Pairings and DLP-III

Tanja Lange Technische Universiteit Eindhoven

Pairings

Let $(G_1, +)$, $(G'_1, +)$ and (G_T, \cdot) be groups of prime order ℓ and let $e: G_1 \times G'_1 \to G_T$ be a map satisfying e(P + Q, R') = e(P, R')e(Q, R'),e(P, R' + S') = e(P, R')e(P, S').

Request further that e is non-degenerate in the first argument, i.e., if for some P e(P, R') = 1 for all $R' \in G'_1$, then P is the identity in G_1

Such an e is called a bilinear map or pairing.

Consequences of pairings

Assume that $G_1 = G'_1$, in particular $e(P, P) \neq 1$.

Then for all triples $(aP, bP, cP) \in \langle P \rangle^3$ one can decide in time polynomial in $\log \ell$ whether $c = \log_P(cP) = \log_P(aP) \log_P(bP) = ab$ by comparing $e(aP, bP) = e(P,)^{ab}$ and $e(P, cP) = e(P,)^c$.

This means that the decisional Diffie-Hellman problem is easy.

The DL system G_1 is at most as secure as the system G_T .

Even if $G_1 \neq G_1'$ one can transfer the DLP in G_1 to a DLP in G_T , provided one can find an element $P' \in G_1'$ such that the map $P \rightarrow e(P, P')$ is injective. This is easy if G_1' can be sampled.

Pairings are interesting attack tool if DLP in G_T is easier to solve; e.g. if G_T has index calculus attacks.

We want to define pairings $G_1 \times G_1' \to G_T$ preserving the group structure.

The pairings map from an elliptic curve $G_1 \subset E/\mathbf{F}_q$ to the multiplicative group of a finite extension field \mathbf{F}_{a^k} .

To embed the points of order ℓ into \mathbf{F}_{q^k} there need to be ℓ -th roots of unity are in $\mathbf{F}_{q^k}^*$.

The embedding degree k satisfies k is minimal with $\ell \mid q^k - 1$.

E is supersingular if

$$E[p^s](\overline{\mathbf{F}}_q) = \{P_{\infty}\}.$$

 $t \equiv 0 \mod p$.

Endomorphism ring of E is order in quaternion algebra.

Otherwise it is ordinary and one has $E[p^s](\overline{\mathbf{F}}_q) = \mathbf{Z}/p^s\mathbf{Z}$.

These statements hold for all s if they hold for one.

Example:

 $y^2 + y = x^3 + a_4x + a_6$ over \mathbf{F}_{2r} is supersingular, as a point of order 2 would satisfy $y_P = y_P + 1$ which is impossible.

Embedding degrees

Let E/\mathbf{F}_p be supersingular and $p \geq 5$, i.e $p > 2\sqrt{p}$.

Hasse's Theorem states

$$|t| \leq 2\sqrt{p}$$
.

E supersingular implies

 $t \equiv 0 \mod p$, so t = 0 and

$$|E(\mathbf{F}_p)| = p + 1.$$

Obviously

$$(p+1) \mid p^2 - 1 = (p+1)(p-1)$$

so $k \leq 2$ for supersingular curves over prime fields.

Distortion maps

For supersingular curves there exist homomorphisms

$$\phi: E(\mathbf{F}_q) o E(\mathbf{F}_{q^k})$$
 so that $e(P, \phi(P)) = \tilde{e}(P, P) \neq 1$ for $P \neq \infty$.

Such a map is called a distortion map.

These maps are convenient for protocol design because they give a pairing $\tilde{e}: G_1 \times G_1 \to G_T$ for $\tilde{e}(P,P) = e(P,\phi(P))$.

Examples:

1.
$$y^2 = x^3 + x$$
, for $p \equiv 3 \pmod{4}$.

Distortion map

$$(x,y)\mapsto (-x,\sqrt{-1}y).$$

2.
$$y^2 = x^3 + a_6$$
,
for $p \equiv 2 \pmod{3}$.
Distortion map $(x, y) \mapsto (jx, y)$
with $j^3 = 1, j \neq 1$.

In both cases,

$$\#E(\mathbf{F}_p)=p+1.$$

 $p=1000003\equiv 3\ ext{mod}\ 4\ ext{and}$ $y^2=x^3-x\ ext{over}\ extbf{F}_p.$

Has 1000004 = p + 1 points.

P = (101384, 614510) is a point of order 500002.

nP = (670366, 740819).

Construct \mathbf{F}_{p^2} as $\mathbf{F}_{p}(i)$. $\phi(P) = (898619, 614510i)$.

Invoke computer algebra and compute

 $e(P, \phi(P)) = 387265 + 276048i;$

 $e(Q, \phi(P)) = 609466 + 807033i.$

Solve DLP in $\mathbf{F}_p(i)$

to get n = 78654.

(Btw. this is the clock).

Summary of pairings

Menezes, Okamoto, and Vanstone for E supersingular:

For p = 2 have $k \le 4$.

For p = 3 we $k \le 6$

Over \mathbf{F}_p , $p \geq 5$ have $k \leq 2$.

These bounds are attained.

Not only supersingular curves:

MNT curves are non-supersingular curves with small k.

Other examples constructed for pairing-based cryptography — but small k unlikely to occur for random curve.

Index calculus in prime fields

Index calculus is a method to compute discrete logarithms. Works in many situations but depends on group (not generic attack)

p prime, elements of \mathbf{F}_p represented by numbers in $\{0, 1, \dots, p-1\}$; g generator of multiplicative group.

If $h \in \mathbf{F}_p$ factors as $h = h_1 \cdot h_2 \cdots h_n$ then $h = g^{a_1} \cdot g^{a_2} \cdots g^{a_n}$ $= g^{a_1 + a_2 + \cdots + a_n}$, with $h_i = g^{a_i}$.

Knowledge of the a_i , i.e., of the discrete logarithms of h_i to base g, gives knowledge of the discrete logarithm of h to base g.

If h factors appropriately . . .

If h factors appropriately?!

Ensure by finding h' with known DL s.t. $h \cdot h'$ factors over the h_i . So far: instead of finding one DL we have to find many DLs and they have to fit to h and we have to find a suitable h' and factor numbers.

Two different settings – the integers modulo p and the integers themselves. Factorization takes place over \mathbf{Z} , while the left hand side is reduced modulo p.

Select $F = \{g_1, g_2, ..., g_m\}$ so that h < p is likely to factor into powers of g_i .

F called factor base.

An equation of form

$$ar{h}=g_1^{n_1}\cdot g_2^{n_2}\cdots g_m^{n_m}$$
 ,

with $n_i \in \mathbf{Z}$ is called a *relation*.

Choose F as small primes, e.g.

$$g_1 = 2$$
, $g_2 = 3$, $g_3 = 5$, . . .

Generate many relations with known DL of $\tilde{h}_j = g^{kj}$ $\tilde{h}_j = g^{k_j} = g_1^{n_{j1}} \cdot g_2^{n_{j2}} \cdots g_m^{n_{jm}}$ (This means discarding g^{kj} if it does not factor .)

Matrix of relations

For each relation

$$\widetilde{h}_j=g^{k_j}=g_1^{n_{j1}}\cdot g_2^{n_{j2}}\cdots g_m^{n_{jm}}$$

enter the row

$$(n_{j1}n_{j2}\dots n_{jm}|k_j)$$

into a matrix M =

$$egin{pmatrix} n_{11} & \dots & n_{1i} & \dots & n_{m1} & k_1 \ n_{21} & \dots & n_{2i} & \dots & n_{m2} & k_2 \ dots & dots & dots & dots & dots \ n_{l1} & \dots & n_{li} & \dots & n_{lm} & k_l \end{pmatrix}$$

The i-th column corresponds to the unknown a_i so that $g_i=g^{a_i}$.

Computing DLPs

Use linear algebra to solve for a_i s. This step does not depend on the target DLP $h=g^a$.

A single relation $h \cdot g^k$ factoring over F gives the DLP.

Running time (with much more clever way of finding relations) $O(\exp(c \log p^{1/3} \log(\log p)^{2/3}))$ for some c.

This is subexponential in $\log p!$ Notation: write this complexity as L(1/3, c).

Similar for \mathbf{F}_{2n}

Elements of \mathbf{F}_{2^n} are represented as $\mathbf{F}_{2^n} = \{\sum_{i=0}^{n-1} c_i x^i | c_i \in \mathbf{F}_2, 0 \leq i < n \}$, i.e. polynomials of degree less than n modulo an irreducible polynomial $f(x) \in \mathbf{F}_2[x]$.

Factoring into powers of small primes is replaced by factoring into irreducible polynomials of small degree.

Same approach works for all finite fields \mathbf{F}_{p^n} in $O(\exp(c' \log p^{1/3} \log(\log p)^{2/3}))$. Smaller p have smaller constant c.

Same approach works for all finite fields \mathbf{F}_{p^n} in $O(\exp(c' \log p^{1/3} \log(\log p)^{2/3}))$. Smaller p have smaller constant c.

If DLP in $\mathbf{F}_{\sigma^k}^*$ is weak can break pairing system in target group $G_T \subset \mathbf{F}_{\sigma^k}^*$. Big computation in 2011: Hayashi, Shinohara, Shimoyama, and Takagi solved DLP in $\mathbf{F}_{36.97}^*$ This field was considered as target field for pairings over supersingular curves E/\mathbf{F}_{397} with embedding degree 6.

More recent development

Flurry of papers with breathtaking improvements and new records by Joux and by Göloglu, Granger, McGuire, and Zumbrägel (GGMZ) Joux 2012-12-24, 1175-bit and 1425-bit Joux 2013-02-11 \mathbf{F}_{21778}^* GGMZ 2013-02-19 **F***₂₁₉₇₁ Joux 2013-03-22 \mathbf{F}_{24080}^* GGMZ 2013-04-11 **F***₂₆₁₂₀ Joux 2013-05-21 \mathbf{F}_{26168}^* Do not use supersingular curves for pairings!

Most recent

Barbulescu, Gaudry, Joux, Thomé 2013-06-18

Quasi-polynomial time algorithm to compute DLs in $\mathbf{F}_{p^n}^*$.

Strongly depends on p, so only efficient for small p.

Best speeds for composite n.

Also interesting Joux 2013-02-20 L(1/4 + o(1), c)

Summary of other attacks

Definition of embedding degree does not cover all attacks.

For \mathbf{F}_{p^n} watch out that pairing can map to $\mathbf{F}_{p^{km}}$ with m < n. Watch out for this when selecting curves over \mathbf{F}_{p^n} !

Anomalous curves:

If E/\mathbf{F}_p has $\#E(\mathbf{F}_p)=p$ then transfer $E(\mathbf{F}_p)$ to $(\mathbf{F}_p,+)$. Very easy DLP.

Not a problem for Koblitz curves, attack applies to order-p subgroup.

Weil descent:

Maps DLP in E over \mathbf{F}_{p^mn} to DLP on variety J over \mathbf{F}_{p^n} .

J has larger dimension; elements represented as polynomials of low degree. \Rightarrow index calculus.

This is efficient if dimension of *J* is not too big.

Particularly nice to compute with J if it is the Jacobian of a hyperelliptic curve C.

For genus g get complexity $\tilde{O}(p^{2-\frac{2}{g+1}})$ with the factor base described before, since polynomials have degree $\leq g$.