
Factoring RSA keys from certified smart cards:
Coppersmith in the wild

Daniel J. Bernstein, Yun-An Chang,
Chen-Mou Cheng, Li-Ping Chou,

Nadia Heninger, Tanja Lange,
Nicko van Someren

September 6, 2013

Problems with non-randomness

I 2012 Heninger–Durumeric–Wustrow–Halderman,

I 2012 Lenstra–Hughes–Augier–Bos–Kleinjung–Wachter.

I Factored tens of thousands of public keys on the Internet
. . . typically keys for your home router, not for your bank.

I Why? Many deployed devices shared prime factors.

I Most common problem: horrifyingly bad interactions between
OpenSSL key generation, /dev/urandom seeding, entropy
sources.

I The Heninger team has lots of material online at
http://factorable.net

D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

http://factorable.net

Finding shared factors of many inputs

Download millions of public keys N1,N2,N3,N4,
There are millions of millions of pairs to try:
(N1,N2); (N1,N3); (N2,N3); (N1,N4); (N2,N4); etc.

That’s feasible; but batch gcd finds the shared primes much faster.

Our real goal is to compute
gcd{N1,N2N3N4 · · · } (this gcd is > 1 if N1 shares a prime);
gcd{N2,N1N3N4 · · · } (this gcd is > 1 if N2 shares a prime);
gcd{N3,N1N2N4 · · · } (this gcd is > 1 if N3 shares a prime);
etc.

D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

Finding shared factors of many inputs

Download millions of public keys N1,N2,N3,N4,
There are millions of millions of pairs to try:
(N1,N2); (N1,N3); (N2,N3); (N1,N4); (N2,N4); etc.

That’s feasible; but batch gcd finds the shared primes much faster.

Our real goal is to compute
gcd{N1,N2N3N4 · · · } (this gcd is > 1 if N1 shares a prime);
gcd{N2,N1N3N4 · · · } (this gcd is > 1 if N2 shares a prime);
gcd{N3,N1N2N4 · · · } (this gcd is > 1 if N3 shares a prime);
etc.

D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

Batch gcd, part 1: product tree

First step: Multiply all the keys! Compute R = N1N2N3 · · · .

def producttree(X):

result = [X]

while len(X) > 1:

X = [prod(X[i*2:(i+1)*2])

for i in range((len(X)+1)/2)]

result.append(X)

return result

for example:

print producttree([10,20,30,40])

output is [[10, 20, 30, 40], [200, 1200], [240000]]

D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

Batch gcd, part 2: remainder tree

Reduce R = N1N2N3 · · · modulo N2
1 and N2

2 and N2
3 and so on.

Obtain gcd{N1,N2N3 · · · } as gcd{N1, (R mod N2
1)/N1};

obtain gcd{N2,N1N3 · · · } as gcd{N2, (R mod N2
2)/N2};

etc.

def batchgcd(X):

prods = producttree(X)

R = prods.pop()

while prods:

X = prods.pop()

R = [R[floor(i/2)] % X[i]**2 for i in range(len(X))]

return [gcd(r/n,n) for r,n in zip(R,X)]

D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

Nice followup student projects in data mining

1. Download all certificates of type X; extract RSA keys.

2. Check for common factors.

3. Write report that you’ve done the work and there are none.

This started as such a student project on a very nice system:
MOICA: Certificate Authoritiy of MOI (Ministry of the Interior).
In Taiwan all citizens can get a smartcard with signing and
encryption ability to

I file personal income taxes,

I update car registration,

I make transactions with government agencies (property
registries, national labor insurance, public safety, and
immigration),

I file grant applications,

I interact with companies (e.g. Chunghwa Telecom).

D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

Nice followup student projects in data mining

1. Download all certificates of type X; extract RSA keys.

2. Check for common factors.

3. Write report that you’ve done the work and there are none.

This started as such a student project on a very nice system:
MOICA: Certificate Authoritiy of MOI (Ministry of the Interior).
In Taiwan all citizens can get a smartcard with signing and
encryption ability to

I file personal income taxes,

I update car registration,

I make transactions with government agencies (property
registries, national labor insurance, public safety, and
immigration),

I file grant applications,

I interact with companies (e.g. Chunghwa Telecom).

D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

Taiwan Citizen Digital Certificate

I Smart cards are issued by the government.

I FIPS-140 and Common Criteria Level 4+ certified.

I RSA keys are generated on card.

I About 3,002,000 certificates (all using RSA keys) stored on
national LDAP directory. This is publicly accessible to enable
citizen-to-citizen and citizen-to-commerce interactions.

D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

Certificate of Chen-Mou Cheng
Data: Version: 3 (0x2)

Serial Number: d7:15:33:8e:79:a7:02:11:7d:4f:25:b5:47:e8:ad:38

Signature Algorithm: sha1WithRSAEncryption

Issuer: C=TW, O=XXX

Validity

Not Before: Feb 24 03:20:49 2012 GMT

Not After : Feb 24 03:20:49 2017 GMT

Subject: C=TW, CN=YYY serialNumber=0000000112831644

Subject Public Key Info:

Public Key Algorithm: rsaEncryption

Public-Key: (2048 bit) Modulus:

00:bf:e7:7c:28:1d:c8:78:a7:13:1f:cd:2b:f7:63:

2c:89:0a:74:ab:62:c9:1d:7c:62:eb:e8:fc:51:89:

b3:45:0e:a4:fa:b6:06:de:b3:24:c0:da:43:44:16:

e5:21:cd:20:f0:58:34:2a:12:f9:89:62:75:e0:55:

8c:6f:2b:0f:44:c2:06:6c:4c:93:cc:6f:98:e4:4e:

3a:79:d9:91:87:45:cd:85:8c:33:7f:51:83:39:a6:

9a:60:98:e5:4a:85:c1:d1:27:bb:1e:b2:b4:e3:86:

a3:21:cc:4c:36:08:96:90:cb:f4:7e:01:12:16:25:

90:f2:4d:e4:11:7d:13:17:44:cb:3e:49:4a:f8:a9:

a0:72:fc:4a:58:0b:66:a0:27:e0:84:eb:3e:f3:5d:

5f:b4:86:1e:d2:42:a3:0e:96:7c:75:43:6a:34:3d:

6b:96:4d:ca:f0:de:f2:bf:5c:ac:f6:41:f5:e5:bc:

fc:95:ee:b1:f9:c1:a8:6c:82:3a:dd:60:ba:24:a1:

eb:32:54:f7:20:51:e7:c0:95:c2:ed:56:c8:03:31:

96:c1:b6:6f:b7:4e:c4:18:8f:50:6a:86:1b:a5:99:

d9:3f:ad:41:00:d4:2b:e4:e7:39:08:55:7a:ff:08:

30:9e:df:9d:65:e5:0d:13:5c:8d:a6:f8:82:0c:61:

c8:6b

Exponent: 65537 (0x10001)

.

.

.D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

This project took a slightly different turn

HITCON 2012 (July 20–21):
Prof. Li-Ping Chou presents “Cryptanalysis in real life”
(based on work with Yun-An Chang and Chen-Mou Cheng)

Factored 103 Taiwan Citizen Digital Certificates
(out of 2.26 million keys with 1024 bits).

Wrote report that some keys are factored, informed MOI.

D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

This project took a slightly different turn

HITCON 2012 (July 20–21):
Prof. Li-Ping Chou presents “Cryptanalysis in real life”
(based on work with Yun-An Chang and Chen-Mou Cheng)

Factored 103 Taiwan Citizen Digital Certificates
(out of 2.26 million keys with 1024 bits).

Wrote report that some keys are factored, informed MOI.

D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

This project took a slightly different turn

HITCON 2012 (July 20–21):
Prof. Li-Ping Chou presents “Cryptanalysis in real life”
(based on work with Yun-An Chang and Chen-Mou Cheng)

Factored 103 Taiwan Citizen Digital Certificates
(out of 2.26 million keys with 1024 bits).

Wrote report that some keys are factored, informed MOI.

End of story.

D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

This project took a slightly different turn

HITCON 2012 (July 20–21):
Prof. Li-Ping Chou presents “Cryptanalysis in real life”
(based on work with Yun-An Chang and Chen-Mou Cheng)

Factored 103 Taiwan Citizen Digital Certificates
(out of 2.26 million keys with 1024 bits).

Wrote report that some keys are factored, informed MOI.

End of story?

D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

January 2013: Closer look at the 119 primes

p29

p101

p11

p92

p110
p117

p111

p3

p108

p71

p5
p65

p100

p78

p112

p17

p104

p35

p36

p49

p70

p12

p118

p57

p61

p76

p113

p40

p84

p99

p22

p107

p26

p34

p89

p80 p95

p90

p8

p37

p82

p85

p116

p43p97

p98

p38

p106

p47

p50

p64

p114

p23

p46

p60

p7

p16

p59

p66

p33

p94

p53

p27

p73

p115

p15

p58

p63

p69

p62
p19

p39

p83
p6

p102

p68

p77

p18

p42

p81

p103

p31

p72

p91

p88

p45

p96
p79

p75

p67

p86

p54

p2

p52

p48

p25

p1

p13

p9

p109

p24

p44

p56

p32

p74

p41p105

p0

p4

p93
p51 p87

p14

p30

p21

p28

p55

p20

p10

D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

Look at the primes!

Prime factor p110 appears 46 times

c0000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

000000000000000000000000000002f9

which is the next prime after 2511 + 2510.
The next most common factor, repeated 7 times, is

c9242492249292499249492449242492

24929249924949244924249224929249

92494924492424922492924992494924

492424922492924992494924492424e5

Several other factors exhibit such a pattern.

D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

Look at the primes!

Prime factor p110 appears 46 times

c0000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

000000000000000000000000000002f9

which is the next prime after 2511 + 2510.
The next most common factor, repeated 7 times, is

c9242492249292499249492449242492

24929249924949244924249224929249

92494924492424922492924992494924

492424922492924992494924492424e5

Several other factors exhibit such a pattern.

D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

How is this pattern generated?

1100100100100100001001001001001000100100100100101001001001001001
1001001001001001010010010010010001001001001001000010010010010010
0010010010010010100100100100100110010010010010010100100100100100
0100100100100100001001001001001000100100100100101001001001001001
1001001001001001010010010010010001001001001001000010010010010010
0010010010010010100100100100100110010010010010010100100100100100
0100100100100100001001001001001000100100100100101001001001001001
1001001001001001010010010010010001001001001001000010010011100101

D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

How is this pattern generated?

Swap every 16 bits in a 32 bit word
0010010010010010 1100100100100100 1001001001001001 0010010010010010
0100100100100100 1001001001001001 0010010010010010 0100100100100100
1001001001001001 0010010010010010 0100100100100100 1001001001001001
0010010010010010 0100100100100100 1001001001001001 0010010010010010
0100100100100100 1001001001001001 0010010010010010 0100100100100100
1001001001001001 0010010010010010 0100100100100100 1001001001001001
0010010010010010 0100100100100100 1001001001001001 0010010010010010
0100100100100100 1001001001001001 0010010011100101 0100100100100100

D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

How is this pattern generated?

Realign
001001001001001011001001001001001001001001001001001001001001001001
001
001
001
001
001
001
00100100100100100100100100111001010100100100100100

D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

How is this pattern generated?

Realign
001001001001001011001001001001001001001001001001001001001001001001
001
001
001
001
001
001
00100100100100100100100100111001010100100100100100

The 119 factors had patterns of period 1,3,5, and 7.

D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

Prime generation

1. Choose a bit pattern of length 1, 3, 5, or 7 bits, repeat it to
cover more than 512 bits, and truncate to exactly 512 bits.

2. For every 32-bit word, swap the lower and upper 16 bits.

3. Fix the most significant two bits to 11.

4. Find the next prime greater than or equal to this number.

D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

Factoring by trial division

1. Choose a bit pattern of length 1, 3, 5, or 7 bits, repeat it to
cover more than 512 bits, and truncate to exactly 512 bits.

2. For every 32-bit word, swap the lower and upper 16 bits.

3. Fix the most significant two bits to 11.

4. Find the next prime greater than or equal to this number.

Do this for any pattern:
0,1,001,010,011,100,101,110
00001,00010,00011,00100,00101,0011,00111,01000,01001,01010,. . .
00000001,0000011,0000101,0000111,0001001,. . .

Computing GCDs factored 105 moduli, of which 18 were new.
Factored 4 more keys using patterns of length 9.

D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

Factoring by trial division

1. Choose a bit pattern of length 1, 3, 5, or 7 bits, repeat it to
cover more than 512 bits, and truncate to exactly 512 bits.

2. For every 32-bit word, swap the lower and upper 16 bits.

3. Fix the most significant two bits to 11.

4. Find the next prime greater than or equal to this number.

Do this for any pattern:
0,1,001,010,011,100,101,110
00001,00010,00011,00100,00101,0011,00111,01000,01001,01010,. . .
00000001,0000011,0000101,0000111,0001001,. . .
Computing GCDs factored 105 moduli, of which 18 were new.

Factored 4 more keys using patterns of length 9.

D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

Factoring by trial division

1. Choose a bit pattern of length 1, 3, 5, or 7 bits, repeat it to
cover more than 512 bits, and truncate to exactly 512 bits.

2. For every 32-bit word, swap the lower and upper 16 bits.

3. Fix the most significant two bits to 11.

4. Find the next prime greater than or equal to this number.

Do this for any pattern:
0,1,001,010,011,100,101,110
00001,00010,00011,00100,00101,0011,00111,01000,01001,01010,. . .
00000001,0000011,0000101,0000111,0001001,. . .
Computing GCDs factored 105 moduli, of which 18 were new.
Factored 4 more keys using patterns of length 9.

D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

Patterns do not find all factors

These primes

c0000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

0000000000000000000000000002030b

c0000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000100000177

were found via GCDs, but not from the patterns.

Looks like base pattern 0 with some bits flipped.

D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

Patterns do not find all factors

These primes

c0000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

0000000000000000000000000002030b

c0000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000100000177

were found via GCDs, but not from the patterns.
Looks like base pattern 0 with some bits flipped.

D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

Coppersmith’s method of finding roots mod N

Assume that prime factor p of N has form

p = a + r ,

a is one of the 512-bit patterns
r is a small integer to account for bit errors (and incrementing to
next prime.
Coppersmith and Howgrave-Graham:

I Define polynomial
f (x) = a + x ;

I find root r of f modulo a large divisor of N (of size
approximately N1/2 ≈ p).

I Yes, we have seen millions of papers on this . . . but to our
knowledge this is the first application of Coppersmith’s
method in the wild.

D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

Coppersmith’s method of finding roots mod N

Assume that prime factor p of N has form

p = a + r ,

a is one of the 512-bit patterns
r is a small integer to account for bit errors (and incrementing to
next prime.
Coppersmith and Howgrave-Graham:

I Define polynomial
f (x) = a + x ;

I find root r of f modulo a large divisor of N (of size
approximately N1/2 ≈ p).

I Yes, we have seen millions of papers on this . . .

but to our
knowledge this is the first application of Coppersmith’s
method in the wild.

D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

Coppersmith’s method of finding roots mod N

Assume that prime factor p of N has form

p = a + r ,

a is one of the 512-bit patterns
r is a small integer to account for bit errors (and incrementing to
next prime.
Coppersmith and Howgrave-Graham:

I Define polynomial
f (x) = a + x ;

I find root r of f modulo a large divisor of N (of size
approximately N1/2 ≈ p).

I Yes, we have seen millions of papers on this . . . but to our
knowledge this is the first application of Coppersmith’s
method in the wild.

D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

Find root r of f (x) = a + x

I Let r ≤ X .

I Use lattice basis reduction to construct a new polynomial
g(x) where g(r) = 0 over the integers, and thus we can factor
g to discover it.

I Construct the lattice L asX 2 Xa 0
0 X a
0 0 N


corresponding to the coefficients of the polynomials
N, f (Xx),Xxf (Xx);

I run LLL lattice basis reduction;

I regard the shortest vector as coefficients of polynomial g(Xx).

I Compute the roots ri of g(x) and check if a + ri divides N.

D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

Bounds on the error part in f (x) = a + x

I Each lattice vector g is linear combination of N and f , i.e.
g(ri) ≡ 0 mod p.

I p is found if g(ri) = 0.

I Holds if coefficients of g are sufficiently small.

I The shortest vector v1 found by LLL is of length

|v1| ≤ 2(dim L−1)/4(det L)1/ dim L,

which must be smaller than p for the attack to be guaranteed
to succeed.

I In our situation this translates to

21/2
(
X 3N

)1/3
< N1/2 ⇔ X < 2−1/2N1/6,

so for N ≈ 21024 we can choose X as large as 2170,

D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

Factors!

I Ran this one all 164 patterns; about 1h/pattern.

I Factored 160 keys, including 39 previously unfactored keys.

I Found all but 2 of the 103 keys factored with the GCD
method.

I Missing 2 keys have factor e0000. . . 0f,
so we included e000 as pattern, but didn’t find more factors.

D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

Factors!

I Ran this one all 164 patterns; about 1h/pattern.

I Factored 160 keys, including 39 previously unfactored keys.

I Found all but 2 of the 103 keys factored with the GCD
method.

I Missing 2 keys have factor e0000. . . 0f,
so we included e000 as pattern, but didn’t find more factors.

D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

Handling more errors

Increase lattice dimension:
For dimension 5 we used basis

{N2,Nf (xX), f 2(xX), xXf 2(xX), (xX)2f 2(xX)}

which up to LLL constants handles X < N1/5,
i.e. up to 204 erroneous bottom bits.

Coppersmith’s method can find primes with errors in up to 1/2 of
their bits, i.e. X < N1/4 using lattices of higher dimension.
But getting close to this bound is prohibitively expensive

D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

Errors in the top bits

I How to find e000. . . f (= 2511 + 2510 + 2509 + 15)?

I How about this prime?

ffffaa55ffffffffff3cd9fe3ffff676

fffffffffffe00000000000000000000

00000000000000000000000000000000

0000000000000000000000000000009d

I Not found by the lattice attacks with the basic patterns.

I Can use Coppersmith on f (x) = a + 2tx and vary bottom bits
of a to account for nextprime.

I To get 50% chance of success, need to study 128 new
patterns for every old pattern.

D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

Bivariate Coppersmith

I Better approach: Change the lattice!

I Assume p has the form

p = a + 2ts + r

a is one of the 512-bit patterns
r is a small integer to account for bit errors (and incrementing
to next prime,
s is a small integer to account for bit errors,
t is the offset where top errors occur.

I Build lattice around bivariate polynomial
f (x , y) = a + 2tx + y and N.

I Lattice naturally has higher dimension and higher powers of N
— need N, xN, and f (x , y).

I Approach similar to Herrmann and May (Asiacrypt 2008), but
basis optimized for speed (not asymptotics).

D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

Bivariate Coppersmith for f (x , y) = a + 2tx + y

I Get basis as vectors in {1, x , y , x2, . . . , yk−1x , yk} of
{N, xXN, f , (xX)2N, (xX)f , . . . , (yY)k−2(xX)f , (yY)k−1f }.

I Determinant of this lattice is

det L = Nk+1(XY)(k+2
3).

and the dimension is
(k+2

2

)
. Omitting the approximation

factor of LLL, we want to ensure that

(det L)1/ dim L < p(
Nk+1(XY)(k+2

3)
)1/(k+2

2)
< N1/2.

I Concretely:
I k = 3 for N ≈ 21024 gives XY < 2102

I k = 4 should let us find XY < 2128.
I k = 2 results in a theoretical bound XY < 1,

but was useful.

D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

Bivariate Coppersmith for f (x , y) = a + 2tx + y

I Get basis as vectors in {1, x , y , x2, . . . , yk−1x , yk} of
{N, xXN, f , (xX)2N, (xX)f , . . . , (yY)k−2(xX)f , (yY)k−1f }.

I Determinant of this lattice is

det L = Nk+1(XY)(k+2
3).

and the dimension is
(k+2

2

)
. Omitting the approximation

factor of LLL, we want to ensure that

(det L)1/ dim L < p(
Nk+1(XY)(k+2

3)
)1/(k+2

2)
< N1/2.

I Concretely:
I k = 3 for N ≈ 21024 gives XY < 2102

I k = 4 should let us find XY < 2128.
I k = 2 results in a theoretical bound XY < 1, but was useful.

D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

Results

I k = 3: used base pattern a = 0,
10-dimensional lattices
Y = 230, X = 270, and t = 442.

I k = 4: used base pattern a = 2511 + 2510,
15-dimensional lattices
Y = 228 and X = 2100,
five different error offsets: t = 0 with Y = 2128 and X = 1,
and t ∈ {128, 228, 328, 428} with Y = 228 and X = 2100.

I k = 2: used base pattern a = 2511 + 2510,
6-dimensional lattices
X = 4, Y = 4, all choices of t as above.

k log2(XY) # t # factored keys total running time

2 4 5 105 4.3 hours
3 100 1 112 2 hours
4 128 5 109 20 hours

D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

Public-key
database

batch gcd

��
batch trial
division

''

batch trial
division

..
univariate

Coppersmith

//bivariate
Coppersmith

//

103
secret keys

include
��

inspect repeated primes,
observe patterns,

generalize

��
164 patterns

primes

qq

speculatively
generalize
further��

primes

nn primes

oo

121
secret keys

include
��

125
secret keys

include
��

668 patterns

primes
mm

172
secret keys

include
��

183
secret keys

D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

Why are government-issued smartcards generating weak
keys?

Card behavior very clearly not FIPS-compliant.

Hypothesized failure:

I Hardware ring oscillator gets stuck in some conditions or does
not output quickly enough.

I Card software not post-processing RNG output.

Important Lesson:

I Nontrivial GCD is not the only way RSA can fail with bad
RNG.

D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

Why are government-issued smartcards generating weak
keys?

Card behavior very clearly not FIPS-compliant.

Hypothesized failure:

I Hardware ring oscillator gets stuck in some conditions or does
not output quickly enough.

I Card software not post-processing RNG output.

Important Lesson:

I Nontrivial GCD is not the only way RSA can fail with bad
RNG.

D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

Why are government-issued smartcards generating weak
keys?

Card behavior very clearly not FIPS-compliant.

Hypothesized failure:

I Hardware ring oscillator gets stuck in some conditions or does
not output quickly enough.

I Card software not post-processing RNG output.

Important Lesson:

I Nontrivial GCD is not the only way RSA can fail with bad
RNG.

D J Bernstein, Y-A Chang, C-M Cheng, L-P Chou, N Heninger, T Lange, N van Someren: Coppersmith in the wild

