
Modeling the

Security of Cryptography,

Part 2:

Public-Key Cryptography

Tanja Lange

Technische Universiteit Eindhoven

Joint work with:

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

eprint.iacr.org/2012/318,

eprint.iacr.org/2012/458

http://eprint.iacr.org/2012/318
http://eprint.iacr.org/2012/458


Similar public-key story.

Define t-insecurity of RSA-1024

as maximum success probability

of all attacks that cost � t.



Similar public-key story.

Define t-insecurity of RSA-1024

as maximum success probability

of all attacks that cost � t.

Prove, e.g., that bounds

on insecurity of RSA-1024

imply similar bounds

on insecurity of RSA-1024-PSS.



Similar public-key story.

Define t-insecurity of RSA-1024

as maximum success probability

of all attacks that cost � t.

Prove, e.g., that bounds

on insecurity of RSA-1024

imply similar bounds

on insecurity of RSA-1024-PSS.

Conjecture bounds

on insecurity of RSA-1024:

e.g., “it takes time

Ce1:923(logN)1=3(log logN)2=3

to invert RSA”.



DL-based systems

E.g. forward security setting in

TLS uses DH-key exchange on

elliptic curve NIST P-256.

Break by solving ECDL in

group of prime order ` � 2256.

ECDL input: points P;Q,

where P is a standard generator.

ECDL output: logP Q.



DL-based systems

E.g. forward security setting in

TLS uses DH-key exchange on

elliptic curve NIST P-256.

Break by solving ECDL in

group of prime order ` � 2256.

ECDL input: points P;Q,

where P is a standard generator.

ECDL output: logP Q.

Standard conjecture:

For each p 2 [0; 1],

each P-256 ECDL algorithm

with success probability �p
takes “time” �2128p1=2.



The rho method

Simplified, non-parallel rho:

Make a pseudo-random walk

R0; R1; R2; : : : in the group hP i,
where current point determines

the next point: Ri+1 = f(Ri).

Birthday paradox:

Randomly choosing from `

elements picks one element twice

after about
p
�`=2 draws.

The walk now enters a cycle.

Cycle-finding algorithm

(e.g., Floyd) quickly detects this.





























































Goal: Compute logP Q.

Assume that for each i

we know xi; yi 2 Z=`Z

so that Ri = yiP + xiQ.

Then Ri = Rj means that

yiP + xiQ = yjP + xjQ

so (yi � yj)P = (xj � xi)Q.

If xi 6= xj the DLP is solved:

logP Q = (yj � yi)=(xi � xj).



Goal: Compute logP Q.

Assume that for each i

we know xi; yi 2 Z=`Z

so that Ri = yiP + xiQ.

Then Ri = Rj means that

yiP + xiQ = yjP + xjQ

so (yi � yj)P = (xj � xi)Q.

If xi 6= xj the DLP is solved:

logP Q = (yj � yi)=(xi � xj).

e.g. “base-(P;Q) r-adding walk”:

precompute S1; S2; : : : ; Sr

as random combinations aP + bQ;

define f(R) = R + SH(R)

where H hashes to f1; 2; : : : ; rg.



Ample experimental evidence

that base-(P;Q) r-adding walk

resembles a random walk:

solves DLP in aboutp
�`=2 steps on average.



Ample experimental evidence

that base-(P;Q) r-adding walk

resembles a random walk:

solves DLP in aboutp
�`=2 steps on average.

2001 Teske:

need big r; e.g., r = 20.

Clear slowdown for small r;

Blackburn and Murphy sayp
�`=2

�p
1� 1=r.



Ample experimental evidence

that base-(P;Q) r-adding walk

resembles a random walk:

solves DLP in aboutp
�`=2 steps on average.

2001 Teske:

need big r; e.g., r = 20.

Clear slowdown for small r;

Blackburn and Murphy sayp
�`=2

�p
1� 1=r.

2010 Bernstein–Lange (ANTS

2012): actually more complicated;

higher-degree anticollisions.



Parallel rho

1994 van Oorschot–Wiener:

Declare some subset of hP i to be

the set of distinguished points:

e.g., all R 2 hP i where last 20

bits of representation of R are 0.

Perform, in parallel, walks for

different starting points Q+yP

but same update function f .

Terminate each walk

once it hits a distinguished point.

Report point to central server.

Server receives, stores, and sorts

all distinguished points.



Two colliding walks will reach

the same distinguished point.

Server sees collision, finds DL.



State of the art

Can break DLP in group of order

` in
p
�`=2 group operations.

For elliptic curves can gain factor

of
p

2 by using negation map.

Solving DLP on NIST P-256

takes �2128 group operations.



State of the art

Can break DLP in group of order

` in
p
�`=2 group operations.

For elliptic curves can gain factor

of
p

2 by using negation map.

Solving DLP on NIST P-256

takes �2128 group operations.

Let’s see what free

precomputation does to this : : :



Cube-root ECDL algorithms

Assuming plausible heuristics,

overwhelmingly verified by

computer experiment:

There exists a P-256 ECDL

algorithm that takes “time” �285

and has success probability �1.

“Time” includes algorithm length.

Inescapable conclusion: The

standard conjectures (regarding

P-256 ECDL hardness, P-256

ECDSA security, etc.) are false.



Should P-256 ECDSA users

be worried about this

P-256 ECDL algorithm A?

No!

We have a program B

that prints out A,

but B takes “time” �2170.

We conjecture that

nobody will ever print out A.



Should P-256 ECDSA users

be worried about this

P-256 ECDL algorithm A?

No!

We have a program B

that prints out A,

but B takes “time” �2170.

We conjecture that

nobody will ever print out A.

But A exists, and the standard

conjecture doesn’t see the 2170.



Cryptanalysts do see the 2170.

Common parlance: We have

a 2170 “precomputation”

(independent of Q) followed by

a 285 “main computation”.

For cryptanalysts: This costs

2170, much worse than 2128.

For the standard security

definitions and conjectures:

The main computation costs 285,

much better than 2128.



What the algorithm does



What the algorithm does

1999 Escott–Sager–Selkirk–

Tsapakidis, also crediting

Silverman–Stapleton:

Computing (e.g.) logP Q1,

logP Q2, logP Q3, logP Q4, and

logP Q5 costs only 2:49� more

than computing logP Q.

The basic idea:

compute logP Q1 with rho;

compute logP Q2 with rho,

reusing distinguished points

produced by Q1; etc.



2001 Kuhn–Struik analysis:

cost Θ(n1=2`1=2)

for n discrete logarithms

in group of order `

if n� `1=4.



2001 Kuhn–Struik analysis:

cost Θ(n1=2`1=2)

for n discrete logarithms

in group of order `

if n� `1=4.

2004 Hitchcock–

Montague–Carter–Dawson:

View computations of

logP Q1; : : : ; logP Qn�1 as

precomputatation for main

computation of logP Qn.

Analyze tradeoffs between

main-computation time and

precomputation time.



2012 Bernstein–Lange:

(1) Adapt to interval of length `

inside much larger group.

(2) Analyze tradeoffs between

main-computation time and

precomputed table size.

(3) Choose table entries

more carefully to reduce

main-computation time.

(4) Also choose iteration

function more carefully.

(5) Reduce space required

for each table entry.

(6) Break `1=4 barrier.



Applications:

(7) Disprove the standard 2128

P-256 security conjectures.

(8) Accelerate trapdoor DL etc.

(9) Accelerate BGN etc.;

this needs (1).

Bonus:

(10) Disprove the standard 2128

AES, DSA-3072, RSA-3072

security conjectures.

Credit to earlier Lee–Cheon–Hong

paper for (2), (6), (8).



Almost standard walk function:

redefine steps Si
to depend on P only (Si = ciP ),

ci chosen uniform random.



Almost standard walk function:

redefine steps Si
to depend on P only (Si = ciP ),

ci chosen uniform random.

Precomputation:

Start some walks at yP

for random choices of y.

Build table of distinct

distinguished points D

along with logP D.



Almost standard walk function:

redefine steps Si
to depend on P only (Si = ciP ),

ci chosen uniform random.

Precomputation:

Start some walks at yP

for random choices of y.

Build table of distinct

distinguished points D

along with logP D.

Main computation:

Starting from Q, walk to

distinguished point Q + yP .

Check for Q + yP in table.



Almost standard walk function:

redefine steps Si
to depend on P only (Si = ciP ),

ci chosen uniform random.

Precomputation:

Start some walks at yP

for random choices of y.

Build table of distinct

distinguished points D

along with logP D.

Main computation:

Starting from Q, walk to

distinguished point Q + yP .

Check for Q + yP in table.

(If this fails, rerandomize Q.)



DSA-3072

Assume that DLP subgroup

is extended to 384 bits

to counter previous attack.



DSA-3072

Assume that DLP subgroup

is extended to 384 bits

to counter previous attack.

The following sketch

is not the state of the art —

but good enough to break

the 2128 assumption.

Let g 2 F�p have order q, h = gk.

Goal: Find k.



Precomputation:

Take y = 2110,

compute logg x
(p�1)=q

for every prime number x � y.



Precomputation:

Take y = 2110,

compute logg x
(p�1)=q

for every prime number x � y.

Main computation:

Try to write h as

quotient h1=h2 in F�p
with h2 2

�
1; 2; 3; : : : ; 21535

	
,

h12
��21535; : : : ; 0; 1; : : : ; 21535

	
,

and gcdfh1; h2g = 1;



Precomputation:

Take y = 2110,

compute logg x
(p�1)=q

for every prime number x � y.

Main computation:

Try to write h as

quotient h1=h2 in F�p
with h2 2

�
1; 2; 3; : : : ; 21535

	
,

h12
��21535; : : : ; 0; 1; : : : ; 21535

	
,

and gcdfh1; h2g = 1;

and then try to factor h1; h2

into primes � y.



Precomputation:

Take y = 2110,

compute logg x
(p�1)=q

for every prime number x � y.

Main computation:

Try to write h as

quotient h1=h2 in F�p
with h2 2

�
1; 2; 3; : : : ; 21535

	
,

h12
��21535; : : : ; 0; 1; : : : ; 21535

	
,

and gcdfh1; h2g = 1;

and then try to factor h1; h2

into primes � y.

If this fails, try again

with hg, hg2, etc.



Analysis

About y= log y�2103:75 primes �y
for a total of 2109:33 bytes

to store all small DLs.

Can write h as h1=h2 with

probability �(6=�2)23071=p.

hi is y-smooth with probability

very close to u�u � 2�53:06

where u = 1535=110.

Overall the attack requires

between 2107:85 and 2108:85

iterations; batch smoothness

detection is fast.



Possible responses



Possible responses

(1) Accept 285 etc. as security;

live with it. Protect the proofs!



Possible responses

(1) Accept 285 etc. as security;

live with it. Protect the proofs!

(2) Switch to NAND metric; or

(3) switch to AT metric.

Breaks most theorems;

still bogus results in NAND.



Possible responses

(1) Accept 285 etc. as security;

live with it. Protect the proofs!

(2) Switch to NAND metric; or

(3) switch to AT metric.

Breaks most theorems;

still bogus results in NAND.

(4) Add effectivity. Include

cost for finding the algorithm.



Possible responses

(1) Accept 285 etc. as security;

live with it. Protect the proofs!

(2) Switch to NAND metric; or

(3) switch to AT metric.

Breaks most theorems;

still bogus results in NAND.

(4) Add effectivity. Include

cost for finding the algorithm.

(5) Add uniformity.

Clearly stops attacks

but breaks most theorems.

Abandons goal of defining

concrete security of AES etc.




