Modeling the Security of Cryptography, Part 2: Public-Key Cryptography

Tanja Lange Technische Universiteit Eindhoven

Joint work with: Daniel J. Bernstein University of Illinois at Chicago & Technische Universiteit Eindhoven

eprint.iacr.org/2012/318,
eprint.iacr.org/2012/458

Similar public-key story.

Define *t*-insecurity of RSA-1024 as maximum success probability of all attacks that  $cost \leq t$ . Similar public-key story.

Define *t*-insecurity of RSA-1024 as maximum success probability of all attacks that  $cost \leq t$ .

Prove, e.g., that bounds on insecurity of RSA-1024 imply similar bounds on insecurity of RSA-1024-PSS. Similar public-key story.

Define *t*-insecurity of RSA-1024 as maximum success probability of all attacks that  $cost \leq t$ .

Prove, e.g., that bounds on insecurity of RSA-1024 imply similar bounds on insecurity of RSA-1024-PSS. Conjecture bounds on insecurity of RSA-1024: e.g., "it takes time  $Ce^{1.923(\log N)^{1/3}(\log \log N)^{2/3}}$ to invert RSA".

## DL-based systems

E.g. forward security setting in TLS uses DH-key exchange on elliptic curve NIST P-256.

Break by solving ECDL in group of prime order  $\ell \approx 2^{256}$ . ECDL input: points P, Q, where P is a standard generator. ECDL output:  $\log_P Q$ .

## DL-based systems

E.g. forward security setting in TLS uses DH-key exchange on elliptic curve NIST P-256.

Break by solving ECDL in group of prime order  $\ell \approx 2^{256}$ . ECDL input: points P, Q, where P is a standard generator. ECDL output:  $\log_P Q$ .

Standard conjecture: For each  $p \in [0, 1]$ , each P-256 ECDL algorithm with success probability  $\geq p$ takes "time"  $\geq 2^{128}p^{1/2}$ .

## <u>The rho method</u>

Simplified, non-parallel rho:

Make a pseudo-random walk  $R_0, R_1, R_2, ...$  in the group  $\langle P \rangle$ , where current point determines the next point:  $R_{i+1} = f(R_i)$ .

Birthday paradox:

Randomly choosing from  $\ell$ elements picks one element twice after about  $\sqrt{\pi\ell/2}$  draws.

The walk now enters a cycle. Cycle-finding algorithm (e.g., Floyd) quickly detects this.


























































Goal: Compute  $\log_P Q$ .

Assume that for each iwe know  $x_i, y_i \in {\sf Z}/\ell{\sf Z}$ so that  $R_i = y_i P + x_i Q$ .

Then  $R_i = R_j$  means that  $y_i P + x_i Q = y_j P + x_j Q$ so  $(y_i - y_j) P = (x_j - x_i) Q$ . If  $x_i \neq x_j$  the DLP is solved:  $\log_P Q = (y_j - y_i)/(x_i - x_j)$ . Goal: Compute  $\log_P Q$ .

Assume that for each iwe know  $x_i, y_i \in {\sf Z}/\ell{\sf Z}$ so that  $R_i = y_i P + x_i Q$ .

Then  $R_i = R_j$  means that  $y_i P + x_i Q = y_j P + x_j Q$ so  $(y_i - y_j) P = (x_j - x_i) Q$ . If  $x_i \neq x_j$  the DLP is solved:  $\log_P Q = (y_j - y_i)/(x_i - x_j)$ .

e.g. "base-(P, Q) r-adding walk": precompute  $S_1, S_2, \ldots, S_r$ as random combinations aP + bQ; define  $f(R) = R + S_{H(R)}$ where H hashes to  $\{1, 2, \ldots, r\}$ . Ample experimental evidence that base-(P, Q) r-adding walk resembles a random walk: solves DLP in about  $\sqrt{\pi\ell/2}$  steps on average. Ample experimental evidence that base-(P, Q) r-adding walk resembles a random walk: solves DLP in about  $\sqrt{\pi\ell/2}$  steps on average.

2001 Teske: need big r; e.g., r = 20. Clear slowdown for small r; Blackburn and Murphy say  $\sqrt{\pi \ell/2}/\sqrt{1-1/r}$ . Ample experimental evidence that base-(P, Q) r-adding walk resembles a random walk: solves DLP in about  $\sqrt{\pi\ell/2}$  steps on average. 2001 Teske:

need big r; e.g., r = 20.

Clear slowdown for small r;

Blackburn and Murphy say

 $\sqrt{\pi\ell/2}/\sqrt{1-1/r}.$ 

2010 Bernstein–Lange (ANTS 2012): actually more complicated; higher-degree anticollisions.

#### Parallel rho

## 1994 van Oorschot-Wiener:

Declare some subset of  $\langle P \rangle$  to be the set of *distinguished points*: e.g., all  $R \in \langle P \rangle$  where last 20 bits of representation of R are 0.

Perform, in parallel, walks for different starting points Q+yP but same update function f.

Terminate each walk once it hits a distinguished point. Report point to central server. Server receives, stores, and sorts all distinguished points.



Two colliding walks will reach the same distinguished point. Server sees collision, finds DL.

#### State of the art

Can break DLP in group of order  $\ell$  in  $\sqrt{\pi\ell/2}$  group operations.

For elliptic curves can gain factor of  $\sqrt{2}$  by using negation map.

Solving DLP on NIST P-256 takes  $\approx 2^{128}$  group operations.

#### State of the art

Can break DLP in group of order  $\ell$  in  $\sqrt{\pi\ell/2}$  group operations.

For elliptic curves can gain factor of  $\sqrt{2}$  by using negation map.

Solving DLP on NIST P-256 takes  $\approx 2^{128}$  group operations.

Let's see what free precomputation does to this ...

#### Cube-root ECDL algorithms

Assuming plausible heuristics, overwhelmingly verified by computer experiment:

There exists a P-256 ECDL algorithm that takes "time"  $\approx 2^{85}$  and has success probability  $\approx 1$ .

"Time" includes algorithm length.

Inescapable conclusion: **The standard conjectures** (regarding P-256 ECDL hardness, P-256 ECDSA security, etc.) **are false.**  Should P-256 ECDSA users be worried about this P-256 ECDL algorithm *A*? No!

We have a program Bthat prints out A, but B takes "time"  $\approx 2^{170}$ . We conjecture that

nobody will ever print out A.

Should P-256 ECDSA users be worried about this P-256 ECDL algorithm *A*? No!

We have a program B that prints out A, but B takes "time"  $\approx 2^{170}$ .

We conjecture that nobody will ever print out A.

But A exists, and the standard conjecture doesn't see the  $2^{170}$ .

Cryptanalysts do see the  $2^{170}$ .

Common parlance: We have a  $2^{170}$  "precomputation" (independent of Q) followed by a  $2^{85}$  "main computation".

For cryptanalysts: This costs  $2^{170}$ , much worse than  $2^{128}$ .

For the standard security definitions and conjectures: The main computation costs 2<sup>85</sup>, much better than 2<sup>128</sup>.

#### What the algorithm does

#### What the algorithm does

1999 Escott–Sager–Selkirk– Tsapakidis, also crediting Silverman–Stapleton:

Computing (e.g.)  $\log_P Q_1$ ,  $\log_P Q_2$ ,  $\log_P Q_3$ ,  $\log_P Q_4$ , and  $\log_P Q_5$  costs only 2.49× more than computing  $\log_P Q_1$ .

The basic idea: compute  $\log_P Q_1$  with rho; compute  $\log_P Q_2$  with rho, *reusing* distinguished points produced by  $Q_1$ ; etc. 2001 Kuhn–Struik analysis:  $\cot \Theta(n^{1/2}\ell^{1/2})$ for *n* discrete logarithms in group of order  $\ell$ if  $n \ll \ell^{1/4}$ . 2001 Kuhn–Struik analysis:  $\cot \Theta(n^{1/2}\ell^{1/2})$ for *n* discrete logarithms in group of order  $\ell$ if  $n \ll \ell^{1/4}$ .

2004 Hitchcock-Montague–Carter–Dawson: View computations of  $\log_P Q_1, \ldots, \log_P Q_{n-1}$  as precomputatation for main computation of  $\log_P Q_n$ . Analyze tradeoffs between main-computation time and precomputation time.

2012 Bernstein–Lange:

- Adapt to interval of length ℓ
   inside much larger group.
- (2) Analyze tradeoffs between main-computation time and precomputed table size.
- (3) Choose table entries more carefully to reduce main-computation time.
- (4) Also choose iteration function more carefully.
- (5) Reduce space required for each table entry.
- (6) Break  $\ell^{1/4}$  barrier.

Applications:

(7) Disprove the standard 2<sup>128</sup>
P-256 security conjectures.
(8) Accelerate trapdoor DL etc.
(9) Accelerate BGN etc.; this needs (1).

Bonus: (10) Disprove the standard 2<sup>128</sup> AES, DSA-3072, RSA-3072 security conjectures.

Credit to earlier Lee–Cheon–Hong paper for (2), (6), (8).

Almost standard walk function: redefine steps  $S_i$ 

to depend on P only  $(S_i = c_i P)$ ,

 $c_i$  chosen uniform random.

Almost standard walk function: redefine steps  $S_i$ to depend on P only ( $S_i = c_i P$ ),

 $c_i$  chosen uniform random.

Precomputation:

Start some walks at yPfor random choices of y. Build table of distinct distinguished points D

along with  $\log_P D$ .

Almost standard walk function: redefine steps  $S_i$ to depend on P only ( $S_i = c_i P$ ),

 $c_i$  chosen uniform random.

Precomputation:

Start some walks at yP

for random choices of y.

Build table of distinct

distinguished points D along with  $\log_P D$ .

Main computation:

Starting from Q, walk to distinguished point Q + yP. Check for Q + yP in table.

Almost standard walk function: redefine steps  $S_i$ to depend on P only ( $S_i = c_i P$ ),

 $c_i$  chosen uniform random.

Precomputation:

Start some walks at yP

for random choices of y.

Build table of distinct

distinguished points D along with  $\log_P D$ .

Main computation:

Starting from Q, walk to distinguished point Q + yP. Check for Q + yP in table. (If this fails, rerandomize Q.)

# <u>DSA-3072</u>

Assume that DLP subgroup is extended to 384 bits to counter previous attack.

# DSA-3072

Assume that DLP subgroup is extended to 384 bits to counter previous attack.

The following sketch is not the state of the art but good enough to break the 2<sup>128</sup> assumption.

Let  $g \in \mathbf{F}_p^*$  have order q,  $h = g^k$ . Goal: Find k. Precomputation: Take  $y = 2^{110}$ , compute  $\log_g x^{(p-1)/q}$ for every prime number  $x \leq y$ .

Precomputation: Take  $y = 2^{110}$ , compute  $\log_q x^{(p-1)/q}$ for every prime number  $x \leq y$ . Main computation: Try to write h as quotient  $h_1/h_2$  in  $\mathbf{F}_p^*$ with  $h_2 \in \{1, 2, 3, \ldots, 2^{1535}\}$ ,  $h_1 \in \{-2^{1535}, \ldots, 0, 1, \ldots, 2^{1535}\},\$ and  $gcd\{h_1, h_2\} = 1;$ 

Precomputation: Take  $y = 2^{110}$ , compute  $\log_q x^{(p-1)/q}$ for every prime number  $x \leq y$ . Main computation: Try to write h as quotient  $h_1/h_2$  in  $\mathbf{F}_p^*$ with  $h_2 \in \{1, 2, 3, \ldots, 2^{1535}\}$ ,  $h_1 \in \{-2^{1535}, \ldots, 0, 1, \ldots, 2^{1535}\},\$ and  $gcd\{h_1, h_2\} = 1;$ and then try to factor  $h_1$ ,  $h_2$ into primes  $\leq y$ .

Precomputation: Take  $y = 2^{110}$ , compute  $\log_q x^{(p-1)/q}$ for every prime number  $x \leq y$ . Main computation: Try to write h as quotient  $h_1/h_2$  in  $\mathbf{F}_p^*$ with  $h_2 \in \{1, 2, 3, \ldots, 2^{1535}\}$ ,  $h_1 \in \{-2^{1535}, \ldots, 0, 1, \ldots, 2^{1535}\},\$ and  $gcd\{h_1, h_2\} = 1;$ and then try to factor  $h_1$ ,  $h_2$ 

into primes  $\leq y$ .

If this fails, try again with hg,  $hg^2$ , etc.

#### <u>Analysis</u>

About  $y / \log y \approx 2^{103.75}$  primes  $\leq y$  for a total of  $2^{109.33}$  bytes to store all small DLs.

Can write h as  $h_1/h_2$  with probability  $\approx (6/\pi^2)2^{3071}/p$ .

 $h_i$  is y-smooth with probability very close to  $u^{-u} \approx 2^{-53.06}$ where u = 1535/110.

Overall the attack requires between  $2^{107.85}$  and  $2^{108.85}$ iterations; batch smoothness detection is fast.

# (1) Accept 2<sup>85</sup> etc. as security; live with it. Protect the proofs!

Accept 2<sup>85</sup> etc. as security;
 live with it. Protect the proofs!
 Switch to NAND metric; or
 switch to AT metric.
 Breaks most theorems;
 still bogus results in NAND.

(1) Accept  $2^{85}$  etc. as security; live with it. Protect the proofs! (2) Switch to NAND metric; or (3) switch to AT metric. Breaks most theorems; still bogus results in NAND. (4) Add effectivity. Include cost for finding the algorithm.

- Accept 2<sup>85</sup> etc. as security;
   live with it. Protect the proofs!
   Switch to NAND metric; or
   switch to AT metric.
   Breaks most theorems;
   still bogus results in NAND.
- (4) Add effectivity. Include cost for finding the algorithm.
- (5) Add uniformity.
- Clearly stops attacks
- but breaks most theorems.
- Abandons goal of defining concrete security of AES etc.