Computing
small discrete logarithms

faster

D. J. Bernstein,
University of lllinois at Chicago &
Technische Universiteit Eindhoven

Tanja Lange,
Technische Universiteit Eindhoven

eprint.iacr.org/2012/458


http://eprint.iacr.org/2012/458

Privacy for smart meters

2011 Kursawe—Danezis—Kolhweilss:
Provider should

not learn individual o [FemmgE
consumptions c;. .
r fn—‘_ -
U Se D I_ g rO U p ( g> (T
of prime order £. 2 &
Set of users |
. Z c; picture:
computes g EVB Energy Ltd

(including blinding).
Provider knows consumption c.

Checks whether Iogg(gZ 7/9°)

lies within a tolerance interval.
Need to solve DL In interval.



Trapdoor DL

Use RSA modulus n = »g,
where » — 1 and ¢ — 1 have
many medium-size factors £;.

With p, g and the ¢;

as trapdoor information,
can compute m from g
for specified g € (Z/n)*.

Requires computation of DL
in each subgroup of order Z;.

Applications: e.g.,
1991 Maurer—Yacobi IBE;
2010 Henry—Henry—Goldberg.




BGN homomorphic encryption

2005 Boneh—Goh—Nissim:
Can handle adding arbitrary
subsets of encrypted data,
multiplying the sums,

and adding the products.

Uses pairings on elliptic curves.
2010 Freeman: very efficient

prime-order version.

Decryption requires

computing DL in interval.
Length depends on message size
and number of additions.



The rho method

Simplified, non-parallel rho:

Make a pseudo-random walk
uQ, 1, U2, . .. in the group (g),
where current point determines
the next point: u;11 = f(u;).

Birthday paradox:
Randomly choosing from ¢
elements picks one element twice

after about 1/m{/2 draws.

The walk now enters a cycle.
Cycle-finding algorithm
(e.g., Floyd) quickly detects this.



QO 0O

O

oo OO0 O O O "0

O O 0O 0O/ 0//0 O ~0O

O

C.. O O -0

O

o OO0

O

o o O/ 0 /0~ 0 O O

o o O O O O



QO 0O

O

oo OO0 O O O "0

O O 0O 0O/ 0//0 O ~0O

O

C.. O O -0

O

o OO0

O

o o O/ 0 /0~ 0 O O

o o O O O O



O ~0O O

o O O O O O
o /O O 0O O/ O

O

o O 0O O



O. O O O
O O 00
O O 0“0
OO0 Q10
O« O« O \
O O 0.0

o o O/ O O

O

o O 0O O



o O O O O O

o /O O 0O O/ O

O ~0O O

ONC O 0

o o O/ O O

O

o O 0O O



o o O/ O O

O

o O 0O O



o o O/ O O

O

o O 0O O



O O O

O O 0O

o .0 O

O O @



O O O

O O 0O

o .0 O

O O @































































Goal: Compute log, h.

Assume that for each 2
we know z;,vy; € Z/4Z
so that u; = g¥%+h*:.

Then u; = u; means that
gyi hti — gyj h,mj

SO gyi_yj — K% %

If z; # z; the DLP is solved:
logg h = (y5 — v4)/(zs — z5).



Goal: Compute log, h.

Assume that for each 2
we know z;,vy; € Z/4Z
so that u; = g¥%+h*:.

Then u; = u; means that
gyi hti — gyj h,mj

SO gyi_yj — K% %

If z; # z; the DLP is solved:
logg h = (y5 — v4)/(zs — z5).

e.g. “base-(g, h) r-adding walk’:
precompute Ss1, S2, ..., Sy
as random products g h;
define f(u) = usyy)
where H hashes to {1,2,..., T},



Ample experimental evidence

that base-(g, h) r-adding walk
resembles a random walk:
solves DLP in about

\/7é/2 steps on average.



Ample experimental evidence

that base-(g, h) r-adding walk
resembles a random walk:
solves DLP in about

\/7é/2 steps on average.

2001 Teske:
need big 7; e.g., r = 20.
Clear slowdown for small 7;

Blackburn and Murphy say

VTL[2/y/1—1]r.




Ample experimental evidence

that base-(g, h) r-adding walk
resembles a random walk:
solves DLP in about

\/7é/2 steps on average.

2001 Teske:
need big 7; e.g., r = 20.
Clear slowdown for small 7;

Blackburn and Murphy say
VTL[2/y/1—1]r.

2010 Bernstein—Lange (ANTS
2012): actually more complicated;

higher-degree anticollisions.



Parallel rho

1994 van QOorschot—Wiener:

Declare some subset of (g) to be
the set of distinguished points:
e.g., all u € (g) where last 20 bits
of representation of u are 0.

Perform, in parallel, many walks
with different starting points hg¥
but same update function f.

Terminate each walk

once It hits a distinguished point.
Report point to central server.
Server receives, stores, and sorts
all distinguished points.



o
o
o
o
o
[}

Two colliding walks will reach
the same distinguished point.

Server sees collision, finds DL.

0O




Many discrete logarithms

1999 Escott—Sager—Selkirk—
Tsapakidis, also crediting
Silverman—Stapleton:

Computing (e.g.) log, h1, log, h2,
log, h3, log, ha, and log, hs
costs only 2.49x more than
computing just log, h.

The basic idea:
compute log, h1 with rho;

compute log, ho with rho,

reusing distinguished points

produced by h7; etc.



2001 Kuhn—Struik analysis:
cost O(nl/241/2)
for n discrete logarithms

in group of order £
if n< 4174



2001 Kuhn—Struik analysis:
cost O(nl/241/2)
for n discrete logarithms

in group of order £
if n< 4174

2004 Hitchcock—Montague—
Carter—Dawson:

View computations of

log, A1, ..., logg hp—1 as
precomputatation for main
computation of log, hp.
Analyze tradeoffs between
main-computation time and
precomputation time.



2012 Bernstein—Lange, this paper:
(1) Adapt to interval of length £
inside much larger group.

(2) Analyze tradeoffs between
main-computation time and
precomputed table size.

(3) Choose table entries
more carefully to reduce
main-computation time.

(4) Also choose iteration
function more carefully.

(5) Reduce space required

for each table entry.
(6) Break £1/ barrier.



Applications:
(7) Accelerate trapdoor DL etc.
(8) Accelerate BGN etc;

this needs (1).

Further applications in 2012
Bernstein—Lange “Non-uniform
cracks in the concrete™,
eprint.iacr.org/2012/318:
these algorithms disprove
standard security conjectures,
demonstrating flaw in standard
formal definitions of security.

Credit to earlier Lee—Cheon—Hong
paper for (2), (6), (7).


http://eprint.iacr.org/2012/318

The basic algorithm

Precomputation:

Start some walks at g¥
for random choices of y.
Build table of distinct
distinguished points d

along with log, d.

Use base-g r-adding walk,
not base-(g, h) r-adding walk!

Main computation:

Starting from h, walk to
distinguished point AgY.
Check for hg¥ in table.

(If this fails, rerandomize A.)



Standard base-g r-adding walk

chooses uniform random
Cl1,...,Cp 6{1,2,...,5—1};
precomputes s; = g°;

walks from u to us ().

Nonstandard tweak:
reduce £ — 1 to, e.g., 0.25{/W/,
where W is average walk length.

Intuition: This tweak
compromises performance by
only a small constant factor.



Standard base-g r-adding walk

chooses uniform random
Cl1,...,Cp 6{1,2,...,5—1};
precomputes s; = g°;

walks from u to us ().

Nonstandard tweak:
reduce £ — 1 to, e.g., 0.25{/W/,
where W is average walk length.

Intuition: This tweak
compromises performance by
only a small constant factor.

If tweaked algorithm works for a
group of order £, what will it do
for an interval of order £7



Standard interval method:

Pollard’s kangaroo method.

Pollard's kangaroos do small
jumps around the interval.
Real kangaroos sleep.



Are rho and kangaroo really
so different? Seek unification:
“kangarho™ ?



Are rho and kangaroo really
so different? Seek unification:
“kangarho”? Approved by Dan,

not by Tanja: “kangarhoach”?



Are rho and kangaroo really
so different? Seek unification:
“kangarho”? Approved by Dan,

not by Tanja: “kangarhoach”?

Some of our experiments

for average ECDL computations
using table of size ~uf1/3 (selected
from somewhat larger table):

for group of order £,
precomputation ~1.2442/3,

main computation ~1.7741/3;

for interval of order ¢,
precomputation ~1.2142/3,

main computation ~1.93¢1/3.



Not all DPs are equal

Ancestors of top 10 distinguished
points are marked in red.



Not all f's are equal

697 red ancestors.
Previous picture had 603.



