
Signatures

and DLP

Tanja Lange

Technische Universiteit Eindhoven

with some slides by

Daniel J. Bernstein



ECDSA

Users can sign messages

using Edwards curves.

Take a point P on an Edwards

curve modulo a prime q > 2.

ECDSA signer needs to know

the order of P .

There are only finitely many other

points; about q in total.

Adding P to itself will eventually

reach (0; 1); let ` be the smallest

integer > 0 with `P = (0; 1).

This ` is the order of P .



The signature scheme has as

system parameters a curve E; a

base point P ; and a hash function

h with output length at least

blog2 `c + 1.

Alice’s secret key is an integer a

and her public key is PA = aP .

To sign message m,

Alice computes h(m);

picks random k;

computes R = kP = (x1; y1);

puts r � y1 mod `; computes

s � k�1(h(m) + r � a) mod `.

The signature on m is (r; s).



Anybody can verify signature

given m and (r; s):

Compute w1 � s�1h(m) mod `

and w2 � s�1 � r mod `.

Check whether the y-coordinate

of w1P +w2PA equals r modulo `

and if so, accept signature.

Alice’s signatures are valid:

w1P + w2PA =

(s�1h(m))P + (s�1 � r)PA =

(s�1(h(m) + ra))P = kP

and so the y-coordinate of this

expression equals r,

the y-coordinate of kP .



Attacker’s view on signatures

Anybody can produce an R = kP .

Alice’s private key is only used in

s � k�1(h(m) + r � a) mod `.

Can fake signatures if one can

break the DLP, i.e., if one can

compute a from PA.

Lectures today and tomorrow deal

with methods for breaking DLPs.

Sometimes attacks are easier: : :



If k is known for some m; (r; s)

then



If k is known for some m; (r; s)

then a � (sk� h(m))=r mod `.

If two signatures m1; (r; s1) and

m2; (r; s2) have the same value

for r:



If k is known for some m; (r; s)

then a � (sk� h(m))=r mod `.

If two signatures m1; (r; s1) and

m2; (r; s2) have the same value

for r: assume k1 = k2; observe

s1 � s2 = k�1
1 (h(m1) + ra �

(h(m2) + ra)); compute k =

(s1 � s2)=(h(m1) � h(m2)).

Continue as above.

If bits of many k’s are known

(biased PRNG) can attack

s � k�1(h(m) + r � a) mod `

as hidden number problem

using lattice basis reduction.



Malicious signer

Alice can set up her public key so

that two messages of her choice

share the same signature,

i.e., she can claim to have

signed m1 or m2 at will:

R = (x1; y1) and �R = (�x1; y1)

have the same y-coordinate.

Thus, (r; s) fits R = kP ,

s � k�1(h(m1) + ra) mod `

and �R = (�k)P ,

s � �k�1(h(m2) + ra) mod ` if

a � �(h(m1)+h(m2))=2r mod `.



Malicious signer

Alice can set up her public key so

that two messages of her choice

share the same signature,

i.e., she can claim to have

signed m1 or m2 at will:

R = (x1; y1) and �R = (�x1; y1)

have the same y-coordinate.

Thus, (r; s) fits R = kP ,

s � k�1(h(m1) + ra) mod `

and �R = (�k)P ,

s � �k�1(h(m2) + ra) mod ` if

a � �(h(m1)+h(m2))=2r mod `.

(Easy tweak: include bit of x1.)



EdDSA

“High-speed high-security

signatures” (Bernstein–Duif–L–

Schwabe–Yang, CHES 2011).

Uses k =hash(b;m);

b is second secret key.

Make h dependent on R and PA:

h =hash(R; PA;m).

No inversions mod `:

s � k + ha mod `.

Verification:

does sP equal R + hPA?

Use Edwards curves!

Very fast signing and verifying.



Edwards curves are cool



Elliptic-curve groups

W

R

−W −R

W +R



Elliptic-curve groups

W

R

−W −R

W +R

2W

−2W



Elliptic-curve groups

W

R

−W −R

W +R

2W

−2W

Following algorithms will need a

unique representative per point.

For that Weierstrass curves are

the speed leader.



Elliptic-curve groups

W

R

−W −R

W +R

2W

−2W

Following algorithms will need a

unique representative per point.

For that Weierstrass curves

are the speed leader. : : : and I

thought turtles were defensive.



The discrete-logarithm problem

Define p = 1000003 and

consider the Weierstrass curve

y2 = x3 � x over Fp.

This curve has

1000004 = 22 � 532 � 89

points and P = (101384; 614510)

is a point of order 2 � 532 � 89.



The discrete-logarithm problem

Define p = 1000003 and

consider the Weierstrass curve

y2 = x3 � x over Fp.

This curve has

1000004 = 22 � 532 � 89

points and P = (101384; 614510)

is a point of order 2 � 532 � 89.

In general, point counting over Fp
runs in time polynomial in log p.

Number of points in

[p + 1 � 2
p
p; p + 1 + 2

p
p].

The group is isomorphic to

Z=n � Z=m, where njm and

nj(p� 1).



Can we find an integer

n 2 f1; 2; 3; : : : ; 500001g
such that nP =

(670366; 740819)?

This point was generated as

a multiple of P ; could also be

outside cyclic group.

Could find n by brute force.

Is there a faster way?



Understanding brute force

Can compute successively

1P = (101384; 614510),

2P = (102361; 628914),

3P = (77571; 87643),

4P = (650289; 31313),

500001P = �P .

500002P = 1.

At some point we’ll find n

with nP = (670366; 740819).

Maximum cost of computation:

� 500001 additions of P ;

� 500001 nanoseconds on a CPU

that does 1 ADD/nanosecond.



This is negligible work

for p � 220.

But users can

standardize a larger p,

making the attack slower.

Attack cost scales linearly:

� 250 ADDs for p � 250,

� 2100 ADDs for p � 2100, etc.

(Not exactly linearly:

cost of ADDs grows with p.

But this is a minor effect.)



Computation has a good chance

of finishing earlier.

Chance scales linearly:

1=2 chance of 1=2 cost;

1=10 chance of 1=10 cost; etc.

“So users should choose large n.”

That’s pointless. We can apply

“random self-reduction”:

choose random r, say 69961;

compute rP = (593450; 987590);

compute (r + n)P as

(593450; 987590)+(670366; 740819);

compute discrete log;

subtract r mod 500002; obtain n.



Computation can be parallelized.

One low-cost chip can run

many parallel searches.

Example, 26 e: one chip,

210 cores on the chip,

each 230 ADDs/second?

Maybe; see SHARCS workshops

for detailed cost analyses.

Attacker can run

many parallel chips.

Example, 230 e: 224 chips,

so 234 cores,

so 264 ADDs/second,

so 289 ADDs/year.



Multiple targets and giant steps

Computation can be applied

to many targets at once.

Given 100 DL targets n1P ,

n2P , : : : , n100P :

Can find all of n1; n2; : : : ; n100

with � 500002 ADDs.

Simplest approach: First build

a sorted table containing

n1P , : : : , n100P .

Then check table for

1P , 2P , etc.



Interesting consequence #1:

Solving all 100 DL problems

isn’t much harder than

solving one DL problem.

Interesting consequence #2:

Solving at least one

out of 100 DL problems

is much easier than

solving one DL problem.

When did this computation

find its first ni?

Typically � 500002=100 mults.



Can use random self-reduction

to turn a single target

into multiple targets.

Given nP :

Choose random r1; r2; : : : ; r100.

Compute r1P + nP ,

r2P + nP , etc.

Solve these 100 DL problems.

Typically � `=100 mults

to find at least one

ri + n mod `,

immediately revealing n.



Also spent some ADDs

to compute each riP :

� lg p ADDs for each i.

Faster: Choose ri = ir1

with r1 � `=100.

Compute r1P ;

r1P + nP ;

2r1P + nP ;

3r1P + nP ; etc.

Just 1 ADD for each new i.

� 100 + lg ` + `=100 ADDs

to find n given nP .



Faster: Increase 100 to � p
`.

Only � 2
p
` ADDs

to solve one DL problem!

“Shanks baby-step-giant-step

discrete-logarithm algorithm.”

Example: p = 1000003; ` =

500002, P = (101384; 614510),

Q = nP = (670366; 740819).

Compute 708P=(393230; 421116).

Then compute 707 targets:

708P + Q = (342867; 153817),

2 �708P +nP = (430321; 994742),

3 �708P +nP = (423151; 635197),

: : : , 706 � 708P + nP =

(534170; 450849).



Build a sorted table of targets:

600�708P+Q = (799978; 929249),

219�708P+Q = (425475; 793466),

679�708P+Q = (996985; 191440),

242�708P+Q = (262804; 347755),

27 �708P +Q = (785344; 831127),

: : :

317�708P+Q = (599785; 189116).

Look up P , 2P , 3P , etc. in table.

620P = (950652; 688508); find

596 �708P +Q = (950652; 688508)

in the table of targets;

so 620 = 596�708+n mod 500002;

deduce n = 78654.



Factors of the group order

P has order 2 � 532 � 89.

Given Q = nP , find n = logP Q:

R = (532 � 89)P has order 2, and

S = (532 � 89)Q is multiple of R.

Compute n1 = logR S � n mod 2.

R = (2 � 53 � 89)P has order 53,

and

S = (2 � 53 � 89)Q is multiple of R.

Compute n2 = logR S � n mod

53.

This is a DLP in a group

of size 53.



T = (2 � 89)(Q � n2P ) is also a

multiple of R.

Compute n3 = logR T � n mod

53.

Now n2 + 53n3 � n mod 532.

R = (2 � 532)P has order 89, and

S = (2 � 532)Q is multiple of R.

Compute n4 = logR S � n mod

89.

Use Chinese Remainder Theorem

n � n1 mod 2,

n � n2 + 53n3 mod 532,

n � n4 mod 89,

to determine n modulo 2 � 532 � 89.



This “Pohlig-Hellman method”

converts an order-ab DL into

an order-a DL, an order-b DL,

and a few scalar multiplications.

Here (532 � 89)P = (1; 0) and

(532 � 89)Q = 1, thus n1 = 0.

(2 � 53 � 89)P = (539296; 488875),

(2 � 53 � 89)Q = (782288; 572333).

A search quickly finds n2 = 2.

(2 �89)(Q�2P ) = 1, thus n3 = 0

and n2 + 53n3 = 2.



(2 � 532)P = (877560; 947848) and

(2 � 532)Q = (822491; 118220).

Compute n4 = 67, e.g. using

BSGS.

Use Chinese Remainder Theorem

n � 0 mod 2,

n � 2 mod 532,

n � 67 mod 89,

to determine n = 78654.

Pohlig-Hellman method reduces

security of discrete logarithm

problem in group generated by P

to security of largest prime order

subgroup.



The rho method

Simplified, non-parallel rho:

Make a pseudo-random walk

in the group hP i,
where the next step depends

on current point: Wi+1 = f(Wi).

Birthday paradox:

Randomly choosing from `

elements picks one element twice

after about
p
�`=2 draws.

The walk now enters a cycle.

Cycle-finding algorithm

(e.g., Floyd) quickly detects this.





























































Assume that for each point

we know ai; bi 2 Z=`Z

so that Wi = aiP + biQ.

Then Wi = Wj means that

aiP + biQ = ajP + bjQ

so (bi � bj)Q = (aj � ai)P .

If bi 6= bj the DLP is solved:

n = (aj � ai)=(bi � bj).



Assume that for each point

we know ai; bi 2 Z=`Z

so that Wi = aiP + biQ.

Then Wi = Wj means that

aiP + biQ = ajP + bjQ

so (bi � bj)Q = (aj � ai)P .

If bi 6= bj the DLP is solved:

n = (aj � ai)=(bi � bj).

e.g. f(Wi) = a(Wi)P + b(Wi)Q,

starting from some initial

combination W0 = a0P + b0Q.

If any Wi and Wj collide then

Wi+1 = Wj+1, Wi+2 = Wj+2,

etc.



If functions a(W ) and b(W ) are

random modulo `, iterations

perform a random walk in hP i.
If a and b are chosen such that

f(Wi) = f(�Wi) then the walk

is defined on equivalence classes

under �.

There are only d`=2e different

classes. This reduces the average

number of iterations by a factor

of almost exactly
p

2.

In general, Pollard’s rho method

can be combined with any easily

computed group automorphism of

small order. More on that later.



Parallel collision search

Running Pollard’s rho method on

N computers gives speedup of

� p
N from increased likelihood

of finding collision.

Want better way to spread

computation across clients. Want

to find collisions between walks

on different machines, without

frequent synchronization!

Better method due to van

Oorschot and Wiener (1999).

Declare some subset of hP i to

be distinguished points.



Parallel rho: Perform many walks

with different starting points

but same update function f .

If two different walks

find the same point then

their subsequent steps will match.

Terminate each walk once it hits

a distinguished point and report

the point along with ai and bi to

server.

Server receives, stores, and sorts

all distinguished points.

Two walks reaching same

distinguished point give collision.

This collision solves the DLP.



Attacker chooses frequency and

definition of distinguished points.

Tradeoffs are possible:

If distinguished points are rare, a

small number of very long walks

will be performed. This reduces

the number of distinguished

points sent to the server but

increases the delay before a

collision is recognized.

If distinguished points are

frequent, many shorter walks will

be performed.

In any case do not wait for cycle.

Total # of iterations unchanged.





Additive walks

Generic rho method requires two

scalar multiplications for each

iteration.

Could replace by double-scalar

multiplication; could further

merge the 2-scalar multiplications

across several parallel iterations.



Additive walks

Generic rho method requires two

scalar multiplications for each

iteration.

Could replace by double-scalar

multiplication; could further

merge the 2-scalar multiplications

across several parallel iterations.

More efficient: use additive walk:

Start with W0 = a0P and put

f(Wi) = Wi + cjP + djQ

where j = h(Wi).



Pollard’s initial proposal:

Use x(Wi) mod 3 as h

and update:

Wi+1 =8<
:
Wi + P for x(Wi) mod 3 = 0
2Wi for x(Wi) mod 3 = 1
Wi + Q for x(Wi) mod 3 = 2

Easy to update ai and bi.

(ai+1; bi+1) =8<
:

(ai + 1; bi) for x(Wi) mod 3 = 0
(2ai; 2bi) for x(Wi) mod 3 = 1
(ai; bi + 1) for x(Wi) mod 3 = 2



Additive walk requires only one

addition per iteration.

h maps from hP i to

f0; 1; : : : ; r � 1g, and

Rj = cjP + djQ are

precomputed for each

j 2 f0; 1; : : : ; r � 1g.

Easy coefficient update:

Wi = aiP + biQ,

where ai and bi are defined

recursively as follows:

ai+1 = ai + ch(Wi) and

bi+1 = bi + dh(Wi).



Additive walks have

disadvantages:

The walks are noticeably

nonrandom; this means they need

more iterations than the generic

rho method to find a collision.

This effect disappears as r grows,

but but then the precomputed

table R0; : : : ; Rr�1 does not fit

into fast memory. This depends

on the platform, e.g. trouble for

GPUs.

More trouble with adding walks

later.



Randomness of adding walks

Let h(W ) = i with probability pi.

Fix a point T , and let W and

W 0 be two independent uniform

random points.

Let W 6= W 0 both map to T .

This event occurs if there are i 6=
j such that simultaneously:

T = W + Ri = W 0 + Rj ;

h(W ) = i; h(W 0) = j.

These conditions have probability

1=`2, pi, and pj respectively.



Summing over all (i; j)

gives the overall probability�P
i 6=j pipj

�
=`2 =�P

i;j pipj �
P

i p
2
i

�
=`2 =�

1 �Pi p
2
i

�
=`2.

This means that the probability

of an immediate collision from W

and W 0 is
�
1 �Pi p

2
i

�
=`, where

we added over the ` choices of T .

In the simple case that all the pi
are 1=r, the difference from the

optimal
p
�`=2 iterations is a

factor of

1=
p

1 � 1=r � 1 + 1=(2r).



Various heuristics leading to

standard
p

1 � 1=r formula

in different ways:

1981 Brent–Pollard;

2001 Teske;

2009 ECC2K-130 paper,

eprint 2009/541.



Various heuristics leading to

standard
p

1 � 1=r formula

in different ways:

1981 Brent–Pollard;

2001 Teske;

2009 ECC2K-130 paper,

eprint 2009/541.

2010 Bernstein–Lange:

Standard formula is wrong!

There is a further slowdown

from higher-order anti-collisions:

e.g. W +Ri +Rk 6= W 0 +Rj +Rl

if Ri + Rk = Rj + Rl.

� 1% slowdown for ECC2K-130.



Eliminating storage

Usual description: each walk

keeps track of ai and bi
with Wi = aiP + biQ.

This requires each client to

implement arithmetic modulo `

or at least keep track of

how often each Rj is used.

For distinguished points

these values are

transmitted to server (bandwidth)

which stores them as

e.g. (Wi; ai; bi) (space).



2009 ECC2K-130 paper:

Remember where you started.

If Wi = Wj is the collision of

distinguished points,

can recompute these walks

with ai; bi; aj , and bj ;

walk is deterministic!

Server stores 245 distinguished

points; only needs to know

coefficients for 2 of them.

Our setup: Each walk remembers

seed; server stores distinguished

point and seed.

Saves time, bandwidth, space.



Negation and rho

W = (x; y) and �W = (x;�y)

have same x-coordinate.

Search for x-coordinate collision.

Search space for collisions is

only d`=2e; this gives factor
p

2

speedup : : : if f(Wi) = f(�Wi).

To ensure f(Wi) = f(�Wi):

Define j = h(jWij) and

f(Wi) = jWij + cjP + djQ.

Define jWij as, e.g., lexicographic

minimum of Wi;�Wi.

This negation speedup

is textbook material.



Problem: this walk can

run into fruitless cycles!

Example: If jWi+1j = �Wi+1

and h(jWi+1j) = j = h(jWij)
then Wi+2 = f(Wi+1) =

�Wi+1 + cjP + djQ =

�(jWij+cjP+djQ)+cjP+djQ =

�jWij so jWi+2j = jWij
so Wi+3 = Wi+1

so Wi+4 = Wi+2 etc.

If h maps to r different values

then expect this example to occur

with probability 1=(2r)

at each step.

Known issue, not quite textbook.



Eliminating fruitless cycles

Issue of fruitless cycles is known

and several fixes are proposed.

See appendix of full version ePrint

2011/003 for even more details

and historical comments.

Summary: most of them

got it wrong.



Eliminating fruitless cycles

Issue of fruitless cycles is known

and several fixes are proposed.

See appendix of full version ePrint

2011/003 for even more details

and historical comments.

Summary: most of them

got it wrong.

So what to do?

Choose a big r, e.g. r = 2048.

1=(2r) = 1=4096 small;

cycles infrequent.



Define j(x; y)j to mean

(x; y) for y 2 f0; 2; 4; : : : ; p� 1g
or

(x;�y) for y 2 f1; 3; 5; : : : ; p� 2g.

Precompute points

R0; R1; : : : ; Rr�1 as known

random multiples of P .



Define j(x; y)j to mean

(x; y) for y 2 f0; 2; 4; : : : ; p� 1g
or

(x;�y) for y 2 f1; 3; 5; : : : ; p� 2g.

Precompute points

R0; R1; : : : ; Rr�1 as known

random multiples of P . Here you

can do full scalar multiplication in

inversion-free coordinates!

Start each walk at a point

W0 = jb0Qj, where b0 is chosen

randomly.

Compute W1;W2; : : : as Wi+1 =

jWi + Rh(Wi)j.



Occasionally , every w iterations,

check for fruitless cycles

of length 2.

For those cases change the

definition of Wi as follows:

Compute Wi�1 and check

whether Wi�1 = Wi�3.

If Wi�1 6= Wi�3, put Wi = Wi�1.

If Wi�1 = Wi�3, put

Wi = j2 minfWi�1;Wi�2gj,
where min means

lexicographic minimum.

Doubling the point

makes it escape the cycle.



Cycles of length 4, 6, or 12

occur far less frequently.

Cycles of length 4, or 6

are detected when checking

for cycles of length 12;

so skip individual ones.

Same way of escape:

define Wi =

j2minfWi�1;Wi�2;Wi�3;Wi�4;

Wi�5;Wi�6;Wi�7;Wi�8;

Wi�9;Wi�10;Wi�11;Wi�12gj
if trapped

and Wi = Wi�1 otherwise.



Do not store all these points!

When checking for cycle,

store only potential entry point

Wi�13 (one coordinate, for

comparison) and the

smallest point encountered since

(to escape).

For large DLP

look for larger cycles;

in general, look for

fruitless cycles of even lengths

up to � (log `)=(log r).



How to choose w?

Fruitless cycles of length 2 appear

with probability � 1=(2r).

These cycles persist

until detected.

After w iterations,

probability of cycle � w=(2r),

wastes � w=2 iterations

(on average) if it does appear.

Do not choose w

as small as possible!

If a cycle has not appeared then

the check wastes an iteration.



The overall loss is approximately

1 + w2=(4r) iterations out of w.

To minimize the quotient

1=w + w=(4r) we take w � 2
p
r.

Cycles of length 2c appear with

probability � 1=rc,

optimal checking frequency is

� 1=rc=2.

Loss rapidly disappears

as c increases.

Can use lcm of cycle lengths

to check.



Concrete example: 112-bit DLP

Use r = 2048. Check for 2-cycles

every 48 iterations.

Check for larger cycles much less

frequently.

Unify the checks for 4-cycles and

6-cycles into a check for 12-cycles

every 49152 iterations.

Choice of r has big impact!

r = 512 calls for checking

for 2-cycles every 24 iterations.

In general, negation overhead

� doubles when table size

is reduced by factor of 4.



Bernstein, Lange, Schwabe

(PKC 2011):

Our software solves

random ECDL on the same curve

(with no precomputation)

in 35.6 PS3 years on average.

For comparison:

Bos–Kaihara–Kleinjung–Lenstra–

Montgomery software

uses 65 PS3 years on average.



Bernstein, Lange, Schwabe

(PKC 2011):

Our software solves

random ECDL on the same curve

(with no precomputation)

in 35.6 PS3 years on average.

For comparison:

Bos–Kaihara–Kleinjung–Lenstra–

Montgomery software

uses 65 PS3 years on average.

First big speedup:

We use the negation map.

Second speedup: Fast arithmetic.



Why are we confident this works?

We only have one PlayStation

3, not 200 used in the current

record, & don’t want to wait for

36 years to show that we actually

compute the right thing.



Why are we confident this works?

We only have one PlayStation

3, not 200 used in the current

record, & don’t want to wait for

36 years to show that we actually

compute the right thing.

Can produced scaled versions:

Use same prime field

(so that we can compare the field

arithmetic) and same curve shape

y2 = x3 � 3x + b

but vary b to get curves with

small subgroups.



This produces other curves, and

many of those have smaller order

subgroups.

Specify DLP in subgroup of size

250, or 255, or 260 and show that

the actual running time matches

the expectation.

And that DLP is correct.

We used same property for a

point to be distinguished as in

big attack; probability is 2�20.

Need to watch out that walks

do not run into rho-type cycles

(artefact of small group order).

We aborted overlong walks.



Recall: p has 112 bits.

28 bytes for table entry (x; y).

We expand to 36 bytes

to accelerate arithmetic.

We compress to 32 bytes

by insisting on small x; y;

very fast initial computation.

Only 64KB for table.

Our Cell table-load cost: 0,

overlapping loads with arithmetic.

No “cache inefficiencies.”



What about fruitless cycles?

We run 45 iterations.

We then save s;

run 2 slightly slower iterations

tracking minimum (s; x; y);

then double tracked (x; y)

if new s equals saved s.

(Occasionally replace 2 by 12

to detect 4-cycles, 6-cycles.

Such cycles are almost

too rare to worry about,

but detecting them has a

completely negligible cost.)



Maybe fruitless cycles waste

some of the 47 iterations.

: : : but this is infrequent.

Lose � 0.6% of all iterations.

Tracking minimum isn’t free,

but most iterations skip it!

Same for final s comparison.

Still no conditional branches.

Overall cost � 1:3%.

Doubling occurs for only

� 1=4096 of all iterations.

We use SIMD quite lazily here;

overall cost � 0:6%.

Can reduce this cost further.



To confirm iteration effectiveness

we have run many experiments

on y2 = x3 � 3x + 9

over the same Fp,

using smaller-order P .

Matched DL cost predictions.

Final conclusions:

Sensible use of negation,

with or without SIMD,

has negligible impact

on cost of each iteration.

Impact on number of iterations

is almost exactly
p

2.

Overall benefit is

extremely close to
p

2.


