
Non-uniform

cracks in the concrete:

the power of free precomputation

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Tanja Lange

Technische Universiteit Eindhoven

eprint.iacr.org/2012/318,

eprint.iacr.org/2012/458

http://eprint.iacr.org/2012/318
http://eprint.iacr.org/2012/458


2012.02.19 Koblitz–Menezes

“Another look at HMAC”:

“: : :Third, we describe a

fundamental flaw in Bellare’s

2006 security proof for HMAC,

and show that with the

flaw removed the proof gives

a security guarantee that is of

little value in practice.”

2012.03.02: “Bellare contacted

us and told us that he strongly

objected to our language—

especially the word ‘flaw’—: : : ”



Yehuda Lindell: “This time they

really outdid themselves since

there is actually no error. Rather

the proof of security is in the non-

uniform model, which they appear

to not be familiar with. : : : There

is NO FLAW here whatsoever.”

Jonathan Katz: “Many

researchers are justifiably

concerned about the fact that

Alfred Menezes will be giving

an invited talk at Eurocrypt

2012 related to his line of papers

criticizing provable security.

I share this concern.”



Bellare to Koblitz (according

to 2012.10 Koblitz talk): “It

never occurred to me that a

reader would not understand that

when complexity is concrete, we

have non-uniformity. : : : If you

want : : : to gain respect among

theoretical cryptographers, it

would benefit from reflecting

our feedback and being better

informed about the basics of

the field. : : : Uniform and non-

uniform complexity are typically

taught in a graduate course in

computational complexity theory.”



2012.03.17 Koblitz–Menezes:

“: : :Third, we describe a

fundamental defect from a

practice-oriented standpoint in

Bellare’s 2006 security result for

HMAC, and show that with this

defect removed his proof gives

a security guarantee that is of

little value in practice.”



2012.03.17 Koblitz–Menezes:

“: : :Third, we describe a

fundamental defect from a

practice-oriented standpoint in

Bellare’s 2006 security result for

HMAC, and show that with this

defect removed his proof gives

a security guarantee that is of

little value in practice.”

2012.04: Menezes gives

Eurocrypt invited talk “Another

look at provable security” )

>20 solid seconds of applause.



2012.03.17 Koblitz–Menezes:

“: : :Third, we describe a

fundamental defect from a

practice-oriented standpoint in

Bellare’s 2006 security result for

HMAC, and show that with this

defect removed his proof gives

a security guarantee that is of

little value in practice.”

2012.04: Menezes gives

Eurocrypt invited talk “Another

look at provable security” )

>20 solid seconds of applause.

youtube?v=l56ORg5xXkk

http://www.youtube.com/watch?v=l56ORg5xXkk


Understanding the dispute

What is the best chosen-plaintext

AES-128 key-recovery attack?

Attack input: a black box

that contains a secret key k

and computes p 7! AESk(p).

Attack output: k.

Standard definition of “best”:

minimize “time”.



Understanding the dispute

What is the best chosen-plaintext

AES-128 key-recovery attack?

Attack input: a black box

that contains a secret key k

and computes p 7! AESk(p).

Attack output: k.

Standard definition of “best”:

minimize “time”.

More generally, allow attacks with

<100% success probability;

analyze tradeoffs between

“time” and success probability.



Maybe a key-recovery attack

could be turned into an

AES-CBC-MAC forgery attack!

Should AES-CBC-MAC users

be worried about this?



Maybe a key-recovery attack

could be turned into an

AES-CBC-MAC forgery attack!

Should AES-CBC-MAC users

be worried about this?

No. Many researchers

have tried and failed to find good

AES key-recovery attacks.



Maybe a key-recovery attack

could be turned into an

AES-CBC-MAC forgery attack!

Should AES-CBC-MAC users

be worried about this?

No. Many researchers

have tried and failed to find good

AES key-recovery attacks.

Standard conjecture:

For each p 2 [0; 1],

each AES key-recovery attack

with success probability �p

takes “time” �2128p.

See, e.g., 2005 Bellare–Rogaway.



Interlude regarding “time”

How much “time” does the

following algorithm take?

def pidigit(n0,n1,n2):

if n0 == 0:

if n1 == 0:

if n2 == 0: return 3

return 1

if n2 == 0: return 4

return 1

if n1 == 0:

if n2 == 0: return 5

return 9

if n2 == 0: return 2

return 6



Students in algorithm courses

learn to count executed “steps”.

Skipped branches take 0 “steps”.

This algorithm uses 4 “steps”.



Students in algorithm courses

learn to count executed “steps”.

Skipped branches take 0 “steps”.

This algorithm uses 4 “steps”.

Generalization: There exists an

algorithm that, given n < 2k,

prints the nth digit of �

using k + 1 “steps”.



Students in algorithm courses

learn to count executed “steps”.

Skipped branches take 0 “steps”.

This algorithm uses 4 “steps”.

Generalization: There exists an

algorithm that, given n < 2k,

prints the nth digit of �

using k + 1 “steps”.

Variant: There exists a 256-

“step” AES key-recovery attack

(with 100% success probability).



Students in algorithm courses

learn to count executed “steps”.

Skipped branches take 0 “steps”.

This algorithm uses 4 “steps”.

Generalization: There exists an

algorithm that, given n < 2k,

prints the nth digit of �

using k + 1 “steps”.

Variant: There exists a 256-

“step” AES key-recovery attack

(with 100% success probability).

If “time” means “steps” then the

standard conjecture is wrong.



2000 Bellare–Kilian–Rogaway:

“We fix some particular Random

Access Machine (RAM) as a

model of computation. : : : A’s

running time [means] A’s actual

execution time plus the length

of A’s description : : : This

convention eliminates pathologies

caused [by] arbitrarily large lookup

tables : : : Alternatively, the reader

can think of circuits over some

fixed basis of gates, like 2-input

NAND gates : : : now time simply

means the circuit size.”



Side comments:

1. Definition from Crypto 1994

Bellare–Kilian–Rogaway was

flawed: failed to add length.

Paper conjectured “useful” DES

security bounds; any reasonable

interpretation of conjecture was

false, given paper’s definition.



Side comments:

1. Definition from Crypto 1994

Bellare–Kilian–Rogaway was

flawed: failed to add length.

Paper conjectured “useful” DES

security bounds; any reasonable

interpretation of conjecture was

false, given paper’s definition.

2. Many more subtle issues

defining RAM “time”: see

1990 van Emde Boas survey.



Side comments:

1. Definition from Crypto 1994

Bellare–Kilian–Rogaway was

flawed: failed to add length.

Paper conjectured “useful” DES

security bounds; any reasonable

interpretation of conjecture was

false, given paper’s definition.

2. Many more subtle issues

defining RAM “time”: see

1990 van Emde Boas survey.

3. NAND definition is easier

but breaks many theorems.



Reductions

Another standard conjecture:

Each AES-CBC-MAC q-block

forgery attack with success

probability �p + q(q � 1)=2129

takes “time” >2128p.



Reductions

Another standard conjecture:

Each AES-CBC-MAC q-block

forgery attack with success

probability �p + q(q � 1)=2129

takes “time” >2128p.

Why should users have any

confidence in this conjecture?

How many researchers have really

tried to break AES-CBC-MAC?

AES-CTR? AES-GCM? Other

AES-based protocols? Far less

attention than for key recovery.



Provable security to the rescue!

Prove: if there is

an AES-CBC-MAC attack

then there is

an AES key-recovery attack

with similar “time”

and success probability.



Provable security to the rescue!

Prove: if there is

an AES-CBC-MAC attack

then there is

an AES key-recovery attack

with similar “time”

and success probability.

Oops: This turns out to be hard.

But changing from key-recovery

attack to PRF distinguishing

attack allows a proof:

1994 Bellare–Kilian–Rogaway.



Similar pattern throughout the

“provable security” literature.

Protocol designers (try to) prove

that hardness of a problem P

(e.g., AES PRF attacks) implies

security of various protocols Q.

After extensive cryptanalysis of P ,

maybe gain confidence in hardness

of P , and hence in security of Q.



Similar pattern throughout the

“provable security” literature.

Protocol designers (try to) prove

that hardness of a problem P

(e.g., AES PRF attacks) implies

security of various protocols Q.

After extensive cryptanalysis of P ,

maybe gain confidence in hardness

of P , and hence in security of Q.

Why not directly cryptanalyze Q?

Cryptanalysis is hard work: have

to focus on a few problems P .

Proofs scale to many protocols Q.



The big oops

These conjectures are wrong.

Example: There exists

a fast AES PRF attack

with success probability �2�64.



The big oops

These conjectures are wrong.

Example: There exists

a fast AES PRF attack

with success probability �2�64.

Good candidate for attack:

MD50(7;AESk(0);AESk(1)) = 1

with probability � 1=2 + 2�64;

MD50(7; F (0); F (1)) = 1

with probability � 1=2.

Here MD50(x) = bit0(MD5(x)).



The big oops

These conjectures are wrong.

Example: There exists

a fast AES PRF attack

with success probability �2�64.

Good candidate for attack:

MD50(7;AESk(0);AESk(1)) = 1

with probability � 1=2 + 2�64;

MD50(7; F (0); F (1)) = 1

with probability � 1=2.

Here MD50(x) = bit0(MD5(x)).

If this candidate doesn’t work,

replace 7 with 8 or 9 or : : : .



“We only meant the conjectures

for p � 2�40, you nitpicker.”



“We only meant the conjectures

for p � 2�40, you nitpicker.”

The conjectures are still wrong!

Example: There exists

an AES key-recovery attack

with success probability �1

taking “time” �286.



“We only meant the conjectures

for p � 2�40, you nitpicker.”

The conjectures are still wrong!

Example: There exists

an AES key-recovery attack

with success probability �1

taking “time” �286.

The attack algorithm:

iterate k 7! AESk(0)� 7

243 times, look up in

a size-243 Hellman table;

iterate k 7! AESk(0)� 8

243 times, look up in

a size-243 Hellman table; etc.



How about NIST P-256?

ECDL input: points P;Q,

where P is a standard generator.

ECDL output: logP Q.



How about NIST P-256?

ECDL input: points P;Q,

where P is a standard generator.

ECDL output: logP Q.

Standard conjecture:

For each p 2 [0; 1],

each P-256 ECDL algorithm

with success probability �p

takes “time” �2128p1=2.



Cube-root ECDL algorithms

Assuming plausible heuristics,

overwhelmingly verified by

computer experiment:

There exists a P-256 ECDL

algorithm that takes “time” �285

and has success probability �1.

“Time” includes algorithm length.

Inescapable conclusion: The

standard conjectures (regarding

P-256 ECDL hardness, P-256

ECDSA security, etc.) are false.



Should P-256 ECDSA users

be worried about this

P-256 ECDL algorithm A?

No!

We have a program B

that prints out A,

but B takes “time” �2170.

We conjecture that

nobody will ever print out A.



Should P-256 ECDSA users

be worried about this

P-256 ECDL algorithm A?

No!

We have a program B

that prints out A,

but B takes “time” �2170.

We conjecture that

nobody will ever print out A.

But A exists, and the standard

conjecture doesn’t see the 2170.



Cryptanalysts do see the 2170.

Common parlance: We have

a 2170 “precomputation”

(independent of Q) followed by

a 285 “main computation”.

For cryptanalysts: This costs

2170, much worse than 2128.

For the standard security

definitions and conjectures:

The main computation costs 285,

much better than 2128.



What the algorithm does



What the algorithm does

1999 Escott–Sager–Selkirk–

Tsapakidis, also crediting

Silverman–Stapleton:

Computing (e.g.) logP Q1,

logP Q2, logP Q3, logP Q4, and

logP Q5 costs only 2:49� more

than computing logP Q.

The basic idea:

compute logP Q1 with rho;

compute logP Q2 with rho,

reusing distinguished points

produced by Q1; etc.



2001 Kuhn–Struik analysis:

cost Θ(n1=2`1=2)

for n discrete logarithms

in group of order `

if n� `1=4.



2001 Kuhn–Struik analysis:

cost Θ(n1=2`1=2)

for n discrete logarithms

in group of order `

if n� `1=4.

2004 Hitchcock–

Montague–Carter–Dawson:

View computations of

logP Q1; : : : ; logP Qn�1 as

precomputatation for main

computation of logP Qn.

Analyze tradeoffs between

main-computation time and

precomputation time.



2012 Bernstein–Lange:

(1) Adapt to interval of length `

inside much larger group.

(2) Analyze tradeoffs between

main-computation time and

precomputed table size.

(3) Choose table entries

more carefully to reduce

main-computation time.

(4) Also choose iteration

function more carefully.

(5) Reduce space required

for each table entry.

(6) Break `1=4 barrier.



Applications:

(7) Disprove the standard 2128

P-256 security conjectures.

(8) Accelerate trapdoor DL etc.

(9) Accelerate BGN etc.;

this needs (1).

Bonus:

(10) Disprove the standard 2128

AES, DSA-3072, RSA-3072

security conjectures.

Credit to earlier Lee–Cheon–Hong

paper for (2), (6), (8).



Standard walk function:

choose uniform random

c1; : : : ; cr 2 f1; 2; : : : ; `� 1g;

walk from R to R + cH(R)P .



Standard walk function:

choose uniform random

c1; : : : ; cr 2 f1; 2; : : : ; `� 1g;

walk from R to R + cH(R)P .

Precomputation:

Start some walks at yP

for random choices of y.

Build table of distinct

distinguished points D

along with logP D.



Standard walk function:

choose uniform random

c1; : : : ; cr 2 f1; 2; : : : ; `� 1g;

walk from R to R + cH(R)P .

Precomputation:

Start some walks at yP

for random choices of y.

Build table of distinct

distinguished points D

along with logP D.

Main computation:

Starting from Q, walk to

distinguished point Q + yP .

Check for Q + yP in table.



Standard walk function:

choose uniform random

c1; : : : ; cr 2 f1; 2; : : : ; `� 1g;

walk from R to R + cH(R)P .

Precomputation:

Start some walks at yP

for random choices of y.

Build table of distinct

distinguished points D

along with logP D.

Main computation:

Starting from Q, walk to

distinguished point Q + yP .

Check for Q + yP in table.

(If this fails, rerandomize Q.)



DSA-3072

Assume that DLP subgroup

is extended to 384 bits

to counter previous attack



DSA-3072

Assume that DLP subgroup

is extended to 384 bits

to counter previous attack

(and assume field Fp to avoid

Antoine coming after you).



DSA-3072

Assume that DLP subgroup

is extended to 384 bits

to counter previous attack

(and assume field Fp to avoid

Antoine coming after you).

The following sketch

is not the state of the art —

but good enough to break

the 2128 assumption.

Let g 2 F�p have order q, h = gk.

Goal: Find k.



Precomputation:

Take y = 2110,

compute logg x
(p�1)=q

for every prime number x � y.



Precomputation:

Take y = 2110,

compute logg x
(p�1)=q

for every prime number x � y.

Main computation:

Try to write h as

quotient h1=h2 in F�p
with h2 2

�
1; 2; 3; : : : ; 21535

	
,

h12
�
�21535; : : : ; 0; 1; : : : ; 21535

	
,

and gcdfh1; h2g = 1;



Precomputation:

Take y = 2110,

compute logg x
(p�1)=q

for every prime number x � y.

Main computation:

Try to write h as

quotient h1=h2 in F�p
with h2 2

�
1; 2; 3; : : : ; 21535

	
,

h12
�
�21535; : : : ; 0; 1; : : : ; 21535

	
,

and gcdfh1; h2g = 1;

and then try to factor h1; h2

into primes � y.



Precomputation:

Take y = 2110,

compute logg x
(p�1)=q

for every prime number x � y.

Main computation:

Try to write h as

quotient h1=h2 in F�p
with h2 2

�
1; 2; 3; : : : ; 21535

	
,

h12
�
�21535; : : : ; 0; 1; : : : ; 21535

	
,

and gcdfh1; h2g = 1;

and then try to factor h1; h2

into primes � y.

If this fails, try again

with hg, hg2, etc.



Analysis

About y= log y�2103:75 primes �y

for a total of 2109:33 bytes

to store all small DLs.

Can write h as h1=h2 with

probability �(6=�2)23071=p.

hi is y-smooth with probability

very close to u�u � 2�53:06

where u = 1535=110.

Overall the attack requires

between 2107:85 and 2108:85

iterations; batch smoothness

detection is fast.



Possible responses



Possible responses

(1) Accept 285 etc. as security;

live with it. Protect the proofs!



Possible responses

(1) Accept 285 etc. as security;

live with it. Protect the proofs!

(2) Switch to NAND metric; or

(3) switch to AT metric.

Breaks most theorems;

still bogus results in NAND.



Possible responses

(1) Accept 285 etc. as security;

live with it. Protect the proofs!

(2) Switch to NAND metric; or

(3) switch to AT metric.

Breaks most theorems;

still bogus results in NAND.

(4) Add effectivity. Include

cost for finding the algorithm.



Possible responses

(1) Accept 285 etc. as security;

live with it. Protect the proofs!

(2) Switch to NAND metric; or

(3) switch to AT metric.

Breaks most theorems;

still bogus results in NAND.

(4) Add effectivity. Include

cost for finding the algorithm.

(5) Add uniformity.

Clearly stops attacks

but breaks most theorems.

Abandons goal of defining

concrete security of AES etc.


