 1t1 + 1t0g
of size 24 = 16.

Graph of the “set of points on the

elliptic curve y2 � 5xy = x3 � 7

over (Z=2)[t]=(t4 � t� 1)”:

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

Line y = tx+ 1:

�
�
��
��
��
��
��
��
��

��
�
�
��
��
��
��
��
��

��
��
�
�
��
��
��
��
��

��
��
��
�
�
��
��
��
��

��
��
��
��
�
�
��
��
��

��
��
��
��
��
�
�
��
��

��
��
��
��
��
��
�
�
��

��
��
��
��
��
��
��
�
�

��

�
��
��
��
��
��
��
�

�
��
��
��
��
��
��
��
�

��
��
��

�
��
��
��
��
�

��
��

�
��
��
��
��
��
�

��
��
��
��
��

�
��
��
�

��
��
��
��

�
��
��
��
�

��
��
��
��
��
��
��

�
�

��
��
��
��
��
��

�
��
�

P +Q = �R:

P

Q

R

�R

��

��
��
��
��
��
��
��

��
��

��
��
��
��
��
��

��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��

��
��
��
��
��
��

��
��

��
��
��
��
��
��
��

��

��
��
��
��
��
��
��
��

��
�

��
��
��
��
��
��
�

�

��
��
��
��
��
��
��
�

��
��
��
�

��
��
��
��
�

��
��
�

��
��
��
��
��
�

��
��
��
��
��
�

��
��
�

��
��
��
��
�

��
��
��
�

��
��
��
��
��
��
��
�

�

��
��
��
��
��
��
�

��
�

Why more coefficients?

y2 + a1xy + a3y =

x3 + a2x
2 + a4x+ a6.

“Nonsingular”: no (x; y) 2 k̄� k̄
simultaneously satisfies

y2 + a1xy + a3y = x3 + a2x
2 +

a4x + a6 and 2y + a1x + a3 = 0

and a1y = 3x2 + 2a2x+ a4.

Easy to check nonsingularity.

Almost all curves are nonsingular

when k is large.

Why more coefficients?

y2 + a1xy + a3y =

x3 + a2x
2 + a4x+ a6.

“Nonsingular”: no (x; y) 2 k� k
simultaneously satisfies

y2 + a1xy + a3y = x3 + a2x
2 +

a4x + a6 and 2y + a1x + a3 = 0

and a1y = 3x2 + 2a2x+ a4.

k = F2n , then partial derivatives

become: a1x+ a3 = 0 and

a1y = x2 + a4. Monday’s curve

shape had a1 = a3 = 0

) only condition x2 = a4 and

every element is a square in F2n .

Isomorphic transformations

Elliptic curves over F2n need to

have at least one of a1 and a3

non-zero.

Do isomorphic transformations

linear transformations

y 7! a3y + bx+ c, x 7! a2x+ d

to simplify curve equation.

If a1 6= 0 use a and d to map to

y2 + xy = x3 + a02x
2 + a04x+ a06

and c to achieve a04 = 0.

b appears as b2 + b + a02, can

restrict coefficient of x2 to two

choices.

If a1 = 0, put b = 0, d = a2 to

map to

y2 + a3y = x3 + a04x+ a06
c appears as c2 + a3c + a06, can

restrict constant term; can use a

to restrict choice of a3; if n odd

can get a3 = 1.

If char(k) 6= 2 put b = �a1=2 and

c = �a3=2 to map to

y2 = x3 + a02x
2 + a04x+ a06.

If char(k) 6= 3 can additionally

remove a02 using d. Can use a to

restrict a04 or a06.

Short Weierstrass forms

Over F2n can map to one of

y2 + xy = x3 + a2x
2 + a6

y2 + a3y = x3 + a4x+ a6

with a2; a4; a6 2 F2n ;

a3 = 1 for n odd.

Over Fq, q = pn, p > 3 can map

to y2 = x3 + a4x+ a6

with a4; a6 2 Fq.

Nice for proofs but arithmetic

might prefer other choices,

e.g. Montgomery curves

y2 = x3 + a2x
2 + x over Fq

are faster than above form.

Quadratic twists

Over Fq, q = pn, p > 3

still have freedom to map

E : y2 = x3 + a4x+ a6 to

E 0 : y2 = x3 + a4=c
4x+ a6=c

6

using y 7! c3y, x 7! c2x, c 2 Fq.

For d 2 Fq, curve

Ẽ : y2 = x3 + a4=d
2x+ a6=d

3

is defined over Fq but

isomorphism is defined over Fq
only if d is a square in Fq.

Ẽ is a quadratic twist of E. This

concept includes isomorphisms.

Only one non-isomorphic class.

General addition law

E : y2 + (a1x+ a3)| {z }
h(x)

y =

x3 + a2x
2 + a4x+ a6| {z }
f(x)

; h; f 2 Fq[x]:

�(xP ; yP) = (xP ;�yP � h(xP)).

(xP ; yP) + (xR; yR) = (x3; y3) =

= (�2 + a1�� a2 � xP � xR;
�(xP �x3)� yP �a1x3 �a3);

where � =(
(yR � yP)=(xR � xP) xP 6= xR;
3x2

P
+2a2xP +a4�a1yP
2yP +a1xP +a3

P = R 6= �R

Koblitz curves

Let q = pn for small p and big n.

y2 + h(x)y = f(x)

over Fq is called a Koblitz curve

if it is defined over Fp, i.e., if

h(x); f(x) 2 Fp[x].

p need not be prime; p = 4 is also

small.

Typical case: p = 2. This is the

case proposed by Koblitz; also

called anomalous binary curves.

Take E : y2 + h(x)y = f(x),

with h(x); f(x) 2 Fp[x] as curve

over Fpn

and let P = (xP ; yP) 2 E(Fpn).

Then �(P) = (x
p
P ; y

p
P) is also a

point in Ea(Fpn):

Proof uses that Frobenius

automorphism is linear

(a+ b)p = ap + bp

and that cp = c for c 2 Fp.

The map � is called the Frobenius

endomorphism of E.

Properties of Koblitz curves

Let #E(Fp) = p+ 1 � t and let

T 2 � tT + p = (T � �)(T � �̄)

then

#E(Fpn) = (1� �n)(1 � �̄n).

Easy computation of number of

points – but shows restriction:

if mjn then

#E(Fpm)j#E(Fpn),

so require prime n to have large

prime order subgroup.

�(T) = T 2 � tT + p

called characteristic polynomial of

the Frobenius endomorphism.

Each P 2 E(Fpn) satisfies

�2(P) � t�(P) + pP = 1.

Each P 2 E(Fpn) satisfies

�2(P) � t�(P) + pP = 1.

This means

pP = t�(P) � �2(P)

for t 2 [�2
p
p; 2

p
p].

Each P 2 E(Fpn) satisfies

�2(P) � t�(P) + pP = 1.

This means

pP = t�(P) � �2(P)

for t 2 [�2
p
p; 2

p
p].

Expand integer k in base �

k =
P
ki�

i, with

ki 2 [�b(p� 1)=2c; d(p� 1)=2e]
and compute

kP =
P
ki�

i(P).

Each P 2 E(Fpn) satisfies

�2(P) � t�(P) + pP = 1.

This means

pP = t�(P) � �2(P)

for t 2 [�2
p
p; 2

p
p].

Expand integer k in base �

k =
P
ki�

i, with

ki 2 [�b(p� 1)=2c; d(p� 1)=2e]
and compute

kP =
P
ki�

i(P).

Density of expansion similar to

base p expansion, same set of

coefficients – but computing �(P)

is much cheaper than pP .

Case p = 2: T 2 + (�1)aT + 2 = 0

DBL costs 1I + 2M + 1S.

� costs 2S.

Few tricks (Meier-Staffelbach,

Solinas)

kP =
Pn

i=0 ki�
i(P),

ki 2 f0; 1g for P 2 E(F2n)

has average density 1=2.

kP =
Pn+1

i=0 ki�
i(P),

ki 2 f�1; 0; 1g for P 2 E(F2n)

has average density 1=3.

Similar to binary and NAF

expansion; generalizations of

other methods exist.

General case:

Frobenius endomorphism makes

scalar multiplications faster.

Optimal extension fields –

medium size p and n –

get some benefit, too.

OEF assumes p fits word size.

Most extreme cases:

Prime order subgroup � pn�1.

n = 3 or 5: trace-zero varieties

n = 2: not worthwhile.

Attacks get somewhat faster –

but not devastating, except for

some bad choices.

Other curves with endomorphisms

Gallant-Lambert-Vanstone:

When E has equation

y2 = x3 + ax over Fp
with p � 1 (mod 4).

�:E ! E; (x; y) 7! (�x;p�1y)

Note that �2 + 1 = 0.

When E has equation

y2 = x3 + b over Fp
with p � 1 (mod 3).

Let �3 = (1 �p�3)=2.

�:E ! E; (x; y) 7! (�3x; y)

Note that �2 + �+ 1 = 0.

Bigger example of GLV method:

When E has equation

y2 = x3 � 3x2=4� 2x� 1 over Fp
with p � 1; 2 or 4 (mod 7).

Denote � = (1 +
p�7)=2 and

a = (� � 3)=4.

�:E ! E;

(x; y) 7!
�

x2
��

�2(x�a)
;
y(x2

�2ax+�)

�3(x�a)2

�
Note that �2 � �+ 2 = 0.

Computation of Q = kP

Gallant-Lambert-Vanstone

method, where endomorphism � is

different from the Frobenius �.

Write

kP = k(0)P + k(1)�(P),

max
n
jk(0)j; jk(1)j

o
= O(

p
`)

Key points:

Each k(i) is half as long as

k 2 [1; `].

Computing �(P) is easy.

Use joint doublings to

quickly evaluate double scalar

multiplication.

Idea of joint doublings

To compute

n1P1 + n2P2 + � � � + nmPm

compute the doublings together,

i.e. write scalars ni in binary:

n1 =n1;l�12l�1 +n1;l�22l�2+ :::+n1;0

n2 =n2;l�12l�1 +n2;l�22l�2+ :::+n2;0

...
...

...
...

nm=nm;l�12l�1+nm;l�22l�2+:::+nm;0

Idea of joint doublings

To compute

n1P1 + n2P2 + � � � + nmPm

compute the doublings together,

i.e. write scalars ni in binary:

n1 =n1;l�12l�1 +n1;l�22l�2+ :::+n1;0

n2 =n2;l�12l�1 +n2;l�22l�2+ :::+n2;0

...
...

...
...

nm=nm;l�12l�1+nm;l�22l�2+:::+nm;0

Compute as

2(2(n1;l�1P1+n2;l�1P2+���+nm;l�1Pm)+

(n1;l�2P1+n2;l�2P2+���+nm;l�2Pm)+���

etc. Even with precomputations,

many more adds than doublings.

Examples

1338P + 1715Q =

(10100111010)2P +

(11010110011)2Q takes 20

doublings and 12 additions.

Given precomputed P +Q,

we can compute the same

in 10 doublings and 8 additions.

If � is efficient

(010101001̄010)2P +

(1001̄01̄01̄0101̄)2Q reduces

(compared to first line) the

number of additions to 10,

but needs 21 doublings.

Given precomputed

P +Q and P �Q:

(010101001̄010)2P+

(1001̄01̄01̄0101̄)2Q

needs 11 doublings

and 8 additions.

The joint Hamming weight

has not decreased,

and length has increased.

Combination

GLV curves are rare.

Galbraith-Lin-Scott (GLS)

use Frobenius � with n = 2

– and avoids having big subgroup!

Let E be an elliptic curve defined

over Fp2 .

Quadratic twist of

E : y2 = x3 + a4x+ a6 is

Ẽ : y2 = x3 + a4=c
2x+ a6=c

3,

c 2 Fp2 and c 6= over Fp2 .

Start with Ẽ over Fp.

(Aha, the subfield idea comes in!)

and pick nonsquare c 2 Fp2 .

Ẽ : y2 = x3+b4x+b6; b4; b6 2 Fp.

Gets E over Fp2 :

E : y2 = x3 + b4c
2x+ b6c

3,

b4c
2; b6c

3 2 Fp2 .

No reason that E cannot have

(almost) prime order.

Yet E closely related to curve

with Frobenius endomorphism.

Define : E ! E

as map from E to Ẽ, followed by

p-th power Frobenius on Ẽ,

followed by map back to E.

 satisfies 2 + 1 = 0 on points

of order � 2p on E. Can use all

GLV tricks; many more curves.

Endomorphisms speed up DLP

In general, an efficiently

computable endomorphism � of

order r speeds up Pollard rho

method by factor
p
r.

Can define walk on classes by

inspecting all 2r points

�P;��(P); : : : ;��r�1(P)

to choose unique representative

for class and then doing an

adding walk.

So y2 = x3 + ax and y2 = x3 + b

come at a security loss of
p

2.

GLS curves also have

endomorphisms of order 2.

As in the case of GLV curves, loss

of factor
p

2 is fully made up for

by the faster arithmetic.

Security of DLP might not be

sufficient for your protocol; some

are based on hardness of static

Diffie-Hellman problem.

Recent observation (Granger

2010): Oracle assisted DHP is

easier on GLS curves than on

curves over prime fields.

The target: ECC2K-130

The Koblitz curve

y2 + xy = x3 + 1

over F2131 has 4` points,

where ` is prime.

Field representation uses

irreducible polynomial

f = z131 + z13 + z2 + z + 1.

Certicom generated their

challenge points as two random

points in order-` subgroup by

taking two random points on the

curve and multiplying them by 4.

This produced the following

points P;Q:

x(P) = 05 1C99BFA6 F18DE467 C80C23B9 8C7994AA
y(P) = 04 2EA2D112 ECEC71FC F7E000D7 EFC978BD
x(Q) = 06 C997F3E7 F2C66A4A 5D2FDA13 756A37B1
y(Q) = 04 A38D1182 9D32D347 BD0C0F58 4D546E9A

(unique encoding of F2131 in hex).

The challenge:

Find an integer

k 2 f0; 1; : : : ; `� 1g
such that [k]P = Q.

Bigger picture:

128-bit curves have been proposed

for real (RFID, TinyTate).

Equivalence classes for Koblitz curves

P and �P have same x-coordinate.

Search for x-coordinate collision.

Search space is only `=2; this

gives factor
p

2 speedup : : :

provided that f(Pi) = f(�Pi).

Equivalence classes for Koblitz curves

P and �P have same x-coordinate.

Search for x-coordinate collision.

Search space is only `=2; this

gives factor
p

2 speedup : : :

provided that f(Pi) = f(�Pi).

More savings: P and �i(P) have

x(�j(P)) = x(P)2j .

Consider equivalence classes under

Frobenius and �; gain

additional factor
p
n =

p
131.

Need to ensure that the iteration

function satisfies

f(Pi) = f(��j(Pi)) for any j.

Could again define adding walk

starting from jPij.
Redefine jPij as canonical

representative of class containing

Pi: e.g., lexicographic minimum

of Pi, �Pi, �(Pi), etc.

Iterations now involve many

squarings, but squarings are not

so expensive in characteristic 2.

Iteration function for Koblitz curves

Normal basis of finite field

F2n has elements

f�; �2; �22
; �23

; : : : ; �2n�1g.

Representation for x and x2Pn�1
i=0 xi�

2i = (x0; x1; x2; : : : ; xn�1)Pn
i=1 xi�

2i = (xn�1; x0; : : : ; xn�2)

using (�2n�1
)2 = �2n = �.

Harley and Gallant-Lambert-

Vanstone observe that in normal

basis, x(P) and x(P)2j have

same Hamming weight

HW(x(P)) =
Pn�1

i=0 xi
(addition over Z).

Suggestion:

Pi+1 = Pi + �j(Pi);

as iteration function.

Choice of j depends on HW(x(P)).

This ensures that the walk is

well defined on classes since

f(��m(Pi)) =

� �m(Pi) + �j(��m(Pi)) =

� (�m(Pi) + �m(�j(Pi))) =

� �m(Pi + �j(Pi)) =

� �m(Pi+1):

GLV suggest using

j = hash(HW(x(P))),

where the hash function

maps to [1; n].

Harley uses a smaller set of

exponents; for his attack on

ECC2K-108 he takes

j 2 f1; 2; 4; 5; 6; 7; 8g;

computed as

j = (HW(x(P)) mod 7) + 2

and replacing 3 by 1.

Our choice of iteration function

Restricting size of j matters –

squarings are cheap but:

� in bitslicing need to compute all

powers (no branches allowed);

� code size matters

(in particular for Cell CPU);

� logic costs area for FPGA;

� having a large set doesn’t

actually gain much randomness.

Analysis of the loss in randomness

similar to Wednesday’s.

Having few coefficients lets us

exclude short fruitless cycles.

To do so, compute

the shortest vector in the latticen
v :
Q

j(1 + �j)vj = 1
o

.

Usually the shortest vector has

negative coefficients (which

cannot happen with the iteration);

shortest vector with positive

coefficients is somewhat longer.

For implementation it is better

to have a continuous interval of

exponents, so shift the interval if

shortest vector is short.

Our iteration function:

Pi+1 = Pi + �j(Pi) where

j = (HW(x(P))=2 mod 8) + 3,

so j 2 f3; 4; 5; 6; 7; 8; 9; 10g.

Shortest combination of these

powers is long.

Note that HW(x(P)) is even.

Iteration consists of

� computing the Hamming weight

HW(x(P)) of the normal-basis

representation of x(P);

� checking for distinguished

points (is HW(x(P)) � 34?);

� computing j and P + �j(P).

Analysis of our iteration function

For a perfectly random walk

�
p
�`=2 iterations

are expected on average.

Have ` � 2131=4 for ECC2K-130.

A perfectly random walk

on classes under � and Frobenius

would reduce number of iterations

by
p

2 � 131.

Analysis of our iteration function

For a perfectly random walk

�
p
�`=2 iterations

are expected on average.

Have ` � 2131=4 for ECC2K-130.

A perfectly random walk

on classes under � and Frobenius

would reduce number of iterations

by
p

2 � 131.

Loss of randomness

from having only 8 choices of j.

Further loss from non-randomness

of Hamming weights:

Hamming weights around 66

are much more likely than at the

edges; effect still noticeable

after reduction to 8 choices.

Hamming weights around 66

are much more likely than at the

edges; effect still noticeable

after reduction to 8 choices.

Our
q

1 �Pi p
2
i heuristic says

that the total loss is 6.9993%.

(Higher-order anti-collision

analysis: actually above 7%.)

This loss is justified by

the very fast iteration function.

Hamming weights around 66

are much more likely than at the

edges; effect still noticeable

after reduction to 8 choices.

Our
q

1 �Pi p
2
i heuristic says

that the total loss is 6.9993%.

(Higher-order anti-collision

analysis: actually above 7%.)

This loss is justified by

the very fast iteration function.

Average number of iterations for

our attack against ECC2K-130:p
�`=(2 � 2 � 131) � 1:069993

� 260:9.

Some highlights:

Detailed analysis of

randomness of iteration function.

Could increase randomness of the

walk but then iteration function

gets slower. Optimized for

time per iteration � # iterations.

Do not remember multiset of j’s;

instead recompute this from seed

when collision is found

(cheaper, less storage).

Comparative study of normal

basis and polynomial basis

representation;

new: optimal polynomial bases.

DLs in intervals

Want to use knowledge

that DL is in a

small interval [a; b],

much smaller than `.

We can use this in baby-step

giant-step algorithm.

How to use this in a

memory-less algorithm?

Standard interval method:

Pollard’s kangaroo method.

Pollard’s kangaroos do small

jumps around the interval.

Standard interval method:

Pollard’s kangaroo method.

Pollard’s kangaroos do small

jumps around the interval.

Real kangaroos sleep

Standard interval method:

Pollard’s kangaroo method.

Pollard’s kangaroos do small

jumps around the interval.

Real kangaroos sleep

(at least outside Australia).

Kangaroo method

in Australia

Main actor:

The tame kangaroo

starts at a known

multiple of P , e.g. bP .

The tame kangaroo jumps.

Jumps are determined

by current position.

The tame kangaroo jumps.

Jumps are determined

by current position.

Average jump distance

is
p
b� a.

The tame kangaroo jumps.

Jumps are determined

by current position.

Average jump distance

is
p
b� a.

The tame kangaroo jumps.

Jumps are determined

by current position.

Average jump distance

is
p
b� a.

The tame kangaroo stops

after a fixed number of jumps

(about
p
b� a many).

Installs a trap and waits.

The wild kangaroo

starts at point Q.

Follows the same instructions for

jumps.

But we don’t know where

the starting point Q is.

Know Q = nP with n 2 [a; b].

Hope that the paths of the tame

and wild kangaroo intersect.

Similar to the rho method the

kangaroos will hop on the same

path from that point onwards.

Eventually the wild kangaroo falls

into the trap.

(Or disappears in the distance if

paths have not intersected.

Start a fresh one

from Q+ P;Q+ 2P; : : :.)

Same story in math

Kangaroo = sequence Xi 2 hP i.
Starting point X0 = s0P .

Distance d0 = 0.

Step set: S = fs1P; : : : ; sLPg,

with si on average

s = �
p
b� a.

Hash function

H : hP i ! f1; 2; : : : ; Lg.

Update function

di+1 = di + sH(Xi)
; i = 0; 1; 2; : : :,

Xi+1= Xi + sH(Xi)
P; i = 0; 1; 2; : : :.

Tame kangaroo starts at

X0 = bP ,

wild kangaroo starts at

X 0

0 = Q = nP .

Trap: distance dN ,

endpoint XN = (b+ dN)P .

Picture credit:

Christine van Vredendaal.

Parallel kangaroo method

Use an entire herd

of tame kangaroos,

all starting

around (b� a)=2P : : :

: : : and define certain spots as

distinguished points

Also start a herd of

wild kangaroos around Q.

Hope that one wild and

one tame kangaroo

meet at one distinguished point.

