Computing small discrete logarithms faster

D. J. Bernstein,University of Illinois at Chicago &Technische Universiteit EindhovenTanja Lange,

Technische Universiteit Eindhoven

eprint.iacr.org/2012/458

## Privacy for smart meters

#### 2011 Kursawe-Danezis-Kolhweiss:

Provider should not learn individual consumptions  $c_i$ .

Use DL group  $\langle g \rangle$  of prime order  $\ell$ .

Set of users computes  $g^{\sum c_j}$  (including blinding).



picture: EVB Energy Ltd

Provider knows consumption c.

Checks whether  $\log_g(g^{\sum c_j}/g^c)$  lies within a tolerance interval.

Need to solve DL in interval.

# Trapdoor DL

Use RSA modulus n=pq, where p-1 and q-1 have many medium-size factors  $\ell_i$ .

With p, q and the  $\ell_i$  as trapdoor information, can compute m from  $g^m$  for specified  $g \in (\mathbf{Z}/n)^*$ .

Requires computation of DL in each subgroup of order  $\ell_i$ .

Applications: e.g., 1991 Maurer–Yacobi IBE; 2010 Henry–Henry–Goldberg.

## BGN homomorphic encryption

2005 Boneh–Goh–Nissim: Can handle adding arbitrary subsets of encrypted data, multiplying the sums, and adding the products.

Uses pairings on elliptic curves. 2010 Freeman: very efficient prime-order version.

Decryption requires computing DL in interval.

Length depends on message size and number of additions.

### The rho method

Simplified, non-parallel rho:

Make a pseudo-random walk  $u_0, u_1, u_2, \ldots$  in the group  $\langle g \rangle$ , where current point determines the next point:  $u_{i+1} = f(u_i)$ .

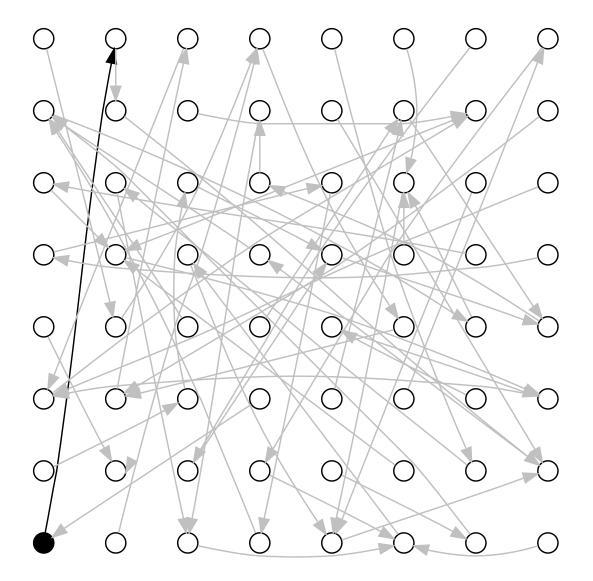
Birthday paradox:

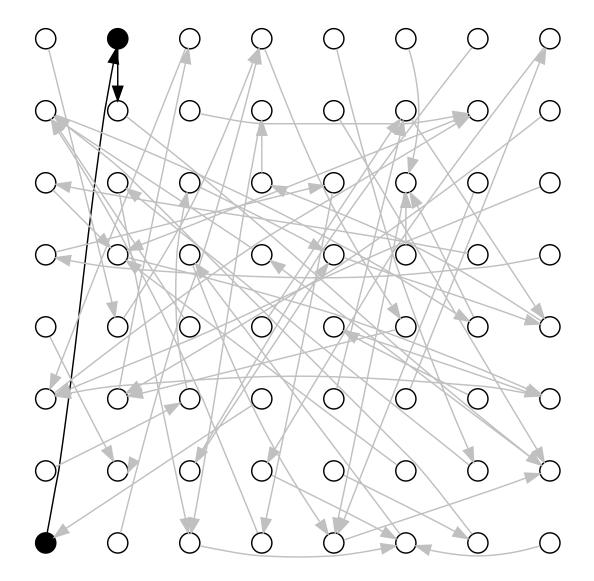
Randomly choosing from  $\ell$  elements picks one element twice after about  $\sqrt{\pi\ell/2}$  draws.

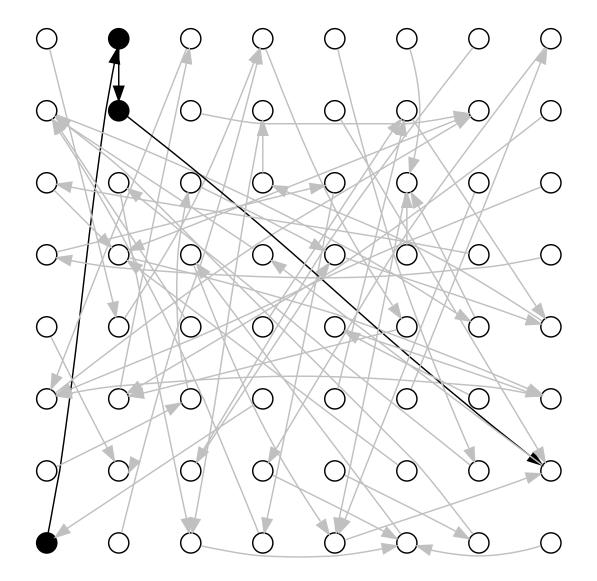
The walk now enters a cycle.

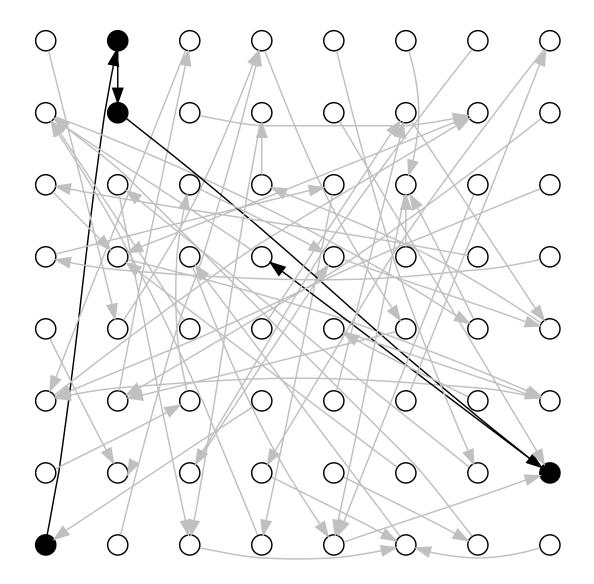
Cycle-finding algorithm

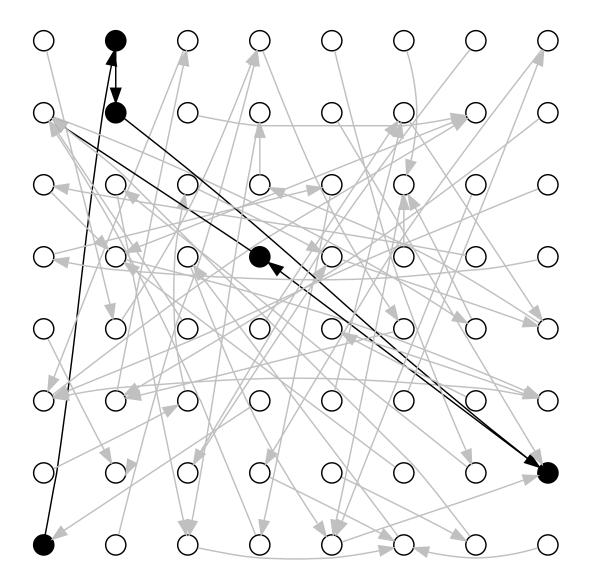
(e.g., Floyd) quickly detects this.

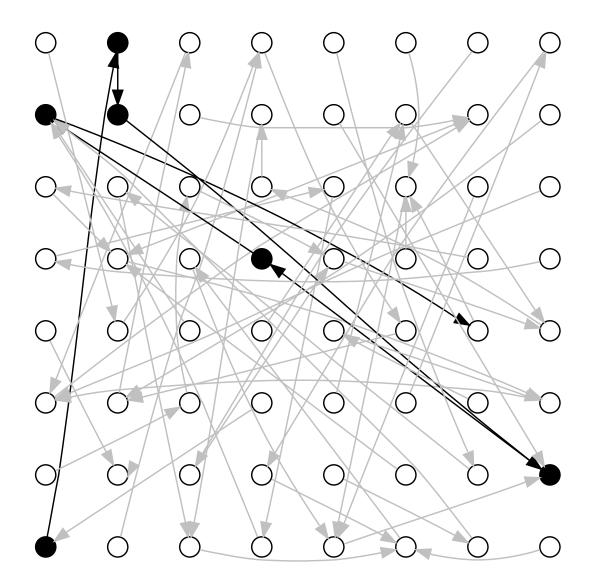


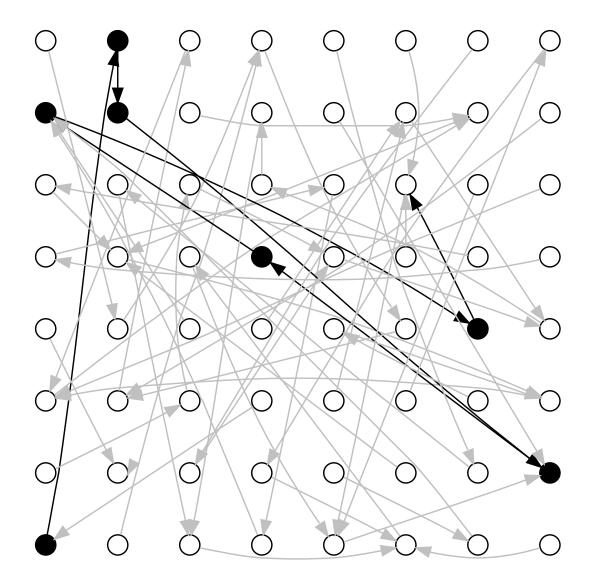


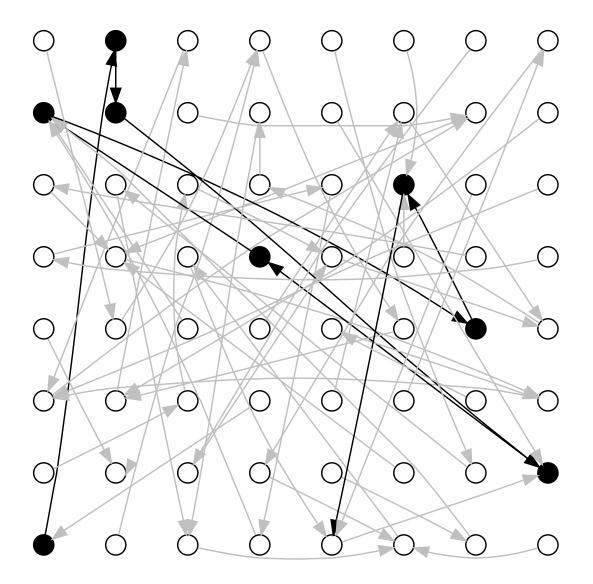


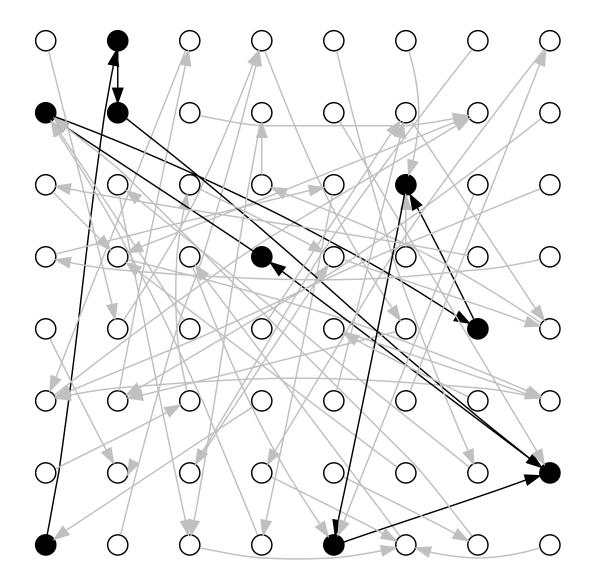


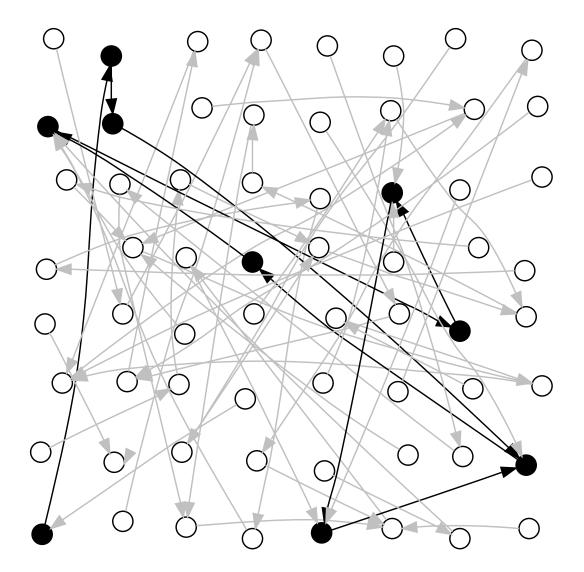


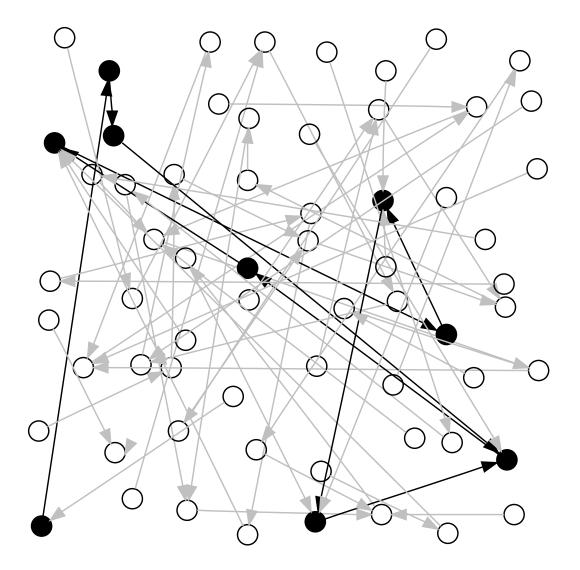


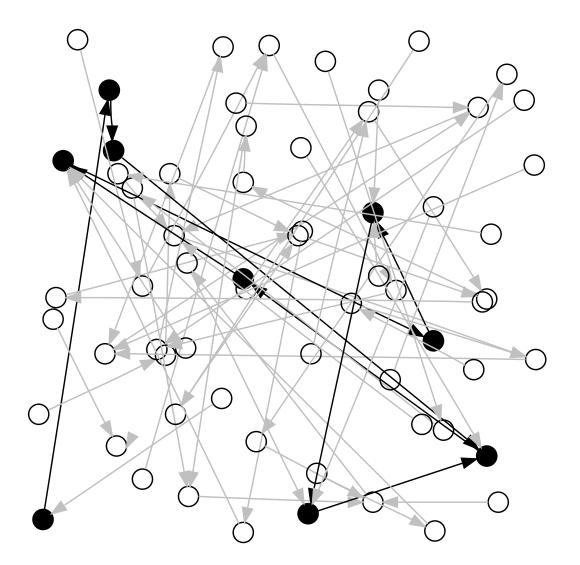


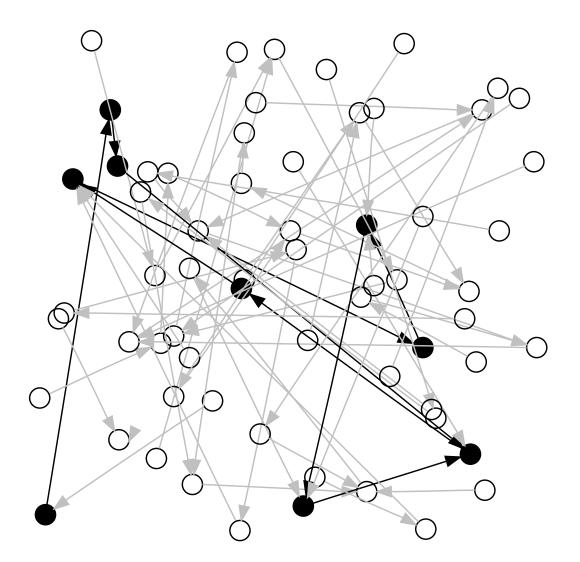


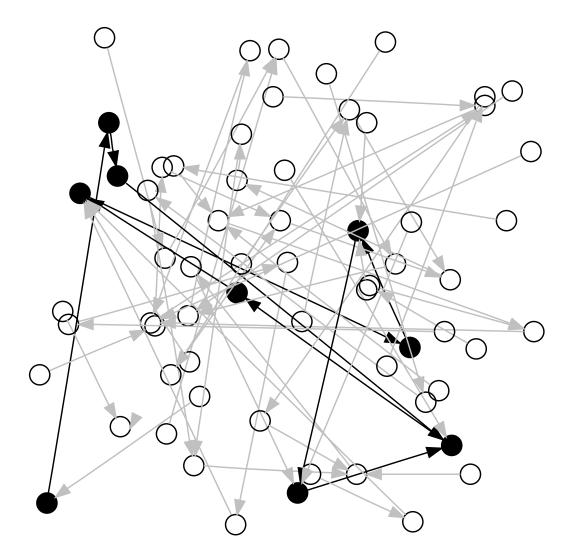


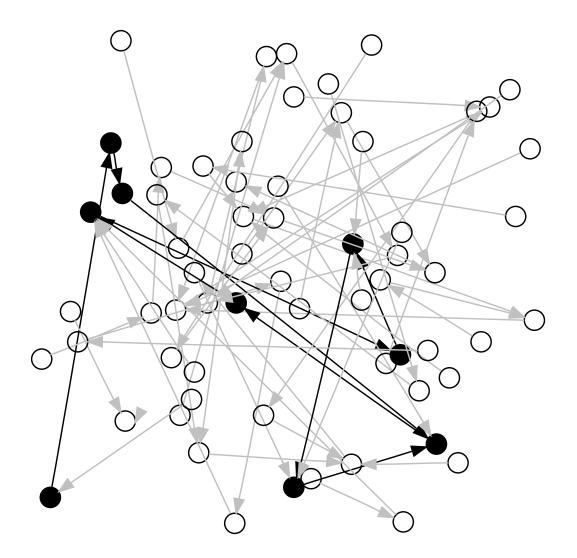


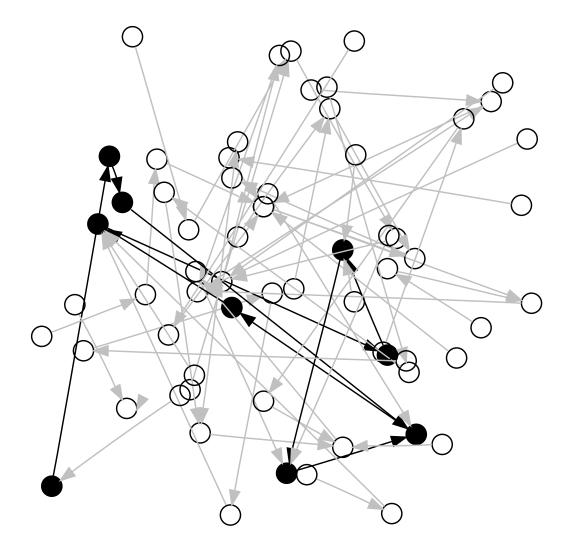


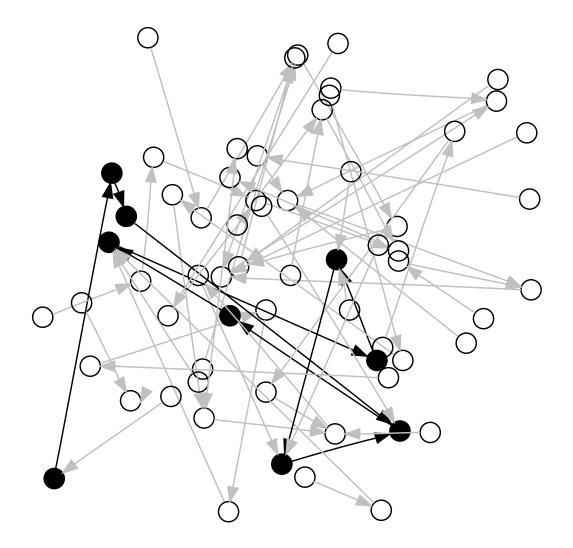


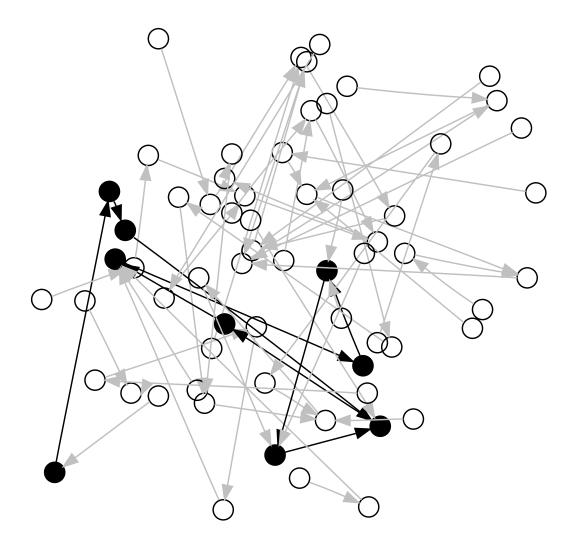


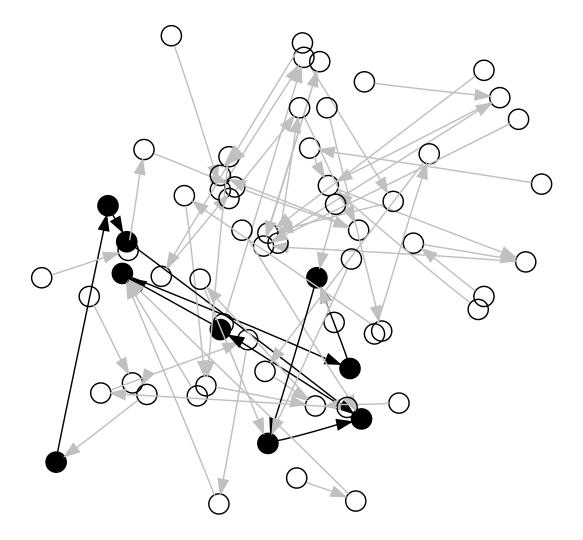


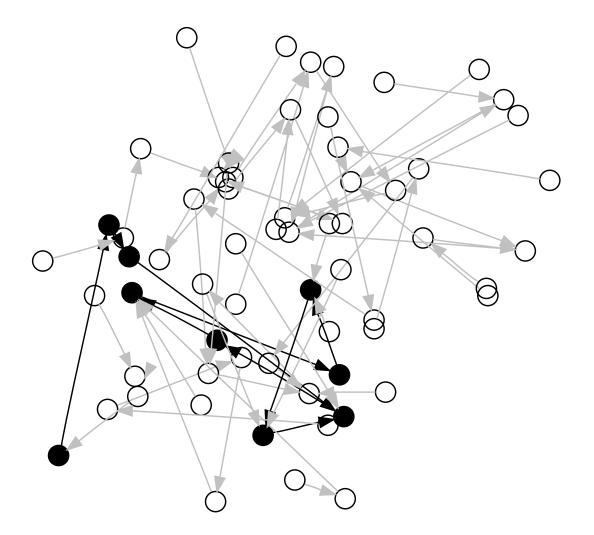


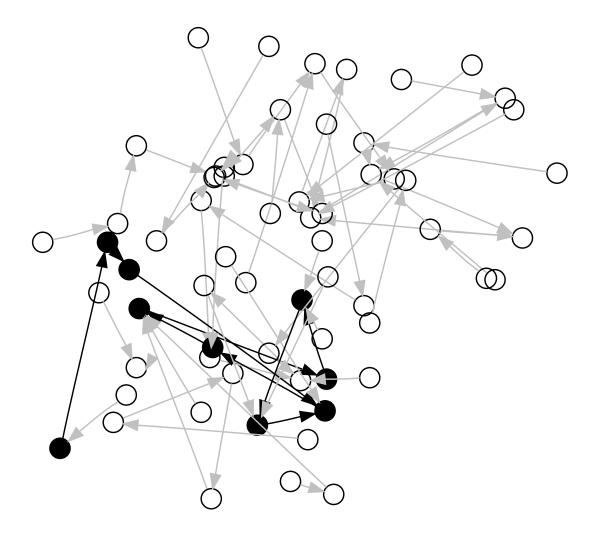


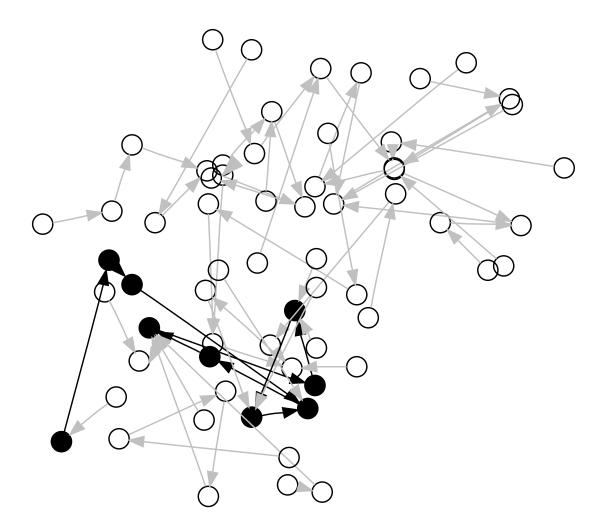


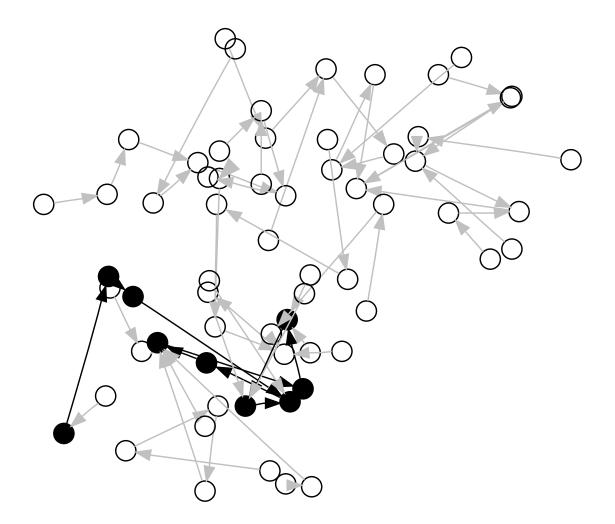


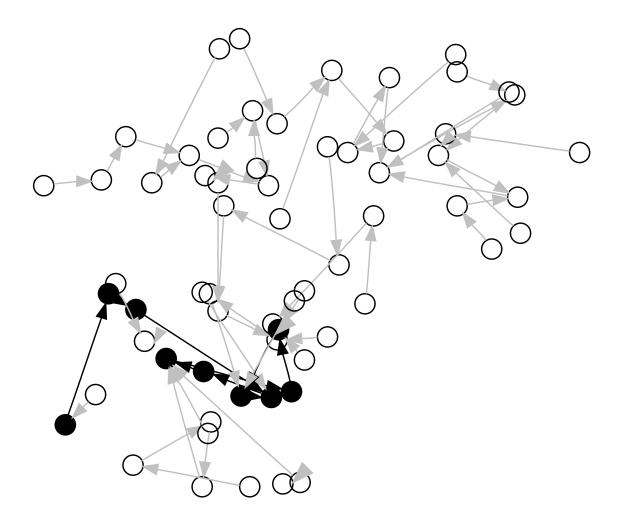


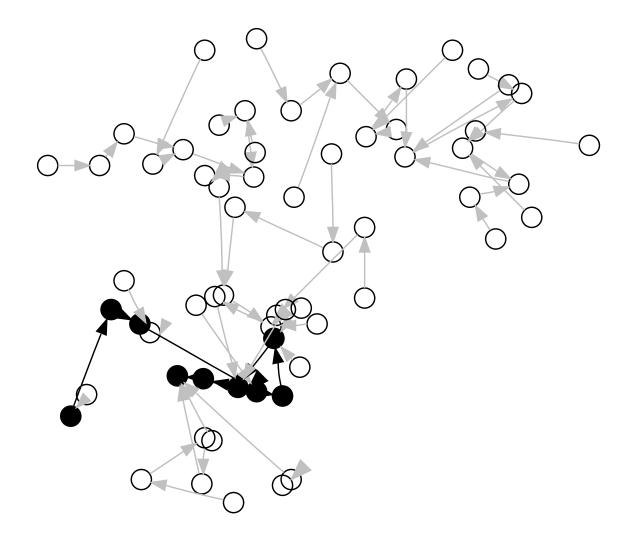


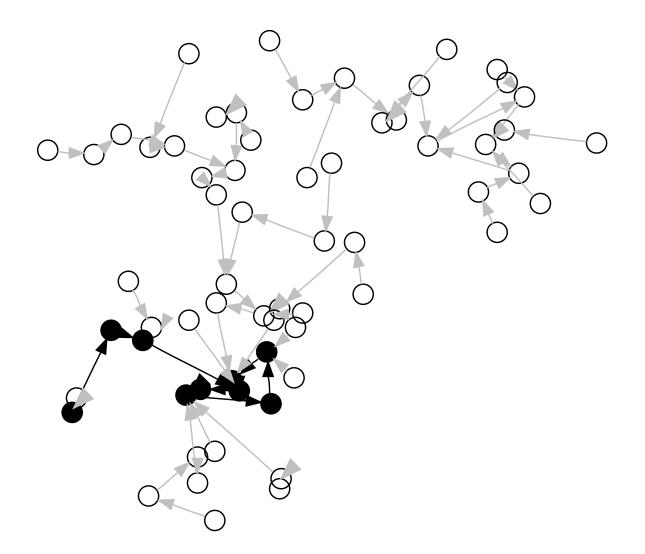


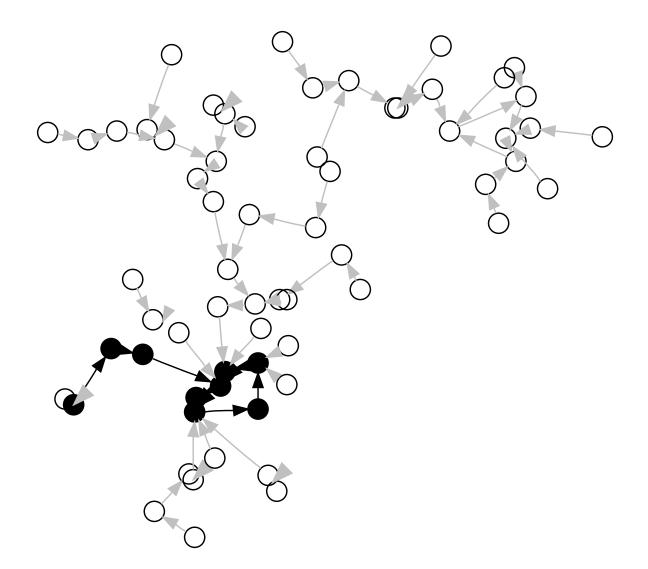


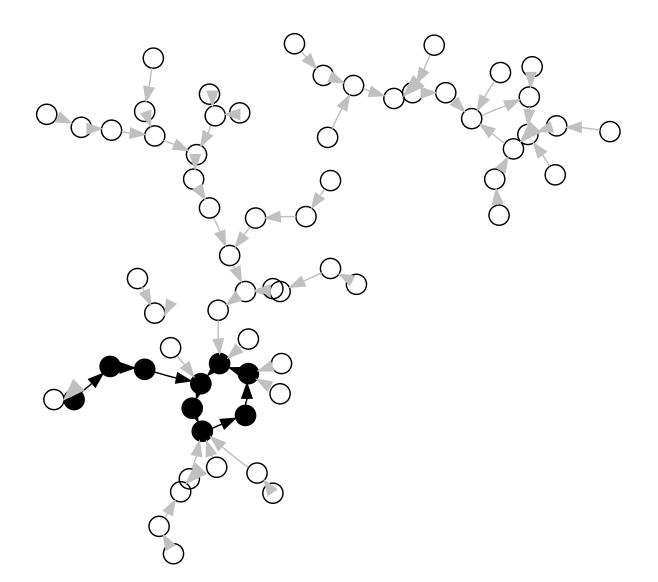


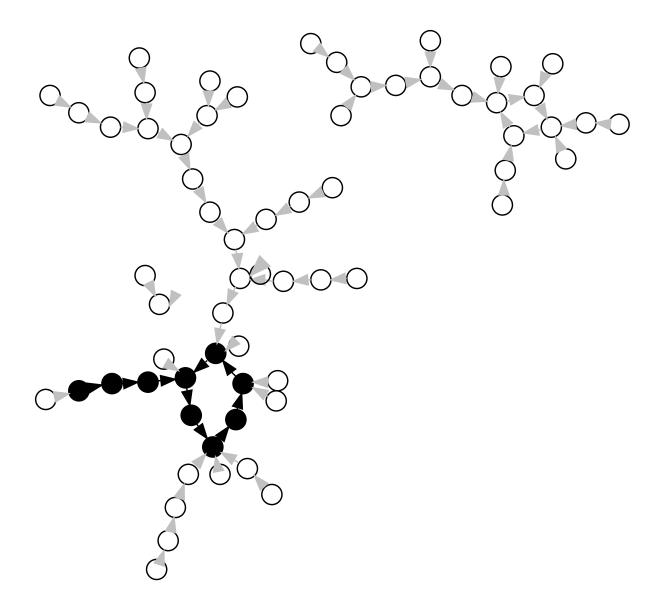












Goal: Compute  $\log_q h$ .

Assume that for each i we know  $x_i, y_i \in \mathbf{Z}/\ell\mathbf{Z}$  so that  $u_i = g^{y_i}h^{x_i}$ .

Then  $u_i=u_j$  means that  $g^{y_i}h^{x_i}=g^{y_j}h^{x_j}$  so  $g^{y_i-y_j}=h^{x_j-x_i}$ . If  $x_i 
eq x_j$  the DLP is solved:  $\log_g h=(y_j-y_i)/(x_i-x_j)$ .

Goal: Compute  $\log_q h$ .

Assume that for each i we know  $x_i, y_i \in \mathbf{Z}/\ell\mathbf{Z}$  so that  $u_i = g^{y_i}h^{x_i}$ .

Then  $u_i=u_j$  means that  $g^{y_i}h^{x_i}=g^{y_j}h^{x_j}$  so  $g^{y_i-y_j}=h^{x_j-x_i}$ . If  $x_i 
eq x_j$  the DLP is solved:  $\log_g h=(y_j-y_i)/(x_i-x_j)$ .

e.g. "base-(g,h) r-adding walk": precompute  $s_1, s_2, \ldots, s_r$  as random products  $g^{\cdots}h^{\cdots}$ ; define  $f(u) = us_{H(u)}$  where H hashes to  $\{1, 2, \ldots, r\}$ .

Ample experimental evidence that base-(g, h) r-adding walk resembles a random walk: solves DLP in about  $\sqrt{\pi\ell/2}$  steps on average.

Ample experimental evidence that base-(g, h) r-adding walk resembles a random walk: solves DLP in about  $\sqrt{\pi\ell/2}$  steps on average.

2001 Teske:

need big r; e.g., r=20. Clear slowdown for small r; Blackburn and Murphy say  $\sqrt{\pi\ell/2}/\sqrt{1-1/r}$ . Ample experimental evidence that base-(g, h) r-adding walk resembles a random walk: solves DLP in about  $\sqrt{\pi\ell/2}$  steps on average.

2001 Teske:

need big r; e.g., r = 20.

Clear slowdown for small r;

Blackburn and Murphy say

$$\sqrt{\pi\ell/2}/\sqrt{1-1/r}$$
.

2010 Bernstein-Lange (ANTS 2012): actually more complicated; higher-degree anticollisions.

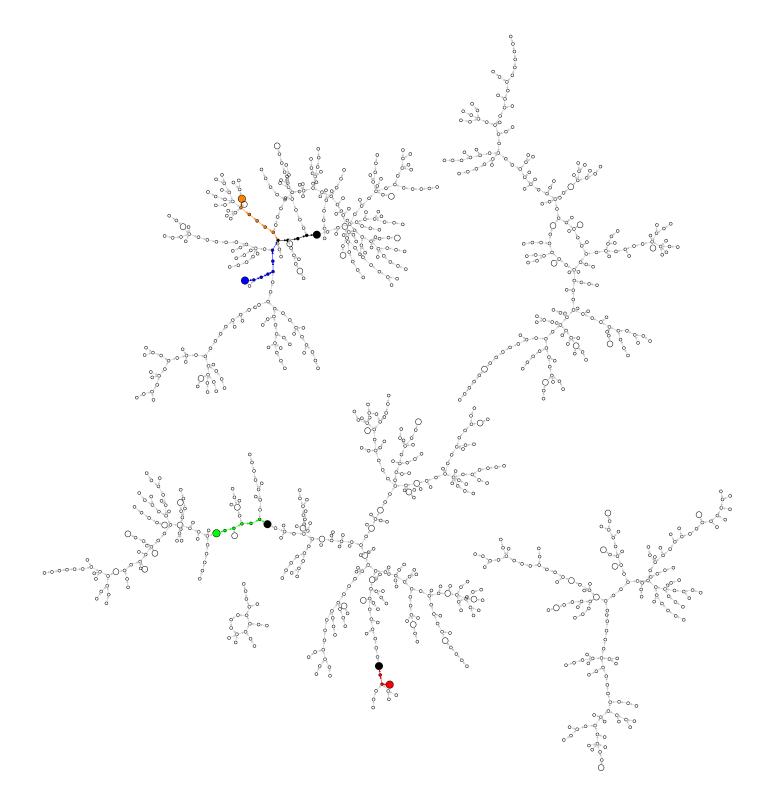
#### Parallel rho

1994 van Oorschot-Wiener:

Declare some subset of  $\langle g \rangle$  to be the set of distinguished points: e.g., all  $u \in \langle g \rangle$  where last 20 bits of representation of u are 0.

Perform, in parallel, many walks with different starting points  $hg^y$  but same update function f.

Terminate each walk once it hits a distinguished point. Report point to central server. Server receives, stores, and sorts all distinguished points.



Two colliding walks will reach the same distinguished point. Server sees collision, finds DL.

## Many discrete logarithms

1999 Escott-Sager-Selkirk-Tsapakidis, also crediting Silverman-Stapleton:

Computing (e.g.)  $\log_g h_1$ ,  $\log_g h_2$ ,  $\log_g h_3$ ,  $\log_g h_4$ , and  $\log_g h_5$  costs only  $2.49 \times$  more than computing just  $\log_g h$ .

The basic idea:

compute  $\log_g h_1$  with rho; compute  $\log_g h_2$  with rho, reusing distinguished points produced by  $h_1$ ; etc.

2001 Kuhn–Struik analysis:  $\cos \Theta(n^{1/2}\ell^{1/2})$  for n discrete logarithms in group of order  $\ell$  if  $n \ll \ell^{1/4}$ .

2001 Kuhn–Struik analysis:  $\cos \Theta(n^{1/2}\ell^{1/2})$  for n discrete logarithms in group of order  $\ell$  if  $n \ll \ell^{1/4}$ .

2004 Hitchcock–Montague– Carter—Dawson: View computations of  $\log_q h_1, \ldots, \log_q h_{n-1}$  as precomputatation for main computation of  $\log_q h_n$ . Analyze tradeoffs between main-computation time and precomputation time.

- 2012 Bernstein-Lange, this paper:
- (1) Adapt to interval of length ℓ inside much larger group.
- (2) Analyze tradeoffs between main-computation time and precomputed table size.
- (3) Choose table entries more carefully to reduce main-computation time.
- (4) Also choose iteration function more carefully.
- (5) Reduce space required for each table entry.
- (6) Break  $\ell^{1/4}$  barrier.

### Applications:

- (7) Accelerate trapdoor DL etc.
- (8) Accelerate BGN etc.; this needs (1).

Further applications in 2012
Bernstein-Lange "Non-uniform cracks in the concrete",
eprint.iacr.org/2012/318:
these algorithms disprove standard security conjectures, demonstrating flaw in standard formal definitions of security.

Credit to earlier Lee–Cheon–Hong paper for (2), (6), (7).

### The basic algorithm

Precomputation:

Start some walks at  $g^y$  for random choices of y. Build table of distinct distinguished points d along with  $\log_q d$ .

Use base-g r-adding walk, not base-(g, h) r-adding walk!

Main computation:

Starting from h, walk to distinguished point  $hg^y$ . Check for  $hg^y$  in table. (If this fails, rerandomize h.)

Standard base-g r-adding walk chooses uniform random  $c_1, \ldots, c_r \in \{1, 2, \ldots, \ell-1\};$  precomputes  $s_i = g^{c_i};$  walks from u to  $us_{H(u)}$ .

Nonstandard tweak: reduce  $\ell-1$  to, e.g.,  $0.25\ell/W$ , where W is average walk length.

Intuition: This tweak compromises performance by only a small constant factor.

Standard base-g r-adding walk chooses uniform random  $c_1, \ldots, c_r \in \{1, 2, \ldots, \ell-1\};$  precomputes  $s_i = g^{c_i};$  walks from u to  $us_{H(u)}$ .

Nonstandard tweak:

reduce  $\ell-1$  to, e.g.,  $0.25\ell/W$ , where W is average walk length.

Intuition: This tweak compromises performance by only a small constant factor.

If tweaked algorithm works for a group of order  $\ell$ , what will it do for an interval of order  $\ell$ ?

# Standard interval method: Pollard's kangaroo method.



Pollard's kangaroos do small jumps around the interval. Real kangaroos sleep.

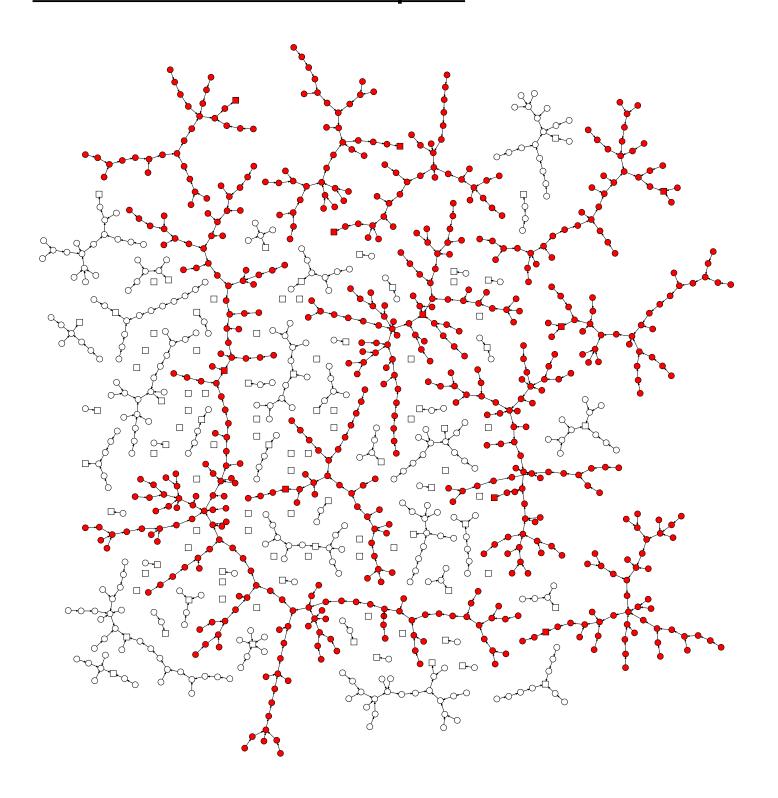
Are rho and kangaroo really so different? Seek unification: "kangarho"?

Are rho and kangaroo really so different? Seek unification: "kangarho"? Approved by Dan, not by Tanja: "kangarhoach"?

Are rho and kangaroo really so different? Seek unification: "kangarho"? Approved by Dan, not by Tanja: "kangarhoach"?

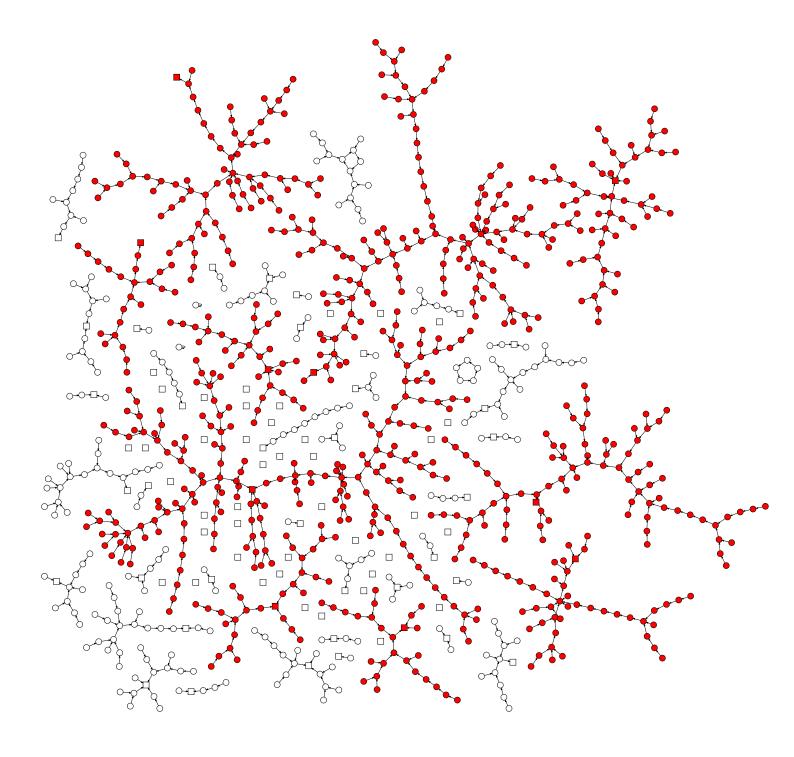
Some of our experiments for average ECDL computations using table of size  $pprox \boldsymbol{\ell}^{1/3}$  (selected from somewhat larger table): for group of order  $\ell$ , precomputation  $\approx 1.24\ell^{2/3}$ . main computation  $\approx 1.77\ell^{1/3}$ : for interval of order  $\ell$ , precomputation  $\approx 1.21\ell^{2/3}$ . main computation  $\approx 1.93\ell^{1/3}$ .

#### Not all DPs are equal



Ancestors of top 10 distinguished points are marked in red.

## Not all f's are equal



697 red ancestors.

Previous picture had 603.