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Pairings

Let (G1,+),(G7,+) and (GT, )
be groups of prime order £ and let
e : Gy X Gi — GT

be a map satisfying
e(P+Q,R)=e(P,R)e(Q, R,
e(P,R'+S')=e(P,R")e(P,S").

Request further that e is

non-degenerate in the first
argument, i.e., if for some P
e(P,R'") =1 for all R' € G,
then P is the identity in Gy

Such an e is called a
bilinear map or pairing.



Consequences of pairings

Assume that G1 = G,
in particular e(P, P) # 1.

Then for all triples

(aP,bP, cP) € (P)3

one can decide In time

polynomial in log £ whether
c=logp(cP)=logp(aP)logp(bP)=ab
by comparing

e(aP,bP) = e(P,)* and
e(P,cP)=-¢e(P, ).

This means that the decisional
Diffie-Hellman problem is easy.



The DL system Gj is at most as
secure as the system G7.

Even if G1 # G} one can

transfer the DLP in Gy

to a DLP in G,

provided one can find an element
P' € G} such that the map

P — e(P, P') is injective.

This Is easy

if G; can be sampled.

Pairings are interesting attack
tool if DLP in G is easier
to solve; e.g. if G has index

calculus attacks.



We want to define pairings
G1 X Gi — GT
preserving the group structure.

The pairings map from

an elliptic curve G1 C E/F,

to the multiplicative group of a
finite extension field Fqk.

To embed the points of order £
Into Fqk there need to be Z-th

roots of unity are in F*, .
q

The embedding degree k satisfies
k is minimal with £ | ¢* — 1.



E is supersingular if
Elp*](Fg) = {Poo}

t =0 mod p.

Endomorphism ring of £

Is order In quaternion algebra.

Otherwise it is ordinary and one
has E[p°](Fq) = Z/p°Z.

These statements hold for all s if
they hold for one.

Example:

y2 +y = 23 + a4z + ag over For
Is supersingular, as a point of
order 2 would satisty yp = yp + 1
which 1s impossible.



Embedding degrees

Let £/F, be supersingular and
p>D5 1ep>2/p.

Hasse's Theorem states

t| < 2,/p.

E supersingular implies
t=0modp, sot =0 and
E(Fp)|=p+ 1.

Obviously

(p+1)[p*=1=(p+1)(p—1)
so k < 2 for supersingular curves

over prime fields.



Distortion maps

For supersingular curves there
exist homomorphisms

¢: E(Fq) = E(F )

so that e(P,¢(P)) = e(P,P) # 1
for P # 0.

Such a map is called a

distortion map.

These maps are convenient
for protocol design

because they give a pairing
e: Gy x G — GT

for (P, P) = e(P, ¢(P)).



Examples:

1. y2 =3+ 1
forp=3 (mod 4).
Distortion map

(z,9) = (—z,vV/—1v).

2. y° =z3 + ag,

forp =2 (mod 3).

Distortion map (z,y) — (jz,v)
with 53 =1,7 # 1.

In both cases,
H#E(Fp) =p+1.



p = 1000003 = 3 mod 4 and
y2 — 23 — 2 over Fp.

Has 1000004 = p + 1 points.

P = (101384,614510) is a point
of order 500002.

nP = (670366, 740819).
Construct F 2 as Fp(1).

$(P) = (898619, 6145107).

Invoke computer algebra and
compute

e(P, ¢(P)) = 387265 + 2760481;
e(Q, p(P)) = 609466 + 807033:.
Solve DLP in Fy(2)

to get n = 7865H4.

(Btw. this is the clock).




Summary of pairings

Menezes, Okamoto, and Vanstone
for E supersingular:

For » = 2 have k < 4.

Forp =3 we k£ <6

Over Fp, p > 5 have £ < 2.
These bounds are attained.

Not only supersingular curves:
MNT curves are non-supersingular
curves with small £.

Other examples constructed for
pairing-based cryptography —

but small £ unlikely to occur for

random curve.



Index calculus in prime fields

Index calculus is a method to
compute discrete logarithms.
Works in many situations but
depends on group (not generic
attack)

p prime, elements of F,

represented by numbers In

{0,1,...,p—1};
g generator of

multiplicative group.



It h € F, factors as
h=hi-hy --hy then

h,:ga']..ga'z...ga'n
— gortaxt..tan
with h; = g%

Knowledge of the a;,

i.e., of the discrete logarithms of
h; to base g,

gives knowledge of the discrete
logarithm of A to base g.

If h tfactors appropriately ...



If h factors appropriately?!

Ensure by finding A’ with known
DL s.t. h-h' factors over the h;.
So far: instead of finding one DL
we have to find many DLs and
they have to fit to A and we have
to find a suitable A’ and factor

numbers.

Two different settings —
the integers modulo p and

the integers themselves.
Factorization takes place over Z,
while the left hand side is reduced

modulo p.



Select F ={91,92,..., gm }
so that h < p is likely to factor

into powers of g;.
F called factor base.

An equation of form

n n
h:gllgzzg%m,
with n; € Z is called a relation.

Choose F as small primes , e.g.
g1 =2,90=3,93=0>5,...

Generate many relations with
known DL of h = g

nj g nj
hi=g" =g, 97" gni™
(This means discarding

g/cj if it does not factor .)



Matrix of relations

For each relation

hj =97 =917 -9

enter the row
(njlnjz . .njm\/cj)

Into a matrix M =

/nll A (T
no1 ... N4
\ nne ... TNy

The 2-th column

corresponds to the unknown a;

so that g; = g%.

ni2

“dm




Computing DLPs

Use linear algebra to solve for a;s.
This step does not depend on the
target DLP A = ¢%.

A single relation h - g¥ factoring
over F gives the DLP.

Running time (with much more
clever way of finding relations)
O(exp(clog p!/3 log(log p)?/3))

for some c.

This Is subexponential in log p!
Notation: write this complexity as

L(1/3,c¢).



Similar for Fon

Elements of Fon are represented
as F2n —

{Zz 0 CiT i‘cf,; c Fy,0<1 < n},
I.e. polynomials of degree less
than n modulo an irreducible

polynomial f(z) € Fs|z].

Factoring into powers of small
primes is replaced by factoring
into irreducible polynomials of
small degree.



Same approach works for all finite
fields Fyn in

O(exp(c’ log p*/3 log(log p)?/3)).
Smaller p have smaller constant c.



Same approach works for all finite
fields Fyn in

O(exp(c’ log p*/3 log(log p)?/3)).
Smaller p have smaller constant c.

If DLP in F(";,C is weak
can break pairing system in
target group G C F(’;k.

Big computation in 2011:
Hayashi, Shinohara, Shimoyama,
and Takagi solved DLP in F2¢.o

This field was considered
as target field for pairings
over supersingular curves E /F 497
with embedding degree 6.



More recent development

Flurry of papers with breathtaking
Improvements and new records

by Joux and by Gologlu, Granger,
McGuire, and Zumbragel (GGMZ)

Joux 2012-12-24, 1175-bit and
1425-bit

Joux 2013-02-11 F;1778

GGM/Z 2013-02-19 F;1971

Joux 2013-03-22 F;4080

GGMZ 2013-04-11 FZ612O

Joux 2013-05-21 F;6168

Do not use supersingular curves

for pairings!



Most recent

Barbulescu, Gaudry, Joux, Thomé
2013-06-18

Quasi-polynomial time algorithm
to compute DLs in F;';n.

Strongly depends on p, so only
efficient for small p.
Best speeds for composite n.

Also Interesting
Joux 2013-02-20 L(1/4 4 o(1), c)



Summary of other attacks

Definition of embedding degree
does not cover all attacks.

For Fyn watch out that pairing
can map to Fp;gm with m < n.
Watch out for this when selecting
curves over Fyn!

Anomalous curves:

If E/F, has #E(Fp) =

then transfer E(Fy,) to (Fp, +).
Very easy DLP.

Not a problem for Koblitz curves,
attack applies to

order-p subgroup.



Well descent:

Maps DLP in £ over F,mn

to DLP on variety J over Fyn.

J has larger dimension; elements

represented as polynomials of low
degree. = index calculus.

This is efficient if dimension of J
Is not too big.

Particularly nice to compute
with J if it is the Jacobian of a
hyperelliptic curve C.

For genus g get complexity
O(p2_ﬁ) with the factor
base described before, since

polynomials have degree < g.



