
DLP-II

and curves with endomorphisms

Tanja Lange

Technische Universiteit Eindhoven

Additive walks

Generic rho method

f(Wi) = a(Wi)P + b(Wi)Q

requires two scalar multiplications

for each iteration.

Could replace by double-scalar

multiplication; could further

merge the 2-scalar multiplications

across several parallel iterations.

Additive walks

Generic rho method

f(Wi) = a(Wi)P + b(Wi)Q

requires two scalar multiplications

for each iteration.

Could replace by double-scalar

multiplication; could further

merge the 2-scalar multiplications

across several parallel iterations.

More efficient: use additive walk:

Start with W0 = a0P and put

f(Wi) = Wi + cjP + djQ

where j = h(Wi).

Pollard’s initial proposal:

Use x(Wi) mod 3 as h

and update:

Wi+1 =8<
:
Wi + P for x(Wi) mod 3 = 0
2Wi for x(Wi) mod 3 = 1
Wi +Q for x(Wi) mod 3 = 2

Easy to update ai and bi.

(ai+1; bi+1) =8<
:

(ai + 1; bi) for x(Wi) mod 3 = 0
(2ai; 2bi) for x(Wi) mod 3 = 1
(ai; bi + 1) for x(Wi) mod 3 = 2

Additive walk requires only one

addition per iteration.

h maps from hP i to

f0; 1; : : : ; r � 1g, and

Rj = cjP + djQ are

precomputed for each

j 2 f0; 1; : : : ; r � 1g.

Easy coefficient update:

Wi = aiP + biQ,

where ai and bi are defined

recursively as follows:

ai+1 = ai + ch(Wi)
and

bi+1 = bi + dh(Wi)
.

Additive walks have

disadvantages:

The walks are noticeably

nonrandom; this means they need

more iterations than the generic

rho method to find a collision.

This effect disappears as r grows,

but but then the precomputed

table R0; : : : ; Rr�1 does not fit

into fast memory. This depends

on the platform, e.g. trouble for

GPUs.

More trouble with adding walks

later.

Randomness of adding walks

Let h(W) = i with probability pi.

Fix a point T , and let W and

W 0 be two independent uniform

random points.

Let W 6= W 0 both map to T .

This event occurs if there are

i 6= j such that simultaneously:

T = W + Ri = W 0 + Rj ;

h(W) = i; h(W 0) = j.

These conditions have probability

1=`2, pi, and pj respectively.

Summing over all (i; j)

gives the overall probability�P
i 6=j pipj

�
=`2 =�P

i;j pipj �
P

i p
2
i

�
=`2 =�

1 �Pi p
2
i

�
=`2.

This means that the probability

of an immediate collision from W

and W 0 is
�
1 �Pi p

2
i

�
=`, where

we added over the ` choices of T .

In the simple case that all the pi
are 1=r, the difference from the

optimal
p
�`=2 iterations is a

factor of

1=
p

1 � 1=r � 1 + 1=(2r).

Various heuristics leading to

standard
p

1 � 1=r formula

in different ways:

1981 Brent–Pollard;

2001 Teske;

2009 ECC2K-130 paper,

eprint 2009/541.

Various heuristics leading to

standard
p

1 � 1=r formula

in different ways:

1981 Brent–Pollard;

2001 Teske;

2009 ECC2K-130 paper,

eprint 2009/541.

2010–2012 Bernstein–Lange:

Standard formula is wrong!

There is a further slowdown

from higher-order anti-collisions:

e.g. W +Ri +Rk 6= W 0 +Rj +Rl

if Ri + Rk = Rj + Rl.

For details see

“Two grumpy giants and a baby”.

Eliminating storage

Usual description: each walk

keeps track of ai and bi
with Wi = aiP + biQ.

This requires each client to

implement arithmetic modulo `

or at least keep track of

how often each Rj is used.

For distinguished points

these values are

transmitted to server (bandwidth)

which stores them as

e.g. (Wi; ai; bi) (space).

2009 ECC2K-130 paper:

Remember where you started.

If Wi = Wj is the collision of

distinguished points,

can recompute these walks

with ai; bi; aj , and bj ;

walk is deterministic!

Server stores 245 distinguished

points; only needs to know

coefficients for 2 of them.

Our setup: Each walk remembers

seed; server stores distinguished

point and seed.

Saves time, bandwidth, space.

Negation and rho

W = (x; y) and �W = (x;�y)

have same x-coordinate.

Search for x-coordinate collision.

Search space for collisions is

only d`=2e; this gives factor
p

2

speedup : : : if f(Wi) = f(�Wi).

To ensure f(Wi) = f(�Wi):

Define j = h(jWij) and

f(Wi) = jWij + cjP + djQ.

Define jWij as, e.g., lexicographic

minimum of Wi;�Wi.

This negation speedup

is textbook material.

Problem: this walk can

run into fruitless cycles!

Example: If jWi+1j = �Wi+1

and h(jWi+1j) = j = h(jWij)
then Wi+2 = f(Wi+1) =

�Wi+1 + cjP + djQ =

�(jWij+cjP+djQ)+cjP+djQ =

�jWij so jWi+2j = jWij
so Wi+3 = Wi+1

so Wi+4 = Wi+2 etc.

If h maps to r different values

then expect this example to occur

with probability 1=(2r)

at each step.

Known issue, not quite textbook.

1999 Gallant–Lambert–Vanstone

“Improving the parallelized Pollard

lambda search on anomalous

binary curves”:

“For example, the cycle could be

traversed, the lexicographically

least label identified, and a

modified iteration taking us out

of the cycle could be applied at

the point or equivalence class

corresponding to this identified

label.”

1999 Duursma–Gaudry–Morain

“Speeding up the discrete log

computation on curves with

automorphisms”:

“If the cycle is R1 7! R2 7! � � � 7!
Rt, we want to get out of it in a

symmetric way : : : Our version

is to sort the points Ri to obtain

S1; S2; : : : ; St and start again,

say, from R = �t
i=1[ii + 1]Si.

Anything that breaks linearity

would be convenient.”

e.g. Sort 2-cycle,

obtaining S1 � S2.

Duursma–Gaudry–Morain “start

again, say, from” 2S1 + 5S2.

Gallant–Lambert–Vanstone

keep only S1 and

apply a “modified iteration”

but are vague about

the choice of modified iteration.

Maybe 2S1?

2009 Bos–Kaihara–Kleinjung–

Lenstra–Montgomery use 2S1.

Current ECDL record:

2009.07 Bos–Kaihara–Kleinjung–

Lenstra–Montgomery

Break DLP on

standard curve over Fp
where p = (2128 � 3)=(11 � 6949).

Current ECDL record:

2009.07 Bos–Kaihara–Kleinjung–

Lenstra–Montgomery

Break DLP on

standard curve over Fp
where p = (2128 � 3)=(11 � 6949).

Did not use negation map to

obtain
p

2 speedup.

Current ECDL record:

2009.07 Bos–Kaihara–Kleinjung–

Lenstra–Montgomery

Break DLP on

standard curve over Fp
where p = (2128 � 3)=(11 � 6949).

Did not use negation map to

obtain
p

2 speedup.

Some controversy about this.

Justification after the fact

2010.07 Bos–Kleinjung–Lenstra

“On the use of the negation map

in the Pollard rho method”

Bernstein, Lange, Schwabe

(PKC 2011):

Our software solves

random ECDL on the same curve

(with no precomputation)

in 35.6 PS3 years on average.

For comparison:

Bos–Kaihara–Kleinjung–Lenstra–

Montgomery software

uses 65 PS3 years on average.

Bernstein, Lange, Schwabe

(PKC 2011):

Our software solves

random ECDL on the same curve

(with no precomputation)

in 35.6 PS3 years on average.

For comparison:

Bos–Kaihara–Kleinjung–Lenstra–

Montgomery software

uses 65 PS3 years on average.

First big speedup:

We use the negation map.

Second speedup: Fast arithmetic.

Bos–Kleinjung–Lenstra say

that “on average more elliptic

curve group operations are

required per step of each walk.

This is unavoidable” etc.

Specifically: If the precomputed

additive-walk table has r points,

need 1 extra doubling to escape

a cycle after � 2r additions.

And more: “cycle reduction” etc.

Bos–Kleinjung–Lenstra say

that the benefit of large r

is “wiped out by

cache inefficiencies.”

Eliminating fruitless cycles

Issue of fruitless cycles is known

and several fixes are proposed.

See appendix of full version ePrint

2011/003 for even more details

and historical comments.

Summary: most of them

got it wrong.

Eliminating fruitless cycles

Issue of fruitless cycles is known

and several fixes are proposed.

See appendix of full version ePrint

2011/003 for even more details

and historical comments.

Summary: most of them

got it wrong.

So what to do?

Choose a big r, e.g. r = 2048.

1=(2r) = 1=4096 small;

cycles infrequent.

Define j(x; y)j to mean

(x; y) for y 2 f0; 2; 4; : : : ; p� 1g
or

(x;�y) for y 2 f1; 3; 5; : : : ; p� 2g.

Precompute points

R0; R1; : : : ; Rr�1 as known

random multiples of P .

Define j(x; y)j to mean

(x; y) for y 2 f0; 2; 4; : : : ; p� 1g
or

(x;�y) for y 2 f1; 3; 5; : : : ; p� 2g.

Precompute points

R0; R1; : : : ; Rr�1 as known

random multiples of P . Here you

can do full scalar multiplication in

inversion-free coordinates!

Start each walk at a point

W0 = jb0Qj,
b0 is chosen randomly.

Compute W1;W2; : : : as

Wi+1 = jWi + Rh(Wi)
j.

Occasionally , every w iterations,

check for fruitless cycles

of length 2.

For those cases change the

definition of Wi as follows:

Compute Wi�1 and check

whether Wi�1 = Wi�3.

If Wi�1 6= Wi�3, put Wi = Wi�1.

If Wi�1 = Wi�3, put

Wi = j2 minfWi�1;Wi�2gj,
where min means

lexicographic minimum.

Doubling the point

makes it escape the cycle.

Cycles of length 4, 6, or 12

occur far less frequently.

Cycles of length 4, or 6

are detected when checking

for cycles of length 12;

so skip individual ones.

Same way of escape:

define Wi =

j2minfWi�1;Wi�2;Wi�3;Wi�4;

Wi�5;Wi�6;Wi�7;Wi�8;

Wi�9;Wi�10;Wi�11;Wi�12gj
if trapped

and Wi = Wi�1 otherwise.

Do not store all these points!

When checking for cycle,

store only potential entry point

Wi�13 (one coordinate, for

comparison) and the

smallest point encountered since

(to escape).

For large DLP

look for larger cycles;

in general, look for

fruitless cycles of even lengths

up to � (log `)=(log r).

How to choose w?

Fruitless cycles of length 2 appear

with probability � 1=(2r).

These cycles persist

until detected.

After w iterations,

probability of cycle � w=(2r),

wastes � w=2 iterations

(on average) if it does appear.

Do not choose w

as small as possible!

If a cycle has not appeared then

the check wastes an iteration.

The overall loss is approximately

1 +w2=(4r) iterations out of w.

To minimize the quotient

1=w +w=(4r) we take w � 2
p
r.

Cycles of length 2c appear with

probability � 1=rc,

optimal checking frequency is

� 1=rc=2.

Loss rapidly disappears

as c increases.

Can use lcm of cycle lengths

to check.

Concrete example: 112-bit DLP

Use r = 2048. Check for 2-cycles

every 48 iterations.

Check for larger cycles much less

frequently.

Unify the checks for 4-cycles and

6-cycles into a check for 12-cycles

every 49152 iterations.

Choice of r has big impact!

r = 512 calls for checking

for 2-cycles every 24 iterations.

In general, negation overhead

� doubles when table size

is reduced by factor of 4.

Why are we confident this works?

We only have one PlayStation 3,

not the 200 that Lausanne has,

and we want to wait for 36 years

to show that we actually compute

the right thing.

Why are we confident this works?

We only have one PlayStation 3,

not the 200 that Lausanne has,

and we want to wait for 36 years

to show that we actually compute

the right thing.

Can produced scaled versions:

Use same prime field

(so that we can compare the field

arithmetic)

and same curve shape

y2 = x3 � 3x+ b

but vary b to get curves with

small subgroups.

This produces other curves, and

many of those have smaller order

subgroups.

Specify DLP in subgroup of size

250, or 255, or 260 and show that

the actual running time matches

the expectation.

And that DLP is correct.

We used same property for a

point to be distinguished as in

big attack; probability is 2�20.

Need to watch out that walks

do not run into rho-type cycles

(artefact of small group order).

We aborted overlong walks.

More elliptic curves

Can use any field k.

Can use any nonsingular curve

y2 + a1xy + a3y =

x3 + a2x
2 + a4x+ a6.

“Nonsingular”: no (x; y) 2 k� k
simultaneously satisfies

y2 + a1xy + a3y = x3 + a2x
2 +

a4x + a6 and 2y + a1x + a3 = 0

and a1y = 3x2 + 2a2x+ a4.

Easy to check nonsingularity.

Almost all curves are nonsingular

when k is large.

An example over R

Consider all pairs

of real numbers x; y

such that y2 � 5xy = x3 � 7.

The “points on the elliptic curve

y2 � 5xy = x3 � 7 over R”

are those pairs and

one additional point, 1.

i.e. The set of points is

f(x; y) 2 R� R :

y2 � 5xy = x3 � 7g [f1g.

(R is the set of real numbers.)

Graph of this set of points:

� oo (6; 35:83 : : :)

y

x

OO

//

II

Don’t forget 1.

Visualize 1 as top of y axis.

An elliptic curve over F16

Consider the non-prime field

(Z=2)[t]=(t4 � t� 1) = f
0t3 + 0t2 + 0t1 + 0t0,

0t3 + 0t2 + 0t1 + 1t0,

0t3 + 0t2 + 1t1 + 0t0,

0t3 + 0t2 + 1t1 + 1t0,

0t3 + 1t2 + 0t1 + 0t0,
...

1t3 + 1t2 + 1t1 + 1t0g
of size 24 = 16.

Graph of the “set of points on the

elliptic curve y2 � 5xy = x3 � 7

over (Z=2)[t]=(t4 � t� 1)”:

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

Line y = tx+ 1:

�
�
��
��
��
��
��
��
��

��
�
�
��
��
��
��
��
��

��
��
�
�
��
��
��
��
��

��
��
��
�
�
��
��
��
��

��
��
��
��
�
�
��
��
��

��
��
��
��
��
�
�
��
��

��
��
��
��
��
��
�
�
��

��
��
��
��
��
��
��
�
�

��

�
��
��
��
��
��
��
�

�
��
��
��
��
��
��
��
�

��
��
��

�
��
��
��
��
�

��
��

�
��
��
��
��
��
�

��
��
��
��
��

�
��
��
�

��
��
��
��

�
��
��
��
�

��
��
��
��
��
��
��

�
�

��
��
��
��
��
��

�
��
�

P +Q = �R:

P

Q

R

�R

��

��
��
��
��
��
��
��

��
��

��
��
��
��
��
��

��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��

��
��
��
��
��
��

��
��

��
��
��
��
��
��
��

��

��
��
��
��
��
��
��
��

��
�

��
��
��
��
��
��
�

�

��
��
��
��
��
��
��
�

��
��
��
�

��
��
��
��
�

��
��
�

��
��
��
��
��
�

��
��
��
��
��
�

��
��
�

��
��
��
��
�

��
��
��
�

��
��
��
��
��
��
��
�

�

��
��
��
��
��
��
�

��
�

General addition law

E : y2 + (a1x+ a3)| {z }
h(x)

y =

x3 + a2x
2 + a4x+ a6| {z }
f(x)

; h; f 2 Fq[x]:

�(xP ; yP) = (xP ;�yP � h(xP)).

(xP ; yP) + (xR; yR) = (x3; y3) =

= (�2 + a1�� a2 � xP � xR;
�(xP �x3)� yP �a1x3 �a3);

where � =(
(yR � yP)=(xR � xP) xP 6= xR;
3x2
P

+2a2xP+a4�a1yP
2yP+a1xP+a3

P = R 6= �R

Koblitz curves

Let q = pn for small p and big n.

y2 + h(x)y = f(x)

over Fq is called a Koblitz curve

if it is defined over Fp, i.e., if

h(x); f(x) 2 Fp[x].

p need not be prime; p = 4 is also

small.

Typical case: p = 2. This is the

case proposed by Koblitz; also

called anomalous binary curves.

Take E : y2 + h(x)y = f(x),

with h(x); f(x) 2 Fp[x] as curve

over Fpn

and let P = (xP ; yP) 2 E(Fpn).

Then �(P) = (x
p
P ; y

p
P) is also a

point in Ea(Fpn):

Proof uses that Frobenius

automorphism is linear

(a+ b)p = ap + bp

and that cp = c for c 2 Fp.

The map � is called the Frobenius

endomorphism of E.

Properties of Koblitz curves

Let #E(Fp) = p+ 1 � t and let

T 2 � tT + p = (T � �)(T � �̄)

then

#E(Fpn) = (1 � �n)(1 � �̄n).

Easy computation of number of

points – but shows restriction:

if mjn then

#E(Fpm)j#E(Fpn),

so require prime n to have large

prime order subgroup.

�(T) = T 2 � tT + p

called characteristic polynomial of

the Frobenius endomorphism.

Each P 2 E(Fpn) satisfies

�2(P) � t�(P) + pP = 1.

Each P 2 E(Fpn) satisfies

�2(P) � t�(P) + pP = 1.

This means

pP = t�(P) � �2(P)

for t 2 [�2
p
p; 2

p
p].

Each P 2 E(Fpn) satisfies

�2(P) � t�(P) + pP = 1.

This means

pP = t�(P) � �2(P)

for t 2 [�2
p
p; 2

p
p].

Expand integer k in base �

k =
P
ki�

i, with

ki 2 [�b(p� 1)=2c; d(p� 1)=2e]
and compute

kP =
P
ki�

i(P).

Each P 2 E(Fpn) satisfies

�2(P) � t�(P) + pP = 1.

This means

pP = t�(P) � �2(P)

for t 2 [�2
p
p; 2

p
p].

Expand integer k in base �

k =
P
ki�

i, with

ki 2 [�b(p� 1)=2c; d(p� 1)=2e]
and compute

kP =
P
ki�

i(P).

Density of expansion similar to

base p expansion, same set of

coefficients – but computing �(P)

is much cheaper than pP .

Case p = 2: T 2 + (�1)aT + 2 = 0

DBL costs 1I + 2M + 1S.

� costs 2S.

Few tricks (Meier-Staffelbach,

Solinas)

kP =
Pn

i=0 ki�
i(P),

ki 2 f0; 1g for P 2 E(F2n)

has average density 1=2.

kP =
Pn+1

i=0 ki�
i(P),

ki 2 f�1; 0; 1g for P 2 E(F2n)

has average density 1=3.

Similar to binary and NAF

expansion; generalizations of

other methods exist.

General case:

Frobenius endomorphism makes

scalar multiplications faster.

Optimal extension fields –

medium size p and n –

get some benefit, too.

OEF assumes p fits word size.

Most extreme cases:

Prime order subgroup � pn�1.

n = 3 or 5: trace-zero varieties

n = 2: not worthwhile.

Attacks get somewhat faster –

but not devastating, except for

some bad choices.

Other curves with endomorphisms

Gallant-Lambert-Vanstone:

When E has equation

y2 = x3 + ax over Fp
with p � 1 (mod 4).

�:E ! E; (x; y) 7! (�x;p�1y)

Note that �2 + 1 = 0.

When E has equation

y2 = x3 + b over Fp
with p � 1 (mod 3).

Let �3 = (1 �p�3)=2.

�:E ! E; (x; y) 7! (�3x; y)

Note that �2 + �+ 1 = 0.

Bigger example of GLV method:

When E has equation

y2 = x3 � 3x2=4� 2x� 1 over Fp
with p � 1; 2 or 4 (mod 7).

Denote � = (1 +
p�7)=2 and

a = (� � 3)=4.

�:E ! E;

(x; y) 7!
�

x2��
�2(x�a)

;
y(x2�2ax+�)

�3(x�a)2

�
Note that �2 � �+ 2 = 0.

Computation of Q = kP

Gallant-Lambert-Vanstone

method, where endomorphism � is

different from the Frobenius �.

Write

kP = k(0)P + k(1)�(P),

max
n
jk(0)j; jk(1)j

o
= O(

p
`)

Key points:

Each k(i) is half as long as

k 2 [1; `].

Computing �(P) is easy.

Use Joint Sparse Form to

quickly evaluate double scalar

multiplication.

Combination

GLV curves are rare.

Galbraith-Lin-Scott (GLS)

use Frobenius � with n = 2

– and avoids having big subgroup!

Let E be an elliptic curve defined

over Fp2 .

Quadratic twist of

E : y2 = x3 + a4x+ a6 is

Ẽ : y2 = x3 + a4=c
2x+ a6=c

3,

c 2 Fp2 and c 6= over Fp2 .

Start with Ẽ over Fp.

(Aha, the subfield idea comes in!)

and pick nonsquare c 2 Fp2 .

Ẽ : y2 = x3+b4x+b6; b4; b6 2 Fp.

Gets E over Fp2 :

E : y2 = x3 + b4c
2x+ b6c

3,

b4c
2; b6c

3 2 Fp2 .

No reason that E cannot have

(almost) prime order.

Yet E closely related to curve

with Frobenius endomorphism.

Define : E ! E

as map from E to Ẽ, followed by

p-th power Frobenius on Ẽ,

followed by map back to E.

 satisfies 2 + 1 = 0 on points

of order � 2p on E. Can use all

GLV tricks; many more curves.

Endomorphisms speed up DLP

In general, an efficiently

computable endomorphism � of

order r speeds up Pollard rho

method by factor
p
r.

Can define walk on classes by

inspecting all 2r points

�P;��(P); : : : ;��r�1(P)

to choose unique representative

for class and then doing an

adding walk.

So y2 = x3 + ax and y2 = x3 + b

come at a security loss of
p

2.

GLS curves also have

endomorphisms of order 2.

As in the case of GLV curves, loss

of factor
p

2 is fully made up for

by the faster arithmetic.

Security of DLP might not be

sufficient for your protocol; some

are based on hardness of static

Diffie-Hellman problem.

