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Nobody can really be sure.

For any nontrivial problem P :

What’s the best algorithm for P?

Nobody can really be sure.

But can estimate

the cost of this algorithm as the

cost of the best algorithm known.

Does this estimate

inspire confidence?

Maybe, maybe not!
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Compare “exponential in n”

to “(1:1 + o(1))n” to “nO(1)1:1n”

to “37n21:1n bit operations.”

How slowly is it changing?

Consider matrix-mult exponent:
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How extensive is the literature?

“Look at all these people who

couldn’t find better algorithms.”



The rho method

Group hP i of prime order `.

Discrete-log problem for hP i:
given P; kP , find k mod `.

Standard attack: parallel rho.

Expect (1 + o(1))
p
�`=2

group operations,

matching lower bound

from Nechaev/Shoup.

Easy to distribute across CPUs.

Very little memory consumption.

Very little communication.



Simplified, non-parallel rho:

Make a pseudo-random walk

in the group hP i,
where the next step depends

on current point: Wi+1 = f(Wi).

Birthday paradox:

Randomly choosing from `

elements picks one element twice

after about
p
�`=2 draws.

The walk now enters a cycle.

Cycle-finding algorithm

(e.g., Floyd) quickly detects this.





























































Assume that for each point

we know ai; bi 2 Z=`Z

so that Wi = [ai]P + [bi]Q.

Then Wi = Wj means that

[ai]P + [bi]Q = [aj ]P + [bj ]Q

so [bi � bj ]Q = [aj � ai]P .

If bi 6= bj the DLP is solved:

k = (aj � ai)=(bi � bj).



Assume that for each point

we know ai; bi 2 Z=`Z

so that Wi = [ai]P + [bi]Q.

Then Wi = Wj means that

[ai]P + [bi]Q = [aj ]P + [bj ]Q

so [bi � bj ]Q = [aj � ai]P .

If bi 6= bj the DLP is solved:

k = (aj � ai)=(bi � bj).

e.g. “Additive walk”:

Start with W0 = P and put

f(Wi) = Wi + cjP + djQ

where j = h(Wi).



Parallel rho: Perform many walks

with different starting points

but same update function f .

If two different walks

find the same point then

their subsequent steps will match.

Terminate each walk once it hits

a distinguished point.

Attacker chooses frequency and

definition of distinguished points.

Do not wait for cycle.

Collect all distinguished points.

Two walks ending in same

distinguished point solve DLP.
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Elliptic-curve groups

W

R

−W −R

W +R
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y2 = x3 + ax + b.

Also neutral element at 1.

�(x; y) = (x;�y).



(xW ; yW ) + (xR; yR) =

(xW+R; yW+R) =

(�2�xW�xR; �(xW�xW+R)�yW ):

xW 6= xR, “addition”:

� = (yR � yW )=(xR � xW ).

Total cost 1I + 2M + 1S.

W = R and yW 6= 0, “doubling”:

� = (3x2
W + a)=(2yW ).

Total cost 1I + 2M + 2S.

Also handle some exceptions:

(xW ; yW ) = (xR;�yR);

inputs at 1.



For each prime p � 3

not dividing 4a3 + 27b2:

Same formulas for x; y 2 Fp
define a group Ea;b(Fp).

Size of this group is element of

interval [p+1�2
p
p; p+1+2

p
p].

“Random” element of interval

if a; b are random mod p.

Note 1: Some elliptic curves

do not have this form.

Note 2: For typical cryptographic

computations, much better

to use Edwards form instead.



Negation and rho

W = (x; y) and �W = (x;�y)

have same x-coordinate.

Search for x-coordinate collision.

Search space for collisions is

only d`=2e; this gives factor
p

2

speedup : : : if f(Wi) = f(�Wi).

To ensure f(Wi) = f(�Wi):

Define j = h(jWij) and

f(Wi) = jWij + cjP + djQ.

Define jWij as, e.g., lexicographic

minimum of Wi;�Wi.



Problem: this walk can

run into fruitless cycles!

Example: If jWi+1j = �Wi+1

and h(jWi+1j) = j = h(jWij)
then Wi+2 = f(Wi+1) =

�Wi+1 + cjP + djQ =

�(jWij+cjP+djQ)+cjP+djQ =

�jWij so jWi+2j = jWij
so Wi+3 = Wi+1

so Wi+4 = Wi+2 etc.

If h maps to r different values

then expect this example to occur

with probability 1=(2r)

at each step.



Current ECDL record:

2009.07 Bos–Kaihara–

Kleinjung–Lenstra–Montgomery

“PlayStation 3 computing

breaks 260 barrier:

112-bit prime ECDLP solved”.

Standard curve over Fp
where p = (2128 � 3)=(11 � 6949).



Current ECDL record:

2009.07 Bos–Kaihara–

Kleinjung–Lenstra–Montgomery

“PlayStation 3 computing

breaks 260 barrier:

112-bit prime ECDLP solved”.

Standard curve over Fp
where p = (2128 � 3)=(11 � 6949).

“We did not use

the common negation map

since it requires branching

and results in code that runs

slower in a SIMD environment.”

All modern CPUs are SIMD.



2009.07 Bos–Kaihara–Kleinjung–

Lenstra–Montgomery “On the

security of 1024-bit RSA and 160-

bit elliptic curve cryptography”:

Group order q � p;

“expected number of iterations”

is “
q

��q
2 � 8:4 � 1016”; “we

do not use the negation map”;

“456 clock cycles per iteration

per SPU”; “24-bit distinguishing

property” ) “260 gigabytes”.

“The overall calculation

can be expected to take

approximately 60 PS3 years.”



2009.09 Bos–Kaihara–

Montgomery “Pollard rho

on the PlayStation 3”:

“Our software implementation is

optimized for the SPE : : : the

computational overhead for

[the negation map], due to the

conditional branches required to

check for fruitless cycles [13],

results (in our implementation

on this architecture) in an overall

performance degradation.”

“[13]” is 2000 Gallant–Lambert–

Vanstone.



2010.07 Bos–Kleinjung–Lenstra

“On the use of the negation map

in the Pollard rho method”:

“If the Pollard rho method is

parallelized in SIMD fashion,

it is a challenge to achieve any

speedup at all. : : : Dealing with

cycles entails administrative

overhead and branching, which

cause a non-negligible slowdown

when running multiple walks in

SIMD-parallel fashion. : : :

[This] is a major obstacle

to the negation map

in SIMD environments.”



Our software solves

random ECDL on the same curve

(with no precomputation)

in 35.6 PS3 years on average.

For comparison:

Bos–Kaihara–Kleinjung–Lenstra–

Montgomery software

uses 65 PS3 years on average.
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in 35.6 PS3 years on average.

For comparison:

Bos–Kaihara–Kleinjung–Lenstra–

Montgomery software

uses 65 PS3 years on average.

Computation used 158000 kWh

(if PS3 ran at only 300W),

wasting >70000 kWh,

unnecessarily generating >10000

kilograms of carbon dioxide.

(0.143 kg CO2 per Swiss kWh.)
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Several levels of speedups,

starting with fast arithmetic

mod p = (2128 � 3)=(11 � 6949)

and continuing up through rho.

Most important speedup:

We use the negation map.

Extra cost in each iteration:

extract bit of “s”

(normalized y, needed anyway);

expand bit into mask;

use mask to conditionally

replace (s; y) by (�s;�y).

5.5 SPU cycles (� 1:5% of total).

No conditional branches.



Bos–Kleinjung–Lenstra say

that “on average more elliptic

curve group operations are

required per step of each walk.

This is unavoidable” etc.

Specifically: If the precomputed

additive-walk table has r points,

need 1 extra doubling to escape

a cycle after � 2r additions.

And more: “cycle reduction” etc.

Bos–Kleinjung–Lenstra say

that the benefit of large r

is “wiped out by

cache inefficiencies.”



There’s really no problem here!

We use r = 2048.

1=(2r) = 1=4096; negligible.

Recall: p has 112 bits.

28 bytes for table entry (x; y).

We expand to 36 bytes

to accelerate arithmetic.

We compress to 32 bytes

by insisting on small x; y;

very fast initial computation.

Only 64KB for table.

Our Cell table-load cost: 0,

overlapping loads with arithmetic.

No “cache inefficiencies.”



What about fruitless cycles?

We run 45 iterations.

We then save s;

run 2 slightly slower iterations

tracking minimum (s; x; y);

then double tracked (x; y)

if new s equals saved s.

(Occasionally replace 2 by 12

to detect 4-cycles, 6-cycles.

Such cycles are almost

too rare to worry about,

but detecting them has a

completely negligible cost.)



Maybe fruitless cycles waste

some of the 47 iterations.

: : : but this is infrequent.

Lose � 0.6% of all iterations.

Tracking minimum isn’t free,

but most iterations skip it!

Same for final s comparison.

Still no conditional branches.

Overall cost � 1:3%.

Doubling occurs for only

� 1=4096 of all iterations.

We use SIMD quite lazily here;

overall cost � 0:6%.

Can reduce this cost further.
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Are we sure about all this?

Are there hidden bottlenecks?

Are we accidentally

compromising walk randomness?

Check by running experiments!

e.g. Try 1000 experiments;

check that average time

is very close to our predictions.

Problem: 1000 experiments

should take 35600 PS3 years.

We don’t have many PS3s.

Solution: Try same algorithm

at some smaller scales.



Our software works for

any curve y2 = x3 � 3x + b

over the same Fp.

Same cost of field arithmetic,

same cost of curve arithmetic.

y2 = x3 � 3x + 2382

has a point of order � 250.

y2 = x3 � 3x + 3722

has a point of order � 255.

y2 = x3 � 3x + 2402

has a point of order � 260.

We tried > 32000 experiments

on each of these curves.



Found distinguished points

at the predicted rates.

Found discrete logarithms

using the predicted number

of distinguished points.

Negation conclusions:

Sensible use of negation,

with or without SIMD,

has negligible impact

on cost of each iteration.

Impact on number of iterations

is almost exactly
p

2.

Overall benefit is

extremely close to
p

2.



How to evaluate security

for sparse families?



Get people to solve big challenges!

1997: Certicom announces several

elliptic-curve challenges.

“The Challenge is to compute the

ECC private keys from the given

list of ECC public keys

and associated system parameters.

This is the type of problem

facing an adversary who

wishes to completely defeat

an elliptic curve cryptosystem.”

Goals: help users select key sizes;

compare random and Koblitz;

compare F2m and Fp; etc.



How to get them hooked?

1997: ECCp-79 broken by

Baisley and Harley.

1997: ECC2-79 broken by

Harley et al.

1998: ECCp-89, ECC2-89 broken

by Harley et al.

1998: ECCp-97 broken by Harley

et al. (1288 computers).

1998: ECC2K-95 broken by Harley

et al. (200 computers).

1999: ECC2-97 broken by Harley

et al. (740 computers).

2000: ECC2K-108 broken by Harley

et al. (9500 computers).



More challenging challenges

Certicom: “The 109-bit Level I

challenges are feasible using a

very large network of computers.

The 131-bit Level I challenges

are expected to be infeasible

against realistic software and

hardware attacks, unless of

course, a new algorithm for the

ECDLP is discovered.”

2002: ECCp-109 broken by Monico

et al. (10000 computers).

2004: ECC2-109 broken by Monico

et al. (2600 computers).

open: ECC2K-130
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With our latest implementations,

ECC2K-130 is breakable

in two years on average by

� 1595 Phenom II x4 955 CPUs,

� or 1231 Playstation 3s,

� or 534 GTX 295 cards,

� or 308 XC3S5000 FPGAs,

� or any combination thereof.

This is a computation that

Certicom called “infeasible”?

Certicom has now backpedaled,

saying that ECC2K-130

“may be within reach”.



The target: ECC2K-130

The Koblitz curve

y2 + xy = x3 + 1

over F2131 has 4` points,

where ` is prime.

Field representation uses

irreducible polynomial

f = z131 + z13 + z2 + z + 1.

Certicom generated their

challenge points as two random

points in order-` subgroup by

taking two random points on the

curve and multiplying them by 4.



This produced the following

points P;Q:

x(P) = 05 1C99BFA6 F18DE467 C80C23B9 8C7994AA
y(P) = 04 2EA2D112 ECEC71FC F7E000D7 EFC978BD
x(Q) = 06 C997F3E7 F2C66A4A 5D2FDA13 756A37B1
y(Q) = 04 A38D1182 9D32D347 BD0C0F58 4D546E9A

(unique encoding of F2131 in hex).

The challenge:

Find an integer

k 2 f0; 1; : : : ; `� 1g
such that [k]P = Q.

Bigger picture:

128-bit curves have been proposed

for real (RFID, TinyTate).



Equivalence classes for Koblitz curves

P and �P have same x-coordinate.

Search for x-coordinate collision.

Search space is only `=2; this

gives factor
p

2 speedup : : :

provided that f(Pi) = f(�Pi).



Equivalence classes for Koblitz curves

P and �P have same x-coordinate.

Search for x-coordinate collision.

Search space is only `=2; this

gives factor
p

2 speedup : : :

provided that f(Pi) = f(�Pi).

More savings: P and �i(P ) have

x(�j(P )) = x(P )2j .

Consider equivalence classes under

Frobenius and �;

gain factor
p

2n =
p

2 � 131.

Need to ensure that the iteration

function satisfies

f(Pi) = f(��j(Pi)) for any j.



Savings is
p

2 � 131 iterations—

but the iteration function

has become slower.

How much slower?



Savings is
p

2 � 131 iterations—

but the iteration function

has become slower.

How much slower?

Could again define adding walk

starting from jPij.
Redefine jPij as canonical

representative of class containing

Pi: e.g., lexicographic minimum

of Pi, �Pi, �(Pi), etc.

Iterations now involve many

squarings, but squarings are not

so expensive in characteristic 2.



Iteration function for Koblitz curves

Normal basis of finite field

F2n has elements

f�; �2; �22
; �23

; : : : ; �2n�1g.

Representation for x and x2

Pn�1
i=0 xi�

2i = (x0; x1; x2; : : : ; xn�1)Pn
i=1 xi�

2i = (xn�1; x0; : : : ; xn�2)

using (�2n�1
)2 = �2n = �.

Harley and Gallant-Lambert-

Vanstone use that in normal basis,

x(P ) and x(P )2j have same

Hamming weight

HW(x(P )) =
Pn�1

i=0 xi
(addition over Z).



Suggestion:

Pi+1 = Pi + �j(Pi);

as iteration function.

Choice of j depends on HW(x(P )).

This ensures that the walk is

well defined on classes since

f(��m(Pi)) =

� �m(Pi) + �j(��m(Pi)) =

� (�m(Pi) + �m(�j(Pi))) =

� �m(Pi + �j(Pi)) =

� �m(Pi+1):



GLV suggest using

j = hash(HW(x(P ))),

where the hash function

maps to [1; n].

Harley uses a smaller set of

exponents; for his attack on

ECC2K-108 he takes

j 2 f1; 2; 4; 5; 6; 7; 8g;

computed as

j = (HW(x(P )) mod 7) + 2

and replacing 3 by 1.



Our choice of iteration function

Restricting size of j matters—

squarings are cheap but:

� in bitslicing need to compute all

powers (no branches allowed);

� code size matters

(in particular for Cell CPU);

� logic costs area for FPGA;

� having a large set doesn’t

actually gain much randomness.

Optimization target:

time per iteration � # iterations.



How to mention lattices?

Having few coefficients lets us

exclude short fruitless cycles.

To do so, compute

the shortest vector in the latticen
v :
Q

j(1 + �j)vj = 1
o

.

Usually the shortest vector has

negative coefficients (which

cannot happen with the iteration);

shortest vector with positive

coefficients is somewhat longer.

For implementation it is better

to have a continuous interval of

exponents, so shift the interval if

shortest vector is short.



Our iteration function:

Pi+1 = Pi + �j(Pi) where

j = (HW(x(P ))=2 mod 8) + 3,

so j 2 f3; 4; 5; 6; 7; 8; 9; 10g.

Shortest combination of these

powers is long.

Note that HW(x(P )) is even.

Iteration consists of

� computing the Hamming weight

HW(x(P )) of the normal-basis

representation of x(P );

� checking for distinguished

points (is HW(x(P )) � 34?);

� computing j and P + �j(P ).



Analysis of our iteration function

For a perfectly random walk

�
p
�`=2 iterations

are expected on average.

Have ` � 2131=4 for ECC2K-130.

A perfectly random walk

on classes under � and Frobenius

would reduce number of iterations

by
p

2 � 131.
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For a perfectly random walk

�
p
�`=2 iterations

are expected on average.

Have ` � 2131=4 for ECC2K-130.

A perfectly random walk

on classes under � and Frobenius

would reduce number of iterations

by
p

2 � 131.

Loss of randomness

from having only 8 choices of j.

Further loss from non-randomness

of Hamming weights:



Hamming weights around 66
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edges; effect still noticeable

after reduction to 8 choices.
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Hamming weights around 66

are much more likely than at the

edges; effect still noticeable

after reduction to 8 choices.

Our
q

1 �Pi p
2
i heuristic says

that the total loss is 6.9993%.

(Higher-order anti-collision

analysis: actually above 7%.)

This loss is justified by

the very fast iteration function.

Average number of iterations for

our attack against ECC2K-130:p
�`=(2 � 2 � 131) � 1:069993

� 260:9.



Endomorphisms

In general, an efficiently

computable endomorphism � of

order r speeds up Pollard rho

method by factor
p
r.

This theoretical speedup can

usually be realized in practice—

it just requires some work.

Can define walk on classes by

inspecting all 2r points

�P;��(P ); : : : ;��r�1(P )

to choose unique representative

for class and then doing an

adding walk; but this is slow.
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What is the security of ECC2K-130?

How long do � 260:9 iterations

take? 70110 � 260:9 bit operations!

Time? Depends on platform;

hardware has area-time tradeoffs;

software does not work on bits!

Need implementations on

different platforms with

low-level optimizations.

# bit operations gives good

indication for complexity on

FPGAs; is also meaningful for

speed of bitsliced software.



Graphics cards

GTX 295 without fans, case:

Overclocked Radeon 5970:



Why GPUs are interesting

NVIDIA GTX 295 graphics card

has two GPUs.

Each GPU has 30 cores

running at 1.242GHz.

(NVIDIA: “30 multiprocessors.”)

Each core can perform

8 32-bit operations/cycle.

Total GTX 295 power:

480 32-bit ops/cycle.

(NVIDIA: “480 cores.”)

> 239 32-bit ops/second.

> 269 1-bit ops/year.



Compare to Cell SPEs:

6 cores running at 3.2GHz.

Each core can perform

4 32-bit operations/cycle.

Total power:

24 32-bit ops/cycle.

Despite low clock speed,

GTX 295 can do > 7� more

operations/second than Cell.

Similar price to Cell.

Newer GPUs are even faster.



Why GPUs are difficult

GPU core issues each

instruction to many threads.

Using full GPU power is

difficult with < 192 threads,

impossible with < 128 threads.

All data used by these threads

must fit into core’s SRAM:

65536 bytes of registers,

16384 bytes of shared memory.

Copying data from DRAM has

huge latency, low throughput.



GPU results

Best speed with NVIDIA compiler:

� 3000 cycles/iteration.

Gave up on compiler, built

new GPU assembly language,

rewrote the software:

1379 cycles/iteration.

Current software:

1164 cycles/iteration.



GPU results

Best speed with NVIDIA compiler:

� 3000 cycles/iteration.

Gave up on compiler, built

new GPU assembly language,

rewrote the software:

1379 cycles/iteration.

Current software:

1164 cycles/iteration.

Lower bound for arithmetic:

273 cycles/iteration.

Main slowdown: loads + stores.



Need 534 GPUs for 2 years.
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10 million subscribers

who invest heavily in
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Need 534 GPUs for 2 years.

World of Warcraft:

10 million subscribers

who invest heavily in

their own graphics cards.

534 � 2 � 365 � 24

= 9 355 680 < 10 000 000.

All we need is

1 hour of World of Warcraft!




