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Cryptography

Let's understand what our

browsers do.
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Schoolbook RSA

Pick primes p, g of same
bitlength,

at least 512 bits

(2048 to feel secure).

Compute N =9p - g.
Compute ¢(N) =(p—1)(g — 1).
Pick e with gcd{e, ¢p(N)} = 1.
Compute e with

ed =1 (mod ¢(N)).
Public key is (e, V),
secret key Is d.

Some systems keep p and g,
to speed up decryption (CRT).



Encryption of message m < \V;

Compute ¢ =m*® (mod N).
Decryption of ciphertext c:
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Encryption of message m < \V;

Compute ¢ =m*® (mod N).
Decryption of ciphertext c:

Compute
4 = (me)d — mk(b(N)—l—l

m
modulo N.

Signature on message m:

Uses cryptographic hash function
h:{0,1}" - Z/N

Compute

s = (h(m))* (mod N).

Verity signature by comparing
h(m) with s (mod N).



Problems with schoolbook RSA

Encryption Is deterministic:

e attacker can test candidate
message;

e repeated messages are

recognized.

Small e is dangerous for small m
(no effect of modular reduction).

More number-theoretic fun, if A
sends same message to B,C, D,
who all use e = 3.

Encryption is homomorphic:

encryption of mimo» is
cico  (mod N).



Modern cryptography:
allow attacker to use oracles

for decryption or signatures.
Can query anything
except for target.

Use this to decrypt c:



Modern cryptography:

allow attacker to use oracles
for decryption or signatures.
Can query anything

except for target.

Use this to decrypt c:
Pick random m'.

Ask oracle to decrypt
¢ = (m')c (mod N).
Get message by dividing my m'.



RSA-OAEP

Optimal asymmetric encryption
padding, included in PKCS #1v2.
Formats message (before RSA).
Formatting unlikely

to survive multiplication.

If format is incorrect
decryption will fail.

Let n = |log, V]
Algorithm uses parameters kg, k1,
messages are in {0, 1} k0—k1_
Uses two hash functions G, H:
G : {0, 1}%0 — {0, 1} ko

H : {0,117 k0 — {0, 1}%0.



1. Pad m with &7 zeros.
2. Pick random r € {0, 1}%0.
3. Compute

X =m00...00 G(r).
4. Compute Y =r @ H(X).
5. Output X, Y.

000 r

m
n-ko-k1 ¢ kI b ko
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I‘\.\\_H_ _FJ,III

n-k@ _\
Y Y
X Y

Credit: Ozga at en.wikipedia



What does your browser do?

1. Check X.509 certificate:
RSA signature verification.
2. OAEP format

random message m;

3. RSA encrypt

resulting message M = X, Y
(interpreted as number mod N).
4. Send ciphertext to server.
5. Derive encryption and
authentication keys from m.
0. Use these for the bulk

encryption.

Google uses RC4 for encryption;
other common choice: AES.



Authenticated encryption

Authentication key computes
tag on message so that
any change makes tag invalid.

Cannot prove authenticity

to third party.

Convinces owners of secret key
that they are communicating
with one another.

Typical examples:

¢ RC4-HMAC (keyed-hash
message authentication code)
e AES-GCM (Galois Counter
Mode)



The clock

Y
A
| — I

This is the curve 22 + y2 = 1.

Warning:
This is not an elliptic curve.
“Elliptic curve” # “ellipse.”



Examples of points on this curve:
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Examples of points on this curve:
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Examples of points on this curve:
(0,1) = “12:00".

(0,—1) = “6:00".

(1,0) = “3:00".

(—=1,0) = “9:00".
(v/3/4,1/2) = “2:00".
(1/2,—+/3/4) = “5:00".
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Examples of points on this curve:
0,1) = "“12:00".
0,—1) = “6:00".
1

4/5,3/5) ( 4/5 3/5)
(4/5,—-3/5). (—4/5,—-3/5).

Many more.



Addition on tge clock:

} neutral = (0, 1)
P = (z1,91)

/ » 2= (22,92)
Ps = (z3,y3)

22 + y2 = 1, parametrized by

T =sIina, Y = Ccosa.
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Addition on tge clock:

} neutral = (0, 1)
P = (z1,91)

/ v P2 = (z2,92)
|:\ | > T
Py = (z3,y3)

z? + y? = 1, parametrized by
T =sina, Y = cosa. Recall
(sin(ax; + ap), cos(a; + an)) =
(sin a1 cos as + cos aq sin ay,
COS (] COS ap» — Sin ap sin ay).



Adding two points corresponds

to adding the angles a1 and a».

Angles modulo 360° are a group,

so points on clock are a group.

Neutral element: angle a = 0;
point (0,1); “12:00".

The point with oo = 180°

has order 2 and equals 6:00.

3:00 and 9:00 have order 4.
Inverse of point with o

1S

point with —a

since a + (—a) = 0.

T

W

nere are many more points

nere angle a 1s not “nice.”



Clock additiog without sin, cos:

} neutral = (0, 1)

Use Cartesian coordinates for
addition. Addition formula

for the clock z2 + y2 = 1:

sum (z1,y1) + (22, ¥2) = (23, ¥3)
= (2192 + Y122, Y192 — T1%2).
Note (z1,y1)+(—21,91) = (0,1).

kP=FP+ P+ ---+ Pfor k> 0.
N —

k coples



Examples of clock addition:
"2:00" 4+ "5:00"

(v/374.1/2) + (1/2. —/3]4)
(—1/2, —+/3/4) = “T:00".
“5:00" + "9:00"

(1/2,—+/3/4) +(~1,0)
(v/3/4,1/2) = "2:00" .

234 (24 T
5'5) \25'25)°




Examples of clock addition:
"2:00" 4+ "5:00"

= (4/3/4,1/2) +(1/2, —+/3/4)
=(—1/2,—+/3/4) = “7:00".

(\/3}7, 1/2) = “2:60','.

- (117 —44
- \125" 125 )




Examples of clock addition:
"2:00" 4+ "5:00"

= (4/3/4,1/2) +(1/2, —+/3/4)
=(—1/2,—+/3/4) = “7:00".

(\/3}7, 1/2) = “2:60','.

)
3(5:5) = (15 ;;‘;‘)
) -

336 —527
625 625




Examples of clock addition:
“2:00" 4 "5:00"

= (\/3/4,1/2) + (1/2, —+/3/4)
= (—1/2,—+/3/4) = “7:00".
“5:00" + "9:00"

(1/2, —+/3/4) + (—1,0)
(v/3/4,1/2) = "2:00" .

3 4 336 —527
55 625 625
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Examples of clock addition:
"2:00" 4+ "5:00"

= (4/3/4,1/2) +(1/2, —+/3/4)
=(—1/2,—+/3/4) = “7:00".

(- (24)
(55) = (25 1)
( ) |




Clocks over finite fields

Clock(F7) =

{(a:,y) cF; xFy: $2+y2 — 1}.
Here F7 ={0,1,2,3,4,5,6}
=40,1,2,3,—-3,-2,—1}

with 4+, —, X modulo 7.



Larger example: Clock(F1000003)-

Examples of clock addition:

2(1000, 2) = (4000, 7).

4(1000, 2) 56000, 97).
8(1000, 2) 863970, 18817).
16(1000, 2 549438, 156853).
17(1000, 2 951405, 877356).

AN AN

)
)

N TN

With 30 clock additions

we computed

n (1000, 2) = (947472, 736284)
for some 6-digit n.

Can you figure out n?



Clock cryptography

Standardize a large prime p
and some (X, Y’) € Clock(Fy).

Alice chooses big secret a.
Computes her public key a(X,Y).

Bob chooses big secret 6.
Computes his public key 6(X,Y).

Alice computes a(b(X,Y)).
Bob computes 6(a(X,Y)).

|.e., both obtain (ab)(X,Y).
They use this shared value

to encrypt with AES-GCM etc.



Alice's Bob's

secret key a secret key b
Alice's Bob's
public key public key
a(X,Y) b(X,Y)

<

{Alice, Bob}'s {Bob, Alice}'s
shared secret = shared secret
ab(X,Y) ba(X,Y)



Alice's Bob's

secret key a secret key b
Alice's Bob's
public key public key
a(X,Y) b(X,Y)

<

{Alice, Bob}'s {Bob, Alice}'s
shared secret = shared secret
ab(X,Y) ba(X,Y)
Warning: Clocks aren't elliptic!
Can attack clock cryptography,

e.g., compute a from public

key, by combining congruences.

To match RSA-3072 security

need p ~s 21930



Addition on an Edwards curve

Change the curve on which Alice
and Bob work.

Y
A
neutral = (0, 1)

0 P = (z1,91)
/ P2>::£$2,’y2)
\ P3 = (z3,y3)

\/

22 + y? =1 — 30222

Sum of (z1,y1) and (z2,y2) is
((z1y2+y122)/(1-30z122Y1Y2),
(y1y2—2122)/(1+30z1229192)).




The clock again, for comparison:

Y

} neutral = (0, 1)
P = (z1,91)

/ P2:($21y2)
|:\ > I
Py = (23, y3)

z° +y° =1

Sum of (z1,y1) and (z2,y2) is
(z1y2 + Y122,

Y1y2 — T1T2).



“"Hey, there were divisions

in the Edwards addition law!
What if the denominators are 07"
Answer: They aren't!

If £, =0 or y; = 0 then

1 4+ 30z1z2y1y2 = 1 # O.
If 22 4+ y2 = 1 — 30z2y?
then 30z2y? < 1

so v/30 |zy| < 1.
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“"Hey, there were divisions

in the Edwards addition law!
What if the denominators are 07"
Answer: They aren't!

If £, =0 or y; = 0 then

1 4+ 30z1z2y1y2 = 1 # O.

If 22 4+ y2 = 1 — 30z2y?

then 30z2y? < 1

so v30 |zy| < 1.
It a:% + y% =1 — BOa;%y%
and :c% y% =1— BOa:%yg

then v/30 |z1y1] < 1
and /30 |zoys| < 1
so 30 |z1y1Z272| < 1
so 1 4+ 30z1zoy1y2 > 0.




The Edwards addition law

(1, 91) + (22, 92) =
((z1y2+y122)/(1-30z12291Y2),

(y1y2—z122)/(1+3021229192))
is a group law for the curve

z? + y° = 1 — 30z%y?.

Some calculation required:

addition result is on curve;

addition law Is associative.

Other parts of proof are easy:
addition law is commutative;
(0, 1) is neutral element;

(1, 91) + (—z1,91) = (0, 1).




More Edwards curves

Fix an odd prime power g.
Fix a non-square d € F,.

{(z,y) € Fy X Fy :
z° + y° =1+ dz’y?}
IS a commutative group with

(z1,91) + (22, ¥2) = (23, y3)
defined by Edwards addition law:

Iq — T1Y2 + Y1Z2
1 +dzizoy1yo
 Y1Y2 — 1T
Y3

1 —dz1T0U1Y0



Denominators are never 0.
But need different proof;
"z2 + y2 > 0" doesn’t work.
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and a:% -+ y% =1+ dm%y%
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then dz%y%(zz + 12)?

= da:%y%(a:% + y% + 2$2y2)




Denominators are never 0.
But need different proof;
"z2 + y2 > 0" doesn’t work.

If 2 + 7 = 1+ dafy?
and a:% -+ y% =1+ dm%y%
and dzizry1yr = £1
then dz%y%(zz + 12)°

= da:%y%(a:% + y% + 2$2y2)
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Denominators are never 0.
But need different proof;
"z2 + y2 > 0" doesn’t work.

If 25 +y7 = 1+ dziy}
anc a:% + y% =1+ dm%y%
and dzizry1yr = £1
then dz%y%(zz + 92)?

= da:%y%(a:% + y% + 2x5y7)

— dm%y%(dm%y% + 14 225y7)

= dza:%y%a:%yg+d$%y%+2d$%y%$2y2




Denominators are never 0.
But need different proof;
"z2 + y2 > 0" doesn’t work.

If 2 + 7 = 1+ dafy?
and a:% -+ y% =1+ dm%y%

and dzizry1yr = £1
then dz%y%(zz + 19)?

— da:%y%(a:% + y% + 2x5y7)

— dm%y%(dm%y% + 14 225y7)

= d*zTyi25Y5 +dTTyi+2dTiY1 T2y
=1 da:%y% + 221y




Denominators are never 0.
But need different proof;
"z2 + y2 > 0" doesn’t work.

If :c% + y% =1+ da;%y%
and a:% -+ y% =1+ dm%y%
and dzizry1yr = £1
then dz%y%(zz + 19)?

— da:%y%(a:% + y% + 2x5y7)

— dm%y%(dm%y% + 14 225y7)

= dza:%y%a:%yg+d$%y%+2d$%y%$2y2
=1 da:%y% + 2T1Y3

= z% + y7 = 2211




Denominators are never 0.
But need different proof;
"z2 + y2 > 0" doesn’t work.

If :c% + y% =1+ da;%y%
and a:% + y% =1+ dm%y%
and dz1zoy1y2 = *£1
then dz%y%(zz + y2)?

= da:%y%(a:% + y% + 2$2y2)

— dm%y%(dm%y% + 14 225y7)

= dza:%y%a:%yg+d$%y%+2d$%y%$2y2
=1 da:%y% + 2x1Y1

zi +yi £ 22191

= (z1 £ y1)*.




Case 1: o +y> # 0. Then

d _ ( r1 T Y1 )2
z1y1(z2 +v2) /)

contradiction.




Case 1: o +y> # 0. Then

d _ ( r1 T Y1 )2
z1y1(z2 +v2) /)

contradiction.

Case 2: £o — yp # 0. Then

d:( 1 F Y1 )2
z1y1(zo —y2) )

contradiction.




Case 1: zo +y> # 0. Then

d _ ( r1 T Y1 )2
z1y1(z2 +v2) /)

contradiction.

Case 2: o — yo» # 0. Then

d:( 1 F Y1 )2
z1y1(zo —y2) )

contradiction.

Case 3: zo+yp =z —yp = 0.
Then zo =0 and yp = 0,
contradiction.



Using ECC sensibly

Typical starting point:
Client knows secret key a
and server's public key 6(X,Y).
Client computes (and caches)
shared secret ab(X,Y).

Client has packet for server.
Generates unique nonce.
Uses shared secret to encrypt
and authenticate packet.

Total packet overhead:
24 bytes for nonce,
16 bytes for authenticator,

32 bytes for client’s public key.



Server receives packet,

sees client's public key a(X,Y).
Server computes (and caches)
shared secret ab(X,Y).

Server uses shared secret
to verity authenticator
and decrypt packet.

Client and server encrypt,
authenticate, verify, and decrypt
all subsequent packets

in the same way,

using the same shared secret.



Easy-to-use packet protection:
crypto_box from

nacl.cace-project.eu.

High-security curve (Curve25519).

High-security implementation
(e.g., no secret array indices).
Extensive code validation.

Server can compute shared secrets

for 1000000 new clients
in 40 seconds of computation

on a Core 2 Quad.

Not much hope for attacker
if ECC user is running this!



Eliminating divisions

Typical computation:
P—=nP.

Decompose into additions:
PQ—P+Q.

Addition (z1,y1) + (22, ¥2) =
((z1y2 + y122)/(1 + dz1229192),

(y192 — z122)/(1 — dz122912))
uses expensive divisions.

Better: postpone divisions

and work with fractions.
Represent (z,y) as

(X :Y : Z)withz = X/Z and
y=Y/Z for Z # 0.



Addition now has to
handle fractions as input:

X1 1M N X2 Yo\
71 Zq 75" 2> )

X1Y2 | 1 X0
1 4y L1 2
1|dX1X2Y1Y2'
L Ly £y 24

Z1Zy 7y Zp
1 Xm XoY1 Yo
/1 Ly L1 £)

Y1 Y X1 Xo )

Z12Z>(X1Y2 + Y1 X2)
212222 + dX1XoY1Y5 |

Z1Z5(Y1Y2 — X1X2)
7275 — dX1X2"1Ys



. X1 Y Xo Yo
l.e. , -+ :
1 21 Ly 2o

(X3 73
-\ Z3' Z3

where

F=Z727% —dX1XoN1Ya,

G = Z7Z5 + dX1X2Y1Y2,
X3 = Z1Z2(X1Y2 + Y1 .X2)F,
Y3 = Z1Z2(1Ya2 — X1X2)G,
Z3 = FG.

Input to addition algorithm:
X1,Y1,. 21, X2,Y>, £>.

Output from addition algorithm:
X3,Y3, Z3. No divisions needed!



Save multiplications by
eliminating common

subexpressions:

A=271 -2y B= A%

C = X1 - Xo;
D =YY
E=d-C-D:

F=B—-E,G=B-+E;
X3:A-F-(X1-YQ—|—Y1-X2);
Y3=A-G-(D—-C);
Z:=F-G.

Cost: 11M + 1S + 1D.
Can do better: 10M + 1S + 1D.




Faster doubling

(z1,91) + (21, ¥1) =
(z1y1t+yiz1)/(1+dz121Y191),
(y1y1—2z121)/(1-dz1Z19191)) =
((2z1y1)/(1 + dziyg).
(yi—23)/(1 — dzfy7)).

a:% + y% =1+ dm%y% SO

(21, 91) + (21, 91) =

((2z1y1)/ (21 + y%),
(yi—2%)/(2 — 2% — 7).

Again eliminate divisions

using P2: only 3M + 4S.

Much faster than addition.
Useful: many doublings in ECC.



More addition strategies

Dual addition formula:

(1, 91) + (22, 92) =
((z1y1 + z2y2) /(2122 + Y192),

(Z1y1 — z292)/(Z192 — Z291)).
Low degree, no need for d.

Warning: fails for doubling!
Is this really “addition”?
Most EC formulas have failures.



More addition strategies

Dual addition formula:
(z1,91) + (22, 92) =
((z1y1 + z292)/(T1Z2 + Y192),

(Z1y1 — z292)/(Z192 — Z291)).
Low degree, no need for d.

Warning: fails for doubling!
Is this really “addition”?
Most EC formulas have failures.

More coordinate systems:

Inverted: ¢ =2/ X, y=72/Y.
Extended: ¢ = X/Z, y=Y/T.
Completed: z = X/Z,y =Y/Z,
zy =1/Z.



More elliptic curves

Edwards curves are elliptic.
Easiest way to understand
elliptic curves 1s Edwards.

Geometrically, all elliptic curves
are Edwards curves.

Algebraically,
more elliptic curves exist.

Every odd-char curve can be
expressed as Weierstrass curve

v? = 3 -+ a2u2 + Q44U + Q.

Warning: “Welerstrass’ has
different meaning in char 2.



Addition on Welerstrass curve

vV =uwd+ul+u+1

PL+ P

Nt

\k U

P
\(Pl + P)

Slope A = (v2 — v1)/(u2 — u1).
Note that u1 # u».




Doubling on Welerstrass curve

ve =ud —u

=
\P1

Slope A = (3uf — 1)/(2v1).




In most cases

(u1,v1) + (u2,v2) =
(u3,v3) where (u3,v3) =
(A% —u1—uo, Mur—u3)—v1).

u1 # up, “addition” (alert!):

A= (v2 —v1)/(u2 — u1).
Total cost 11 +2M + 18S.

(u1,v1) = (u2,v2) and v1 # 0,
“doubling” (alert!):

A= (3?1,% + 2aru1 + a4)/(2’01).
Total cost 11 + 2M + 2S.

Also handle some exceptions:

(u1,v1) = (w2, —v2);
Inputs at oo.



Birational equivalence

Starting from point (z, y)

on z° + y2 = 1 + dz’y?:
Define A=2(1+d)/(1 — d),
B =4/(1-d);
u=(1+y)/(B(1-1v)),

v = ufz = (1+)/(Ba(l - y))
(Skip a few exceptional points.)

v? =u3 + (A/B)u’ + (1/B?)u.

Maps Edwards to Welerstrass.
Compatible with point addition!

Easily invert this map:
t=u/v,y=(Bu—1)/(Bu+1).



Some history

There are many perspectives on

elliptic-curve computations.

1984 (published 1987) Lenstra:
ECM, the elliptic-curve method
of factoring integers.

1984 (published 1985) Miller,
and independently

1984 (published 1987) Koblitz:
Elliptic-curve cryptography.

Bosma, Goldwasser—Kilian,
Chudnovsky—Chudnovsky, Atkin:

elliptic-curve primality proving.



The Edwards perspective is new!

1761 Euler, 1866 Gauss
Introduced an addition law

for 2 + y° = 1 — z%y?,

the “lemniscatic elliptic curve.”

2007 Edwards generalized to
many curves z°+1y? = 1+c*z’y?.
Theorem: have now obtained

all elliptic curves over Q.

2007 Bernstein—Lange:

Edwards addition law is complete
for £° + y? = 1 + dz’y? if d #m;
and gives new ECC speed records.



y? =23 — 0.4z +0.7



The Weierstrass
turtle old truste
and slow. War'ning:

(picture) incomplete!



22 + y2 =1 — 3002292



The Edwards

starfish new.,

fast and complete!



Start!



1985

4?@9!

Weierstrass sets off Edwards
left behind sieepmg




Weierstrass has made some progress -

'Finaﬂy Edwards wakes up.



Exc:iﬂng progress. Edwards

about to overtake!l




And the winner is. Edwardsl!



