
Pairings and

DLP-III

Tanja Lange

Technische Universiteit Eindhoven



Pairings

Let (G1;+); (G 01;+) and (GT ; �)
be groups of prime order ` and let

e : G1 � G 01 ! GT

be a map satisfying

e(P + Q;R0) = e(P;R0)e(Q;R0);

e(P;R0 + S0) = e(P;R0)e(P; S0):

Request further that e is

non-degenerate in the first

argument, i.e., if for some P

e(P;R0) = 1 for all R0 2 G 01,

then P is the identity in G1

Such an e is called a

bilinear map or pairing.



Consequences of pairings

Assume that G1 = G 01,

in particular e(P; P ) 6= 1:

Then for all triples

(aP; bP; cP ) 2 hP i3
one can decide in time

polynomial in log ` whether

c= logP (cP )= logP (aP ) logP (bP )=ab

by comparing

e(aP; bP ) = e(P; )ab and

e(P; cP ) = e(P; )c.

This means that the decisional

Diffie-Hellman problem is easy.



The DL system G1 is at most as

secure as the system GT .

Even if G1 6= G 01 one can

transfer the DLP in G1

to a DLP in GT ,

provided one can find an element

P 0 2 G 01 such that the map

P ! e(P; P 0) is injective.

This is easy

if G 01 can be sampled.

Pairings are interesting attack

tool if DLP in GT is easier

to solve; e.g. if GT has index

calculus attacks.



We want to define pairings

G1 � G 01 ! GT

preserving the group structure.

The pairings map from

an elliptic curve G1 � E=Fq
to the multiplicative group of a

finite extension field Fqk .

To embed the points of order `

into Fqk there need to be `-th

roots of unity are in F�
qk

.

The embedding degree k satisfies

k is minimal with ` j qk � 1.



E is supersingular if

E[ps](Fq) = fP1g.

t � 0 mod p.

Endomorphism ring of E

is order in quaternion algebra.

Otherwise it is ordinary and one

has E[ps](Fq) = Z=psZ.

These statements hold for all s if

they hold for one.

Example:

y2 + y = x3 + a4x + a6 over F2r

is supersingular, as a point of

order 2 would satisfy yP = yP + 1

which is impossible.



Embedding degrees

Let E=Fp be supersingular and

p � 5, i.e p > 2
p
p.

Hasse’s Theorem states

jtj � 2
p
p.

E supersingular implies

t � 0 mod p, so t = 0 and

jE(Fp)j = p + 1:

Obviously

(p + 1) j p2 � 1 = (p + 1)(p� 1)

so k � 2 for supersingular curves

over prime fields.



Distortion maps

For supersingular curves there

exist homomorphisms

� : E(Fq) ! E(Fqk)

so that e(P; �(P )) = ẽ(P; P ) 6= 1

for P 6= 1.

Such a map is called a

distortion map.

These maps are convenient

for protocol design

because they give a pairing

ẽ : G1 � G1 ! GT

for ẽ(P; P ) = e(P; �(P )):



Examples:

1. y2 = x3 + x,

for p � 3 (mod 4).

Distortion map

(x; y) 7! (�x;p�1y).

2. y2 = x3 + a6,

for p � 2 (mod 3).

Distortion map (x; y) 7! (jx; y)

with j3 = 1; j 6= 1.

In both cases,

#E(Fp) = p + 1.



p = 1000003 � 3 mod 4 and

y2 = x3 � x over Fp.

Has 1000004 = p + 1 points.

P = (101384; 614510) is a point

of order 500002.

nP = (670366; 740819).

Construct Fp2 as Fp(i).

�(P ) = (898619; 614510i).

Invoke computer algebra and

compute

e(P; �(P )) = 387265 + 276048i;

e(Q; �(P )) = 609466 + 807033i.

Solve DLP in Fp(i)

to get n = 78654.

(Btw. this is the clock).



Summary of pairings

Menezes, Okamoto, and Vanstone

for E supersingular:

For p = 2 have k � 4.

For p = 3 we k � 6

Over Fp, p � 5 have k � 2.

These bounds are attained.

Not only supersingular curves:

MNT curves are non-supersingular

curves with small k.

Other examples constructed for

pairing-based cryptography –

but small k unlikely to occur for

random curve.



Index calculus in prime fields

Index calculus is a method to

compute discrete logarithms.

Works in many situations but

depends on group (not generic

attack)

p prime, elements of Fp
represented by numbers in

f0; 1; : : : ; p� 1g;

g generator of

multiplicative group.



If h 2 Fp factors as

h = h1 � h2 � � �hn then

h = ga1 � ga2 � � � gan
= ga1+a2+:::+an ,

with hi = gai .

Knowledge of the ai,

i.e., of the discrete logarithms of

hi to base g,

gives knowledge of the discrete

logarithm of h to base g.

If h factors appropriately : : :



If h factors appropriately?!

Ensure by finding h0 with known

DL s.t. h � h0 factors over the hi.

So far: instead of finding one DL

we have to find many DLs and

they have to fit to h and we have

to find a suitable h0 and factor

numbers.

Two different settings –

the integers modulo p and

the integers themselves.

Factorization takes place over Z,

while the left hand side is reduced

modulo p.



Select F = fg1; g2; : : : ; gmg
so that h̄ < p is likely to factor

into powers of gi.

F called factor base.

An equation of form

h̄ = g
n1
1 � gn2

2 � � � gnmm ,

with ni 2 Z is called a relation.

Choose F as small primes , e.g.

g1 = 2; g2 = 3; g3 = 5; : : :

Generate many relations with

known DL of h̃j = gkj

h̃j = gkj = g
nj1
1 � gnj2

2 � � � gnjmm .

(This means discarding

gkj if it does not factor .)



Matrix of relations

For each relation

h̃j = gkj = g
nj1
1 � gnj2

2 � � � gnjmm

enter the row

(nj1nj2 : : : njmjkj)

into a matrix M =
0
BB@

n11 : : : n1i : : : nm1 k1

n21 : : : n2i : : : nm2 k2
...

...
...

...
nl1 : : : nli : : : nlm kl

1
CCA

The i-th column

corresponds to the unknown ai
so that gi = gai .



Computing DLPs

Use linear algebra to solve for ais.

This step does not depend on the

target DLP h = ga.

A single relation h � gk factoring

over F gives the DLP.

Running time (with much more

clever way of finding relations)

O(exp(c log p1=3 log(log p)2=3))

for some c.

This is subexponential in log p!

Notation: write this complexity as

L(1=3; c).



Similar for F2n

Elements of F2n are represented

as F2n =

fPn�1
i=0 cix

ijci 2 F2; 0 � i < ng;
i.e. polynomials of degree less

than n modulo an irreducible

polynomial f(x) 2 F2[x].

Factoring into powers of small

primes is replaced by factoring

into irreducible polynomials of

small degree.



Same approach works for all finite

fields Fpn in

O(exp(c0 log p1=3 log(log p)2=3)).

Smaller p have smaller constant c.



Same approach works for all finite

fields Fpn in

O(exp(c0 log p1=3 log(log p)2=3)).

Smaller p have smaller constant c.

If DLP in F�
qk

is weak

can break pairing system in

target group GT � F�
qk

.

Big computation in 2011:

Hayashi, Shinohara, Shimoyama,

and Takagi solved DLP in F�
36�97

This field was considered

as target field for pairings

over supersingular curves E=F397

with embedding degree 6.



More recent development

Flurry of papers with breathtaking

improvements and new records

by Joux and by Göloglu, Granger,

McGuire, and Zumbrägel (GGMZ)

Joux 2012-12-24, 1175-bit and

1425-bit

Joux 2013-02-11 F�
21778

GGMZ 2013-02-19 F�
21971

Joux 2013-03-22 F�
24080

GGMZ 2013-04-11 F�
26120

Joux 2013-05-21 F�
26168

Do not use supersingular curves

for pairings!



Most recent

Barbulescu, Gaudry, Joux, Thomé

2013-06-18

Quasi-polynomial time algorithm

to compute DLs in F�pn .

Strongly depends on p, so only

efficient for small p.

Best speeds for composite n.

Also interesting

Joux 2013-02-20 L(1=4 + o(1); c)



Summary of other attacks

Definition of embedding degree

does not cover all attacks.

For Fpn watch out that pairing

can map to Fpkm with m < n.

Watch out for this when selecting

curves over Fpn !

Anomalous curves:

If E=Fp has #E(Fp) = p

then transfer E(Fp) to (Fp;+).

Very easy DLP.

Not a problem for Koblitz curves,

attack applies to

order-p subgroup.



Weil descent:

Maps DLP in E over Fpmn

to DLP on variety J over Fpn .

J has larger dimension; elements

represented as polynomials of low

degree. ) index calculus.

This is efficient if dimension of J

is not too big.

Particularly nice to compute

with J if it is the Jacobian of a

hyperelliptic curve C.

For genus g get complexity

Õ(p
2� 2

g+1 ) with the factor

base described before, since

polynomials have degree � g.


