On the Practical Exploitability of Dual EC DRBG
in TLS Implementations

Stephen Checkoway, Matthew Fredrikson, Ruben Niederhagen,
Matthew Green, Tanja Lange, Thomas Ristenpart,
Daniel J. Bernstein, Jake Maskiewicz, Hovav Shacham

May 6, 2014

Random numbers are important

v

Cryptography needs random numbers to generate long-term secret keys for
encryption and signatures.

v

Many schemes expect random (or pseudorandom) numbers, e.g.

» ephemeral keys for DH key exchange,
» nonces for digital signatures,
» nonces in authenticated encryption.

» Nonce reuse can reveal long-term secret keys (e.g. PlayStation disaster)
DSA/ECDSA are so touchy that biased nonces are enough to break them.

v

http://blog.inside.com/blog/2014/3/10/edward-snowden-sxsw-full-transcription-and-video

Random numbers are important to the NSA

v

Cryptography needs random numbers to generate long-term secret keys for
encryption and signatures.

v

Many schemes expect random (or pseudorandom) numbers, e.g.

» ephemeral keys for DH key exchange,
» nonces for digital signatures,
» nonces in authenticated encryption.

» Nonce reuse can reveal long-term secret keys (e.g. PlayStation disaster)
DSA/ECDSA are so touchy that biased nonces are enough to break them.

Snowden at SXSW:
[..] we know that these encryption algorithms we are using today work
typically it is the random number generators that are attacked as opposed to
the encryption algorithms themselves.

v

http://blog.inside.com/blog/2014/3/10/edward-snowden-sxsw-full-transcription-and-video

Pseudo-random-number generators

Crypto libraries expand short seed into long stream of random bits.
Random bits are used as secret keys, DSA nonces, ...

The usual structure, starting from short seed S;:

5, f(So) 5, f(S1) 5, f(S2) s, f(S3) 5 f(S4)
g(%o) g(51) g(52) 8(53) 8(S4)
Ro R1 R> Rs3 Ry

XXX's mission: Predict the “random” output bits.
1. Create protocols that directly output R; for some reason.

Pseudo-random-number generators

Crypto libraries expand short seed into long stream of random bits.
Random bits are used as secret keys, DSA nonces, ...

The usual structure, starting from short seed Sy:

5, f(So) .5 f(51) .S f(S2) .S, f(S3) . s, f(S4)
g(So) g(51) g(S2) g(53) g(54)
RO Rl R2 R3 R4

XXX’s mission: Predict the “random” output bits.
1. Create protocols that directly output R; for some reason.
2. Design f, g with back door from R, to S,41: i.e., get £(S) from g(5).

Pseudo-random-number generators

Crypto libraries expand short seed into long stream of random bits.
Random bits are used as secret keys, DSA nonces, ...

The usual structure, starting from short seed Sy:

5, f(So) .5 f(51) .S f(S2) .S, f(S3) . s, f(S4)
g(So) g(51) g(S2) g(53) g(54)
RO Rl R2 R3 R4

XXX’s mission: Predict the “random” output bits.

1. Create protocols that directly output R; for some reason.

2. Design f, g with back door from R, to S,41: i.e., get £(S) from g(5).
3. Standardize this design of f, g.

Pseudo-random-number generators

Crypto libraries expand short seed into long stream of random bits.
Random bits are used as secret keys, DSA nonces, ...

The usual structure, starting from short seed Sy:

5, f(So) .5 f(51) .S f(S2) .S, f(S3) . s, f(S4)
g(So) g(51) g(S2) g(53) g(54)
RO Rl R2 R3 R4

XXX’s mission: Predict the “random” output bits.

1. Create protocols that directly output R; for some reason.

2. Design f, g with back door from R, to S,41: i.e., get £(S) from g(5).
3. Standardize this design of f, g.

4. Convince users to switch to this design: e.g., publish “security proof”.

Elliptic curves

If P, @ are random points on a strong elliptic curve
then it's hard to predict SP given 5Q.

But if we know P = kQ then it's easy: SP = kSQ.

Let's choose random @, random k, define P = kQ.
Standardize this P; Q; f(S) = SP; g(S) = SQ.

Elliptic curves

If P, @ are random points on a strong elliptic curve
then it's hard to predict SP given 5Q.

But if we know P = kQ then it's easy: SP = kSQ.

Let's choose random @, random k, define P = kQ.
Standardize this P; Q; f(S) = SP; g(S) = SQ.

Wait a minute:

Curve points (x, y) don't look like random strings.

They satisfy public curve equation: y? = x3 — 3x + constant.
This won't pass public review.

Elliptic curves

If P, @ are random points on a strong elliptic curve
then it's hard to predict SP given 5Q.

But if we know P = kQ then it's easy: SP = kSQ.

Let's choose random @, random k, define P = kQ.
Standardize this P; Q; f(S) = SP; g(S) = SQ.

Wait a minute:

Curve points (x, y) don't look like random strings.

They satisfy public curve equation: y? = x3 — 3x + constant.
This won't pass public review.

Solution: Let's throw away y and some bits of x.
Define f(S) = ¢(x(5P)), g(S) = ¢(x(SQ)) where ¢ omits 16 bits.
Not a big computation for us to recover SQ from g(S5).

DUAL_EC RNG: history part |

Earliest public source (?) June 2004, draft of ANSI X9.82:

seed 5

1
Instant. or

reseed only i
t

(H—»

0 (x (t*P))

[Optional]
additional input :@__T
0 —

If additional input = Null

¢ gives all but the top 16 bits = about 2> points sQ match given string.

Claim:

?

P

ox (s*Q))

?
Q

Extract
Bits

Pseudorandom

Bits

Dual_EC_DRBG is based on the following hard problem, sometimes known as the

“elliptic curve discrete logarithm problem” (ECDLP): given points P and Q on an elliptic

curve of order n, find a such that Q = aP.

DUAL EC RNG: common public history part |l

Various public warning signals:

>

Gjgsteen (March 2006): output sequence is biased.

“While the practical impact of these results are modest, it is hard to see how
these flaws would be acceptable in a pseudo-random bit generator based on
symmetric cryptographic primitives. They should not be accepted in a generator
based on number-theoretic assumptions.”

Brown (March 2006): security “proof”
“This proof makes essential use of Q being random.” If d with dQ = P is known
then dR; = S;;1, concludes that there might be distinguisher.

Sidorenko & Schoenmakers (May 2006): output sequence is even more biased.
Answer: Too late to change, already implemented.

Shumow & Ferguson (August 2007): Backdoor if d is known.

NIST SP800-90 gets appendix about choosing points verifiably at random,
but requires use of standardized P, @ for FIPS-140 validation.

September 2013: NSA Bullrun program

» [TS/SIVREL TO USA, FVEY) Influence policies, standards and specification for commercial public key
technologies.

http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html

September 2013: NSA Bullrun program

» [TS/SIVREL TO USA, FVEY) Influence policies, standards and specification for commercial public key
technologies.
NYT:

the NSA had inserted a back door into a 2006 standard adopted by NIST [..]
called the Dual EC DRBG standard.

http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html

September 2013: NSA Bullrun program

» [TS/SIVREL TO USA, FVEY) Influence policies, standards and specification for commercial public key
technologies.
NYT:

the NSA had inserted a back door into a 2006 standard adopted by NIST [..]
called the Dual EC DRBG standard.

... but surely nobody uses that!?!

http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html

September 2013: NSA Bullrun program

» [TS/SIVREL TO USA, FVEY) Influence policies, standards and specification for commercial public key
technologies.
NYT:

the NSA had inserted a back door into a 2006 standard adopted by NIST [..]
called the Dual EC DRBG standard.

... but surely nobody uses that!?!

NIST's DRBG Validation List: more than 70 validations of Dual EC DRBG;
RSA’s BSAFE has Dual EC DRBG enabled as default,.

http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html

September 2013: NSA Bullrun program

» [TS/SIVREL TO USA, FVEY) Influence policies, standards and specification for commercial public key
technologies.

NYT:

the NSA had inserted a back door into a 2006 standard adopted by NIST [..]
called the Dual EC DRBG standard.

... but surely nobody uses that!?!

NIST's DRBG Validation List: more than 70 validations of Dual EC DRBG;
RSA’s BSAFE has Dual EC DRBG enabled as default,.

NIST re-opens discussions on SP800.90; recommmends against using Dual_EC.
RSA suggests changing default in BSAFE.

21 April 2014 NIST removes Dual EC from the standard.

http://csrc.nist.gov/groups/STM/cavp/documents/drbg/drbgval.html

How expensive is using the backdoor?

Rereading the standard:

“ x(A) is the x-coordinate of the point A on the curve, given in affine coordinates. An
implementation may choose to represent points internally using other coordinate
systems; for instance, when efficiency is a primary concern. In this case, a point shall
be translated back to affine coordinates before x() is applied.”

How expensive is using the backdoor?

Rereading the standard:

“ x(A) is the x-coordinate of the point A on the curve, given in affine coordinates. An
implementation may choose to represent points internally using other coordinate
systems; for instance, when efficiency is a primary concern. In this case, a point shall
be translated back to affine coordinates before x() is applied.”

Given ri = p(x(siQ)), ri+1 = p(x(si+1Q)), and NSA backdoor d = logp(Q).
1. Expand r; to candidate Q; = s5;Q, [50% chance; if fail move on to next candidate]
2. compute candidate P11 = dQ; and candidate sj11 = ¢(x(Pit+1))
3. check, ¢(x(si+1Q)) against ri11. [if fail, goto 1.; else most likely done!]

How expensive is using the backdoor?

Rereading the standard:

“ x(A) is the x-coordinate of the point A on the curve, given in affine coordinates. An
implementation may choose to represent points internally using other coordinate
systems; for instance, when efficiency is a primary concern. In this case, a point shall
be translated back to affine coordinates before x() is applied.”

Given ri = p(x(siQ)), ri+1 = p(x(si+1Q)), and NSA backdoor d = logp(Q).
1. Expand r; to candidate Q; = s5;Q, [50% chance; if fail move on to next candidate]
2. compute candidate P11 = dQ; and candidate sj11 = ¢(x(Pit+1))
3. check, ¢(x(si+1Q)) against ri11. [if fail, goto 1.; else most likely done!]

Initial timings on i7 M620 Core
missing | 16 bits | 24 bits | 32 bits
1 core 20s 85m | 15d4h

How expensive is using the backdoor?

Rereading the standard:

“ x(A) is the x-coordinate of the point A on the curve, given in affine coordinates. An
implementation may choose to represent points internally using other coordinate
systems; for instance, when efficiency is a primary concern. In this case, a point shall
be translated back to affine coordinates before x() is applied.”

Given ri = p(x(siQ)), ri+1 = p(x(si+1Q)), and NSA backdoor d = logp(Q).
1. Expand r; to candidate Q; = s5;Q, [50% chance; if fail move on to next candidate]
2. compute candidate P11 = dQ; and candidate sj11 = ¢(x(Pit+1))
3. check, ¢(x(si+1Q)) against ri11. [if fail, goto 1.; else most likely done!]

Initial timings on i7 M620 Core
missing | 16 bits | 24 bits | 32 bits
1 core 20s 85m | 15d4h
64k cores 20s

How expensive is using the backdoor?
Rereading the standard:
“ x(A) is the x-coordinate of the point A on the curve, given in affine coordinates. An
implementation may choose to represent points internally using other coordinate
systems; for instance, when efficiency is a primary concern. In this case, a point shall
be translated back to affine coordinates before x() is applied.”

Given ri = ¢(x(siQ)), rix1 = @(x(si+1Q)), and NSA backdoor d = logp(Q).
1. Expand r; to candidate Q; = s5;Q, [50% chance; if fail move on to next candidate]
2. compute candidate P11 = dQ; and candidate sj11 = ¢(x(Pit+1))

3. check, ¢(x(si+1Q)) against ri11. [if fail, goto 1.; else most likely done!]
From the standard:
Initial timings on i7 M620 Core “For performance reasons, the value of
missing | 16 bits | 24 bits | 32 bits outlen should e set o the maximum
1 core 20s 85m | 15d4h value as provided in Table 4.”
64k cores 20s Don't give us fewer bits!

SSL/TLS/HTTPS

How are RNGs actually used? Do implementations actually leak enough of Ry?

SSL/TLS/HTTPS

How are RNGs actually used? Do implementations actually leak enough of Ry?

Client Server
Generate
client random) Generate
(> 28 bytes) W session 1D,

- server random, a,

server random, session 1D, cert(pk), aP. s'8 signature nonce
Generate b (<32 428 + 32
(46 bytes) bP, Finished + 32 bytes)
— bPFinished
Finished

. Finished

MS = PRF(x(abP), "master secret”, client random —— server random)

Dual EC in TLS

I

28 bytes 40 bytes

Graphic thanks to Ruben Niederhagen.

Dual EC in TLS

Points Q and P on an elliptic curve.

32 bytes

S0

I

28 bytes 40 bytes

Graphic thanks to Ruben Niederhagen.

Dual EC in TLS

Points Q and P on an elliptic curve.

32 bytes s1 = x(soP)

I o B

I

28 bytes 40 bytes

Graphic thanks to Ruben Niederhagen.

Dual EC in TLS

Points Q and P on an elliptic curve.

32 bytes s1 = x(soP)

w L w]

n = X(Slo)

on

I

28 bytes 40 bytes

Graphic thanks to Ruben Niederhagen.

Dual EC in TLS

Points Q and P on an elliptic curve.

32 bytes s1 = x(soP)

I o B

n = X(Slo)

L n |
| |

i . 30 bytes ..

]

28 bytes 40 bytes

Graphic thanks to Ruben Niederhagen.

Dual EC in TLS

Points Q and P on an elliptic curve.

. 32 bytes ... s = x(soP)

So S1 ‘
= x(51Q)
|

.30 bytes ..

n

28 bytes 40 bytes

Graphic thanks to Ruben Niederhagen.

Dual EC in TLS

Points Q and P on an elliptic curve.

. 32 bytes .. 51 = x(soP) s = x(s1P)
S0 s1 9
n =x(s1Q)
BT
| 30 bytes .‘_1
I
28 bytes ’ T 40 bytes

Graphic thanks to Ruben Niederhagen.

Dual EC in TLS

Points Q and P on an elliptic curve.

. 32 bytes .. 51 = x(soP) s = x(s1P)
S s1 9 ‘
n =x(s1Q) rn=x(5Q)
I n 1L » |
| 30 bytes .‘_1
I
28 bytes ’ T 40 bytes

Graphic thanks to Ruben Niederhagen.

Dual EC in TLS

Points Q and P on an elliptic curve.

- 32 bytes ... 53 = x(soP) s = x(s1P) s3 = x(52P)
S0 51) S3
n =x(s1Q) rn=x(5Q)
I Y
30 bytes .. ‘_1
I
- 28 bytes ’ " 40 bytes

Graphic thanks to Ruben Niederhagen.

Dual EC in TLS

Points Q and P on an elliptic curve.

- 32 bytes ... 53 = x(soP) s = x(51P) s3 = x(2P)
S0 51 2 H £
n=x(s1Q) r =x(5Q) r3 = x(s3Q)
e JL = JL =
|30 bytes .‘_1
s
28 bytes ’ 40 bytes

Graphic thanks to Ruben Niederhagen.

Dual EC in TLS

Points Q and P on an elliptic curve.

- 32 bytes .. s; = x(soP) s = x(s1P) s3 = x(52P)
S0 H 51 S H S3
n =x(s1Q) rn=x(5Q) r3 = x(s3Q)
[l n | L » | L~
1_» - 30 bytes . ‘_1 \\‘ \\v/
. |
[|
28 bytes “ 40 bytes

Graphic thanks to Ruben Niederhagen.

Dual EC in TLS

Points Q and P on an elliptic curve.

. 32 bytes .. 51 = x(soP) s = x(s1P) s3 = x(52P)
S0 H S1 S H S3
=x(s1Q) rn=x(5Q) r=x(53Q)
| o e [s

.30 bytes .. N

]..] \ \ii/ ¥
—

- 28 bytes " 40 bytes -

Graphic thanks to Ruben Niederhagen.

Dual EC in TLS

Points Q and P on an elliptic curve.

.32 bytes . s =x(sP) s = x(s1P) s3 = x(52P) 52 = x(s3P)
S0 H S1 S H S3 } -
=x(s1Q) rn=x(5Q) r=x(53Q)
| IS o S o TR
30 bytes .. : N NS /

i i ; ,
—

- 28 bytes " 40 bytes -

Graphic thanks to Ruben Niederhagen.

Dual EC in TLS

Points Q and P on an elliptic curve.

n=x(s1Q) ?

Graphic thanks to Ruben Niederhagen.

Dual EC in TLS

Points Q and P on an elliptic curve.

s]
n=xQ)| 17 ECDLP!

[n]

Graphic thanks to Ruben Niederhagen.

Basic attack

Points @ and P = dQ on an elliptic curve.

s = x(s1P)

n = X(Slo)

Graphic thanks to Ruben Niederhagen.

Basic attack

Points @ and P = dQ on an elliptic curve.

n = X(SlQ)
‘ n X(d51 Q)

Graphic thanks to Ruben Niederhagen.

Basic attack

Points @ and P = dQ on an elliptic curve.
Sy = X(51P) = X(SldQ)

s = x(s1P)

n = X(Slo)
‘ n X(d51 Q)

Graphic thanks to Ruben Niederhagen.

Basic attack

Points @ and P = dQ on an elliptic curve.

re

I |
I 1
1 1
| 1
} 1
| I
| |
| |

28 bytes

Graphic thanks to Ruben Niederhagen.

Basic attack

Points @ and P = dQ on an elliptic curve.

RC = (rC7y(rC)) | e

I |
I 1
1 1
| 1
} 1
| I
| |
| |

28 bytes

Graphic thanks to Ruben Niederhagen.

Basic attack

Points @ and P = dQ on an elliptic curve.

X(CV T

Re=(rey(r)) [«]

28 bytes

Graphic thanks to Ruben Niederhagen.

Basic attack

Points @ and P = dQ on an elliptic curve.

Re = (re,y(re)) E re il 2

!

- 28 bytes “ 40 bytes -

Graphic thanks to Ruben Niederhagen.

Dual EC in TLS

So H 51 H S H S3

m—
—

Graphic thanks to Ruben Niederhagen.

!

NIST SP800-90 in June 2006

I -
L) H(adinl)‘, ‘ x(on *d H(adinz) B x(oP)\‘ x(eP) *® H(adin4)v_)
% [s [% s
x(eQ) x(eQ) x(eQ)
[n I r

m—
—

Graphic thanks to Ruben Niederhagen.

\ \ /
| |
1 1

/

NIST SP800-90 in June 2006

| fl | | b |
o @ H(adiny) -~ X(eP)\, + @ H(adiny) ' X(+P)\, «(eP) ®@H(ading) "
| % || s || 5 | 2 |
x(eQ) x(eQ) x(eQ)
1 | [~ | [= |

Graphic thanks to Ruben Niederhagen.

NIST SP800-90 in June 2006

t1 tr
e © H(adin) ‘ X(.p)a\ o @ H(adin) ' x(.P)\ x(eP) ®®H(ading)
T I S S = R
x(oQ) x(eQ) x(eQ)
S o S O N

Graphic thanks to Ruben Niederhagen.

NIST SP800-90 in June 2006

Graphic thanks to Ruben Niederhagen.

Dual EC in TLS

I -
L) H(adinl)‘, ‘ x(on *d H(adinz) B x(oP)\‘ LXe) H(adin4)v_)
I T b T b DT e T
x(eQ) x(eQ) x(eQ)
[n I o — |

m—
—

Graphic thanks to Ruben Niederhagen.

!

NIST SP800-90 in March 2007

| s s |
o@H ad|n1 e @ H(adin3) o @ H(ading)
| x(+P)/ | o | x(eP) !
(oP)\‘
o r—
X(°Q) x(eQ) x(eQ)
[n I I |

m—
—

Graphic thanks to Ruben Niederhagen.

NIST SP800-90 in March 2007

] e]
e @ H(adin;) / o @ H(adins) // o @ H(ading)
/ Y A\
‘ t ‘ X(‘P)// ‘ ts ‘ X(‘P}/
x(eP) \ // x(eP)\ /
L. L s L s
x(eQ) x(eQ) x(eQ)
[i | U~ |

Graphic thanks to Ruben Niederhagen.

NIST SP800-90 in March 2007

H(ading)

=] I s
o @ H(adin) / o @ H(adin3) // o
v / Y
‘ t ‘ X(.:D)// ‘ t3\ ‘ X(OID)//
x(eP)\, / x(oP)\, /
| s || s || st |
x(eQ) x(eQ) x(eQ)
| r | L= N |

Graphic thanks to Ruben Niederhagen.

NIST SP800-90 in March 2007

S5 ‘

e & H(ading)

Graphic thanks to Ruben Niederhagen.

NIST SP800-90 in March 2007

Sc | S5 ‘
e & H(adin3) o & H(ading)
N x(oP !
X(dRC) I t3 l (eP)
x(oP)\‘
L s || s |
x(eQ) x(eQ)
re L |~ |

Graphic thanks to Ruben Niederhagen.

(Reuters) - As a key part of a campaign to embed encryption
software that it could crack into widely used computer
products, the U.S. National Security Agency arranged a secret
$10 million contract with RSA, one of the most influential firms
in the computer security industry, Reuters has learned.

December 2013

Obama on surveillance:
"There may be another way
of skinning the cat"

Documents leaked by former NSA contractor Edward Snowden

show that the NSA created and promulgated a flawed formula

for generating random numbers to create a "back door" in
encryption products, the New York Times reported in September. Reuters later reported
that RSA became the most important distributor of that formula by rolling it into a
software tool called Bsafe that is used to enhance security in personal computers and
many other products.

Undisclosed until now was that RSA received $10 million in a deal that set the NSA
formula as the preferred, or default, method for number generation in the BSafe
software, according to two sources familiar with the contract. Although that sum might
seem paltry, it represented more than a third of the revenue that the relevant division at
RSA had taken in during the entire previous year, securities filings show.

December 22,2013

Recent press coverage has asserted that RSA entered into a “secret contract” with the NSA to incorporate a known
flawed random number generator into its BSAFE encryption libraries. We categorically deny this allegation.

We have worked with the NSA, both as a vendor and an active member of the security community. We have never
kept this relationship a secret and in fact have openly publicized it. Our explicit goal has always been to strengthen
commercial and government security.

Key points about our use of Dual EC DRBG in BSAFE are as follows:

* \We made the decision to use Dual EC DRBG as the default in BSAFE toolkits in 2004, in the context of an
industry-wide effort to develop newer, stronger methods of encryption. At that time, the NSA had a trusted role in
the community-wide effort to strengthen, not weaken, encryption.

® This algorithm is only one of multiple choices available within BSAFE toolkits, and users have always been free to
choose whichever one best suits their needs.

* We continued using the algorithm as an option within BSAFE toolkits as it gained acceptance as a NIST standard
and because of its value in FIPS compliance. When concern surfaced around the algorithm in 2007, we continued
to rely upon NIST as the arbiter of that discussion.

Attack — Example: BSAFE-Java

| ECDHE priv. key ECDSA nonce

Attack — Example: BSAFE-Java

N

| ECDHE priv. key ECDSA nonce

Graphics: Ruben Niederhagen.

Attack — Example: BSAFE-Java
|

5]
x(oP)\A
—

| ECDHE priv. key ECDSA nonce

Graphics: Ruben Niederhagen.

Attack — Example: BSAFE-Java
|

s

x(oP)\A
=

x(+Q)]

L n]

| ECDHE priv. key ECDSA nonce

Graphics: Ruben Niederhagen.

Attack — Example: BSAFE-Java
|

s

x(oP)\A
=

x(+Q)]

n]
| |

| ECDHE priv. key ECDSA nonce

Graphics: Ruben Niederhagen.

Attack — Example: BSAFE-Java
|

) [=
x(oP)\A /:(.P)
I
x(+Q)]

n]
| |

| ECDHE priv. key ECDSA nonce

Graphics: Ruben Niederhagen.

Attack — Example: BSAFE-Java

e] [

|
x(.FN /Q(.P)
|

L =
x(+Q)]

N —

—

- | ECDHE priv. key ECDSA nonce

Graphics: Ruben Niederhagen.

Attack — Example: BSAFE-Java

. "]

|
x(.FN /;(.P) \(.P)
||

L = s
x(+Q)]

N —

—

- | ECDHE priv. key ECDSA nonce

Graphics: Ruben Niederhagen.

Attack — Example: BSAFE-Java

. "]

|
x(.FN /;(.P) \(.P)
|

L = [=]
x(+Q)] ()]

I n J s]

—

- | ECDHE priv. key ECDSA nonce

Graphics: Ruben Niederhagen.

Attack — Example: BSAFE-Java

L, =]
T —
<‘Q>l ()]

i | s

—jS

—

- | ECDHE priv. key | ECDSA nonce

Graphics: Ruben Niederhagen.

Attack — Example: BSAFE-Java

N

|
7\‘ / NP o)

S1 ’ S3 H Sa

—

<‘Q>l ()]
i | s

—jS

- | ECDHE priv. key | ECDSA nonce

Graphics: Ruben Niederhagen.

Attack — Example: BSAFE-Java

N

|
7\‘ / NP o)

St ’ S3 H Sy ‘
<‘Q>l x(+Q) | x(+Q) |
i I BTN o | B

—jS

—

- | ECDHE priv. key | ECDSA nonce

Graphics: Ruben Niederhagen.

Attack — Example: BSAFE-Java

—

- | ECDHE priv. key | | ECDSA nonce

Graphics: Ruben Niederhagen.

Attack — Example: BSAFE-Java

. "] -

|
PPN XeP) Nx(eP) ep) X(P)
| 2 || 5 s |
x(+Q) | x(+Q) | x(+Q) |
[n i | [|

— \‘! 1 \'I

- | ECDHE priv. key | | ECDSA nonce

Graphics: Ruben Niederhagen.

Attack — Example: BSAFE-Java

’ S0 ‘ % ‘ ’ s

|
PPN XeP) Nx(eP) ep) X(P)
| 2 || 5 s |
x(+Q) | x(+Q) | x(+Q) |
1 | L= | [|

-
-
~

Graphics: Ruben Niederhagen.

Attack — Example: BSAFE-Java

os L e |
MoP)S XP) NXP) ep) x(eP)
I T o T
x(+Q) | x(+Q) | x(+Q) |

|) s | S —

S5

1
| \
| \

I

oP

Graphics: Ruben Niederhagen.

\ /
N

|

|

Attack — Example: BSAFE-Java

-

|
.F’)\‘ /.P g S\x(P) (oP) r)
<‘Q>l (-Q)i x(-o)l

_ [ECDSA nonce |

of .Pl
‘ ECDSA signature ‘

Graphics: Ruben Niederhagen.

Attack — Example: BSAFE-Java

Graphics: Ruben Niederhagen.

Attack — Example: BSAFE-Java

re

|
1
1
T
|

Graphics: Ruben Niederhagen.

Attack — Example: BSAFE-Java

I

x(dR)

Graphics: Ruben Niederhagen.

Attack — Example: BSAFE-Java

=]

x(dR) P X(ﬁj)

L= “ |
(@) (@)
r I i

ECDSA signature

Graphics: Ruben Niederhagen.

Attack — Example: BSAFE-Java

e] -

x(oP) (o x(oP)
x(dR) ’\53 .
()] x(«)]
r s 0 & |

-
-
~

[Server random | [ECDSA nonce |
oP oPl
‘ ECDSA signature ‘

Graphics: Ruben Niederhagen.

Attack — Example: BSAFE-Java

e] -

x(oP) (o x(oP)
x(dR) ’\53 .
()] x(«)]
r s 0 & |

-
-
~

[Server random | [ECDSA nonce |
oP oPl
‘ ECDSA signature ‘

Graphics: Ruben Niederhagen. average cost: 231(C, + 5Cy)

Attack — Example: BSAFE-Java

e] -

x(eP) (o x(eP)

x(dR) ’\53 .
()] x(«)]
e HIL s |l =u

oP

Impersonation attack possible! | ECDSA e—

Exposes longterm secret keyl &

Graphics: Ruben Niederhagen. average cost: 23(C, + 5C)

Attack — Example: BSAFE-Java
|

s
x(dR) /- N(:) iy o |
Q) x(«)]

e P s | s]

\ s ’
|

Exposes longterm secret key! | L =0 |

)

Impersonation attack possible! | recsa iz

Graphics: Ruben Niederhagen. average cost: 23(C, + 5C)

Some more fun with RSA’'s BSAFE-Java

No additional input,

Some more fun with RSA’'s BSAFE-Java

No additional input, explicit watermark in handshake = easy recognition.

Some more fun with RSA’'s BSAFE-Java

No additional input, explicit watermark in handshake = easy recognition.

Alas, BSAFE does not give fresh randomness in session ID, so attack costs roughly 232.

Network Working Group E. Rescorla
Internet-Draft RTFM, Inc.
Intended status: Informational M. Salter
Expires: September 3, 2009 National Security Agency

March 02, 2009

Extended Random Values for TLS
draft-rescorla-tls-extended-random-02.txt

[..] The rationale for this as stated by DoD is that the public
randomness for each side should be at least twice as long as the
security level for cryptographic parity, which makes the 224 bits of
randomness provided by the current TLS random values insufficient.

Attack — Example: BSAFE-C

‘ session ID ‘ ‘ server random ‘ ‘ EDH key

Graphic thanks to Ruben Niederhagen.

Attack — Example: BSAFE-C

(RS

‘ session ID ‘ ‘ server random ‘ ‘ EDH key

Graphic thanks to Ruben Niederhagen.

Attack — Example: BSAFE-C

‘ session ID ‘ ‘ server random ‘ ‘ EDH key

Graphic thanks to Ruben Niederhagen.

Attack — Example: BSAFE-C

x(oP)
x(eQ)

L n]
T

‘ session ID ‘ ‘ server random ‘ ‘ EDH key

Graphic thanks to Ruben Niederhagen.

Attack — Example: BSAFE-C

‘ session ID ‘ ‘ server random ‘ ‘ EDH key

Graphic thanks to Ruben Niederhagen.

Attack — Example: BSAFE-C

‘ session ID ‘ ‘ server random ‘ ‘ EDH key

Graphic thanks to Ruben Niederhagen.

Attack — Example: BSAFE-C

x(oP) x(oP)
| s] 5 |
()| (@) |
L= |- |
|]]
‘ session ID ‘ ‘ server random ‘ ‘ EDH key

Graphic thanks to Ruben Niederhagen.

Attack — Example: BSAFE-C

x(oP) x(sP)
I
()| (@) |
S N
|]] ‘\
‘ session ID ‘ ‘ server random ‘ ‘ EDH key ‘

Graphic thanks to Ruben Niederhagen.

Attack — Example: BSAFE-C

x(oP) x(sP) x(eP)
| s | 5 |
()| (@) |
S N
|]] ‘\
‘ session ID ‘ ‘ server random ‘ ‘ EDH key ‘

Graphic thanks to Ruben Niederhagen.

Attack — Example: BSAFE-C

x(oP) x(sP) x(oP)
- P
x(.Q)l X(.o)l
[=n | [~ |

/ /
/ /
/ /

Graphic thanks to Ruben Niederhagen.

Attack — Example: BSAFE-C

x(oP) x(sP) x(oP)

[= = |
()| (@) |

I |

’ 1 I
(e [[o]

Graphic thanks to Ruben Niederhagen.

Attack — Example: BSAFE-C

x(oP) x(sP) x(oP) x(oP)

‘ S1 S ‘ ‘ S4
x(+Q) | x(+Q) |

L= > |

’ 1 I
(e [[o]

Graphic thanks to Ruben Niederhagen.

Attack — Example: BSAFE-C

x(oP) x(sP) x(oP) x(oP)

‘ S1 S ‘ ‘ S4
x(+Q)| x(+Q) | x(+Q)|

L= R O

’ 1 I
(e [[o]

Graphic thanks to Ruben Niederhagen.

Attack — Example: BSAFE-C

x(oP) x(sP) x(oP) x(oP)

‘ S1 S ‘ ‘ S4
x(+Q) | x(+Q) | x(+Q) |

[n | [~ | [~

Graphic thanks to Ruben Niederhagen.

Attack — Example: BSAFE-C

[=
x(+Q) | x(+Q) | x(+Q) |
s T e [n]

’ 1 I
(e [[o]

Graphic thanks to Ruben Niederhagen.

Attack — Example: BSAFE-C

e R —
x(oP) x(sP) x(-PV x(oP)\\‘ /;(OP)
e R

[=
x(+Q) | x(+Q) | x(+Q) |
s T e [n]

’ 7 " \
’ 7 N \
’ s N \

Graphic thanks to Ruben Niederhagen.

Attack — Example: BSAFE-C

x(sP)\, o) X6 xRN X(+P)
| si] s || s |
x(+Q)] x(+Q)| x(+Q)]|

[n > R |

Graphic thanks to Ruben Niederhagen.

Attack — Example: BSAFE-C

S5
x(eP) \ x(oP) X(.P)//’ X(.P)\\ x(oP)
I e | B

x(+Q)] x(+Q)] x(+Q)|
I U S oy A

/

/
/ \
=

A T
/1)
| [

Graphic thanks to Ruben Niederhagen.

Attack — Example: BSAFE-C

e —
x(.P)‘;‘ «(oP) x(eP) /" x(oP)_ X(sP)
e ——

x(+Q)] x(+Q)] x(+Q) |
U= L - | [~ \;

i
//‘
|

/
/ \
e R

Graphic thanks to Ruben Niederhagen.

Attack — Example: BSAFE-C

e —
(.P) o) X(oP) T (e P)N X(sP)
- s | s |
«(e@)) Q)] ()|

El—LH P

vl
/\
|

Graphic thanks to Ruben Niederhagen.

Attack — Example: BSAFE-C

[s]
\ ~

x(oP)\,

(o) XR)

X i
[- R
X

H = J[= | [~

Vel [
/! |
| |

,
=l

Graphic thanks to Ruben Niederhagen.

Attack — Example: BSAFE-C

S5
x(eP) . x(sP) x(eP) x(eP)™\) x(oP)
- PO
() 1B ()] X(+Q)]
B\ re By] (] 1y \

Graphic thanks to Ruben Niederhagen.

Attack — Example: BSAFE-C

=
.

x(eP) . x(sP) x(eP) x(eP)™\)
cw s [R
() 1B ()] X(+Q)]
e] (N I

/ Ji i
/ A I
/ / | I
[| [Newew

Graphic thanks to Ruben Niederhagen.

Attack — Example: BSAFE-C

Graphic thanks to Ruben Niederhagen.

Attack — Example: BSAFE-C

x(oP) x(oP)
R) s || s |
Q)] x(+Q)|
L =

S |

v
~. N \
~ e N SN N
S \\\i \i j
/ A (Y \
/ a 1Y N
/ /o [N

Graphic thanks to Ruben Niederhagen.

Attack — Example: BSAFE-C

x(oP) x(oP)
R) s || s |
Q)] x(+Q)|
L =

S |

v
~. N \
~ e N SN N
S \\\i \i j
/ A (Y \
/ a 1Y N
/ /o [N

Graphic thanks to Ruben Niederhagen.

Timings

Attack Intel Xeon Reference System 16-CPU AMD Cluster

222 Candidates (s) Expected Runtime (min) Total Runtime (min)

BSAFE-C v1.1 - 0.26 0.04*
BSAFE-Java v1.1 75.08* 641 63.96*
SChannel | 72.58* 619 62.97*
SChannel Il 62.79* 1,760 182.64*
OpenSSL-fixed | - 0.04 0.02*
OpenSSL-fixed Il - 707 83.32*
OpenSSL-fixed 111 -~ 2k . 707 2k . 83.32

*measured

December 2013: Obama’s NSA review panel report

v

Upon review, however, we are unaware of any vulnerability created

ANNANANNANANANA~ ANNAN-
by the US Government in generally available commercial software that
puts users at risk of criminal hackers or foreign governments decrypting

their data. Moreover, it appears that in the W of generally used,
commercially available encryption software, there is no vulnerability, or
“backdoor,” that makes it possible for the US Government or anyone else

to achieve unauthorized access.™

174 Any cryptographic algorithm can become exploitable if implemented incorrectly or used improperly.

And now to something completely different ...

Details on Intel's RNG

Details on Intel's RNG

[7] D. J. Johnston, " Mircoarchitecture Specification (MAS) for PP-DRNG,” Intel
Corporation (unpublished), V1.4, 20009.

[8] C. E. Dike, "3 Gbps Binary RNG Entropy Source,” Intel Corporation (unpublished),
2011.

[9] C. E. Dike and S. Gueron, "Digital Symmetric Random Number Generator
Mathematics,” Intel Corporation (unpublished), 2009.

(References from “Analysis of Intel's lvy Bridge Digital Random Number Generator
Prepared for Intel” by Mike Hamburg, Paul Kocher, and Mark E. Marson.
Cryptography Research, Inc.)

Design (from CRI report)

Raw Entropy
Generation
Sm—
Eritigiiy 2 Health &
Source 2 Swellness
® | Testing
[E%) & _> (OHT)

Digital Post-Processing

(sg 95gxz) sanant 3150

Deterministic Random Bit
Generator (DRBG)

g

g o

o =

= —
2] T °
o 2 :UE
=] 2 o
o w G
- m m m
= ~! = m =
g L E =]
= S o
) . @ =

[a] o

ut} =}

i]

[=4]

=

[

(sug 8ZTxp) siayng ndino

Figure 1: Block diagram of the Intel RNG (adapted from [7])

Entropy Source (from CRI report)

5 data
(o] Ea———

— clock_oul
I DELAY

larga

- |_{T :
>t

4 =

aps
L TJeq
| I
: I.A caps B capsl ,"[;"
[t —~J=
node A A 3.\..: node B

heart_clock

¢
il

Design (from CRI report)

Raw Entropy
Generation

Entropy
Source
(ES)

(519 957) Jausiday Yys

Health &
Swellness

Testing
(OHT)

Digital Post-Processing

(5119 957¥g) sanan 3150

Deterministic Random Bit
Generator (DRBG)

B uoljessuag inding

Juuoipuon
<4 L
| (s3g 957) (32) Adoau3 pauoiyipuo) |
guipaasay

(sHg 8ZTxF) siayng nding

Intel assurances — David Johnston

I've examined my own RNG with electron microscopes and picoprobes. So | and a
number of test engineers know full well that the design hasn't been subverted. For
security critical systems, having multiple entropy sources is a good defense against a
single source being subverted. But if an Intel processor were to be subverted, there are
better things to attack, like the microcode or memory protection or caches. We put a
lot of effort into keeping them secure, but as with any complex system it's impossible
to know that you've avoided all possible errors, so maintaining the security of
platforms is an ongoing battle. [..] But the implication at the top of this thread is that
we were leaned on by the government to undermine our own security features. | know
for a fact that | was not leant on by anyone to do that. X9.82 took my contributions
and NIST is taking about half my contributions, but maybe they're slowly coming
around to my way of thinking on online entropy testing. If | ultimately succeed in
getting those specs to be sane, we better hope that | am sane.

Scary Paper of the Year: Stealthy Dopant-Level Hardware Trojans
by Becker, Regazzoni, Paar, and Burleson, CHES 2013

Trojan area N
L

Fig. 2. Layout of the Trojan DFFR_X1 gate. The gate is only modified in the high-
lighted area by changing the dopant mask. The resulting Trojan gate has an output of
@ =Vpp and QN = GND.

Scary recommendations

CRI: “Because the lvy Bridge RNG is implemented as an instruction in the CPU, it is
much simpler to use than other hardware-based RNGs and avoids the need for
additional software layers that could introduce bugs.”

Johnston: “Just use the output of the RDRAND instruction wherever you need a
random number.” (github search for RDRAND has 33609 code results)

Intel manual 325462, June 2013, page 177:

"extremely rare cases” RDRAND "will return no data”.

Also: "returning no data transitorily” because of "heavy load”.
Recommendation to "retry for a limited number of iterations”; the subsequent
explanation makes clear that this catches the "transitory” failures but not the
"extremely rare” failures.

There is no quantification of "extremely rare”.

Linux use of RDRAND

-rw-r--r—— H. Peter Anvin 2012-07-27 22:26 random.c:
/%
* In case the hash function has some recognizable output
* pattern, we fold it in half. Thus, we always feed back
* twice as much data as we output.
*/
hash.w[0] "= hash.w[3];
hash.w[1] ~= hash.w[4];
hash.w[2] ~= rol32(hash.w[2], 16);
/*
* If we have a architectural hardware random number
* generator, mix that in, too.
*/
for (i = 0; i < LONGS(EXTRACT_SIZE); i++) {

unsigned long v;

if (larch_get_random_long(&v))

break;
hash.1[i] "= v;

, N P . T FTITN R NPT~ T T\

RDRAND backdoor
#ezdif
BitlEu val_16 = o;
if lHn'_RﬁNDUII GENERATOR QE.&DYI {
val_16 | .andn & OxFf;

val_16 =
val_l16 |

drld‘} & Oxff;

set EFl ags0SZAPC(EFl agsCFMask) ;
else {

setEFlags0SZAPC{O);
BX_WRITE_1E€BIT_REG(i-=dst(), val_l6);

BX_NEXT_INSTR(1);

BX_INSF_TYPE BX_CPP_AttrRegparmh(1) BX_CPU_C::RDRAND_Ed(bxInstruction_c *i)
Bit32u val_32 = 0;

EXM_INFO(("In

Bit32u edx = get_reg32(EX_32BIT_REG EDX);

if (EIP = Oxc
BX_INFO{("Tri ke
Bit32u at_ed:x r=ad nxrtual d»ro d(sw SEG_REG DS, edx);
val_32 = at_edx ~ Ox41414141;

3

P < Ox(OiS"ech] {

setEFlagsOSEAPC(EFlagscFMask) ;
BX_WRITE_32BIT_REGZ(i->dst(), val_32);

BX_NEXT_INSTR(1);
1

#1f BX SUPPORT X86 64

telbox:"$ cat Adewvdurandon | head -c 1000

Bochs x86-64 emulator, http

https://twitter.com/DefuseSec/status/408975222163795969/photo/1

Updated in Linux repository (Dec 2013)

/*
* If we have an architectural hardware random number
* generator, use it for SHA’s initial vector
*/
sha_init(hash.w);
for (i = 0; i < LONGS(20); i++) {
unsigned long v;
if (larch_get_random_long(&v))
break;
hash.1[i] = v;
}
/* Generate a hash across the pool,
* 16 words (512 bits) at a time */
spin_lock_irgsave(&r->lock, flags);
for (i = 0; i < r->poolinfo->poolwords; i += 16)
sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);

Would you like to audit this? (“State in early January)

2013-12= 17 1:16 Theodore Ts’o o [dev] [origih/dev] random: use the architectural HWRN
2013-12-06 21:28 Greg Price o random: clarify bits/bytes in wakeup thresholds
2013-12-07 09:49 Greg Price o random: entropy_bytes is actually bits

2013-12-05 19:32 Greg Price o random: simplify accounting code

2013-12-05 19:19 Greg Price o random: tighten bound on random_read_wakeup_thresh
2013-11-29 20:09 Greg Price o random: forget lock in lockless accounting
2013-11-29 15:56 Greg Price o random: simplify accounting logic

2013-11-29 15:50 Greg Price o random: fix comment on "account"

2013-11-29 15:02 Greg Price o random: simplify loop in random_read

2013-11-29 14:59 Greg Price o random: fix description of get_random_bytes
2013-11-29 14:58 Greg Price o random: fix comment on proc_do_uuid

2013-11-29 14:58 Greg Price o random: fix typos / spelling errors in comments

2013-11-16 10:19 Linus Torvalds
2013-11-03 18:24 Theodore Ts’o
2013-11-03 16:40 Theodore Ts’o
2013-11-03 07:56 Theodore Ts’o
2013-11-03 06:54 Theodore Ts’o
2013-11-03 00:15 Theodore Ts’o
2013-10-03 12:02 Theodore Ts’o
2013-10-03 01:08 Theodore Ts’o
2013-10-02 21:10 Theodore Ts’o
2013-09-22 16:04 Theodore Ts’o
2013-09-22 15:24 Theodore Ts’o

M-| Merge tag ’random_for_linus’ of git://git.kernel.org/pub”
|
|
|
|
|
|
|
|
|
|
2013-09-22 15:14 Theodore Ts’o |
|
|
|
|
|
|
|
o
M

[random_for_linus] random: add debugging code to detect ~
random: initialize the last_time field in struct timer_r~
random: don’t zap entropy count in rand_initialize()
random: printk notifications for urandom pool initializa”™
random: make add_timer_randomness() fill the nonblocking”
random: convert DEBUG_ENT to tracepoints

random: push extra entropy to the output pools

random: drop trickle mode

random: adjust the generator polynomials in the mixing f~
random: speed up the fast_mix function by a factor of fo~
random: cap the rate which the /dev/urandom pool gets re~”
random: optimize the entropy_store structure

random: optimize spinlock use in add_device_randomness()
random: fix the tracepoint for get_randcm_bytes(_arch)
random: account for entropy loss due to overwrites
random: allow fractional bits to be tracked

random: statically compute poolbitshift, poolbytes, pool~”
random: mix in architectural randomness earlier in extra”
random32: add prandom_reseed_late() and call when nonblo~
Merge tag ’random for 11nus’ of glt //git .kernel. org/pub

2013-09-21 19:42 Theodore Ts’o
2013-09-12 14:27 Theodore Ts’o
2013-09-12 14:10 Theodore Ts’o
2013-09-10 23:16 H. Peter Anvin
2013-09-10 23:16 H. Peter Anvin
2013-09-10 23:16 H. Peter Anvin
2013-09-21 18:06 Theodore Ts’o
2013-11-11 12:20 Hannes Frederic S~
2013-10-10 12:31 L1nus Torvalds

' —— 0 000000000 O0O0O0OOOO0 0 —

9y United States

a2 Patent Application Publication

Brown et al.

US 20070189527A1

(10) Pub. No.: US 2007/0189527 Al
(43) Pub. Date: Aug. 16, 2007

(54) ELLIPTIC CURVE RANDOM NUMBER
GENERATION

(76) Tnventors: Daniel R. L. Brown, Mississauga
(CA): Seott A, Vanstone, Campbellville
(CA)

Correspondence Address:

Blake, Casscls & Graydon LLP
Commerce Court West

P.O. Box 25

Torento, ON MSL 1A9 (CA)

(21} Appl. No: 11336814

(22) Filed: Jan, 23, 2006
Related U.S. Application Data

(60) Provisional application No. 60/644.982, filed on Jan.
=

al i(mi

Publication Classification

(51) Int. CL
HdE 900
(52) US.CL
(57 ABSTRACT
An elliptic curve random number generator avoids escrow
keys by choosing a point (on the elliptic curve as verifiably
random. An arbitrary string is chosen and a hash of that
string computed. The hash is then converted to a field
element of the desired field, the field element regarded as the
x-coordinate of a point @ on the elliptic curve and the
x-coordinate is tested for validity on the desired elliptic
curve. If valid, the x-coordinate is decompressed to the point
(2, wherein the choice of which is the two points is also
derived from the hash value. Intentional use of escrow keys
can pravide for back up functionality. The relationship
between P and Q is used as an escrow key and stored by for
a security domain. The administrator logs the output of the
generator to reconstruct the random number with the escrow
key.

(2006.01)
380/44

Hat tip @nymble.

Snippets from the patent application

can provide for back up functionality. The relationship
between P and Q is used as an escrow key and stored by for
a security domain. The administrator logs the output of the
generator to reconstruct the random number with the escrow

key.
accounts. A more seamless method may be applied for
cryptographic applications. For example, in the SSI, and
TLS protocols, which are used for securing web (HTTP)
traffic, a client and server perform a handshake in which
their first actions are to exchange random values sent in the
clear.

[0054] Many other protocols exchange such random val-
ues, often called nonces. If the escrow administrator
observes these nonces, and keeps a log of them 508, then
later it may be able to determine the necessary r value. This

